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ABSTRACT

 

The temperature dependence of C

 

3

 

 photosynthesis is
known to vary with growth environment and with species.
In an attempt to quantify this variability, a commonly used
biochemically based photosynthesis model was parameter-
ized from 19 gas exchange studies on tree and crop species.
The parameter values obtained described the shape and
amplitude of the temperature responses of the maximum
rate of Rubisco activity (

 

V

 

cmax

 

) and the potential rate of
electron transport (

 

J

 

max

 

). Original data sets were used for
this review, as it is shown that derived values of 

 

V

 

cmax

 

 and its
temperature response depend strongly on assumptions
made in derivation. Values of 

 

J

 

max

 

 and 

 

V

 

cmax

 

 at 25

  

°°°°

 

C varied
considerably among species but were strongly correlated,
with an average 

 

J

 

max

 

:

 

V

 

cmax

 

 ratio of 1·67. Two species grown
in cold climates, however, had lower ratios. In all studies,
the 

 

J

 

max

 

:

 

V

 

cmax

 

 ratio declined strongly with measurement
temperature. The relative temperature responses of 

 

J

 

max

 

and 

 

V

 

cmax

 

 were relatively constant among tree species. Acti-
vation energies  averaged  50 kJ mol

  

−−−−

 

1

 

 for  

 

J

 

max

 

 and 65 kJ
mol

  

−−−−

 

1

 

 for 

 

V

 

cmax

 

, and for most species temperature optima
averaged 33

  

°°°°

 

C for 

 

J

 

max

 

 and 40

  

°°°°

 

C for 

 

V

 

cmax

 

. However, the
cold climate tree species had low temperature optima for
both 

 

J

 

max

 

 

 

(

 

19

  

°°°°

 

C) and 

 

V

 

cmax

 

 (29

  

°°°°

 

C), suggesting acclimation
of both processes to growth temperature. Crop species had
somewhat different temperature responses, with higher
activation energies for both 

 

J

 

max

 

 and 

 

V

 

cmax

 

, implying nar-
rower peaks in the temperature response for these species.
The results thus suggest that both growth environment and

plant type can influence the photosynthetic response to
temperature. Based on these results, several suggestions are
made to improve modelling of temperature responses.

 

Key-words

 

: electron transport; model parameters;
photosynthesis; ribulose-1,5-

 

bis

 

phosphate carboxylase-
oxygenase; ribulose-1,5-

 

bis

 

phosphate regeneration; tem-
perature acclimation.

 

INTRODUCTION

 

Many of the models used to study effects of global change
on plant function and growth incorporate the Farquhar, von
Caemmerer & Berry (1980) model of C

 

3

 

 photosynthesis
(e.g. Cramer 

 

et al

 

. 2001). This model is particularly useful in
this context because it represents mechanistically the
effects of elevated atmospheric [CO

 

2

 

], a major factor in glo-
bal change, on photosynthesis. The model has two major
parameters, the potential rate of electron transport (

 

J

 

max

 

)
and the maximum rate of ribulose-1,5-

 

bis

 

phosphate car-
boxylase-oxygenase (Rubisco) activity (

 

V

 

cmax

 

). There is now
a large database of values of 

 

J

 

max

 

 and 

 

V

 

cmax

 

 (Wullschleger
1993) and the effects of elevated [CO

 

2

 

] on these parameters
(Medlyn 

 

et al

 

. 1999). The model also has the potential to
accurately represent the effects of elevated temperature, a
second major factor in global change that directly affects
plant growth. However, as many modellers are aware, there
is a dearth of information regarding the temperature
responses of 

 

J

 

max

 

 and 

 

V

 

cmax

 

 (Leuning 1997).
We know that these temperature responses are likely to

vary, because the temperature response of photosynthesis
itself varies with genotype and environmental conditions,
and may acclimate to changes in growth temperature
(Slatyer & Morrow 1977; Berry & Björkman 1980). To date,
however, there has been a fairly limited number of studies



 

1168

 

B. E. Medlyn 

 

et al.

 

© 2002 Blackwell Publishing Ltd, 

 

Plant, Cell and Environment

 

, 

 

25

 

, 1167–1179

 

examining temperature responses in the context of the Far-
quhar model (Leuning 1997). The limited amount of infor-
mation available can result in possibly inappropriate
parameter choices. The database of temperature responses
of model parameters has the potential to expand in the near
future, given recent improvements in temperature control
in commercially available gas exchange systems. However,
there is a second obstacle to identifying variation in these
responses between species, which is that parameter values
obtained from data can differ according to the method used
to derive them, as is shown below. Direct comparison of
parameter values between different studies can therefore
be misleading. Wullschleger (1993) solved this problem
when compiling a database of 

 

J

 

max

 

 and 

 

V

 

cmax

 

 by deriving all
parameter values himself directly from 

 

A

 

–

 

C

 

i

 

 curves, thus
ensuring consistency between parameters.

The aim of this study was to improve modelling of pho-
tosynthetic temperature responses by compiling and com-
paring existing information on the temperature response of
the parameters of the Farquhar 

 

et al

 

. (1980) model of pho-
tosynthesis. Few studies have compared variation of these
parameters among species, so a broad understanding of
temperature responses and their relationship to species
characteristics and growth environment is lacking. We
adopted the approach of Wullschleger (1993), using consis-
tent methods to derive model parameters from the original
data sets. Some 19 data sets were obtained. In order to draw
some  generalizations  from  these  data  sets,  we  attempted
to link variation in the parameters between data sets to
ecological factors such as functional type and growth
environment.

 

METHODS

Data

 

Estimates of the parameters 

 

J

 

max

 

 and 

 

V

 

cmax

 

 may be
obtained in several ways including gas exchange (Kirsch-
baum & Farquhar 1984; Harley, Tenhunen & Lange 1986),

 

in vitro

 

 methods (Badger & Collatz 1977; Armond,
Schreiber & Björkman 1978) or chlorophyll fluorescence
(Niinemets, Oja & Kull 1999). In order to ensure that
responses were comparable, we chose only to include gas
exchange data. In this method, values of 

 

J

 

max

 

 and 

 

V

 

cmax

 

 are
obtained from the response of photosynthesis under high
light (

 

A

 

) to intercellular CO

 

2

 

 (

 

C

 

i

 

). A family of 

 

A

 

–

 

C

 

i

 

 curves
at different temperatures will thus give the temperature
response of the two parameters 

 

J

 

max

 

 and 

 

V

 

cmax

 

. Obtaining
such a family of curves is very time-consuming and hence
several authors have attempted to estimate the tempera-
ture responses of 

 

J

 

max

 

 and 

 

V

 

cmax

 

 using reduced data sets
(e.g. Hikosaka, Murakami & Hirose 1999; Wohlfahrt 

 

et al

 

.
1999). We attempted to include some of these studies here,
but we found that such shortcuts considerably reduced the
accuracy of the parameter values, and therefore decided
against their inclusion.

We required the original 

 

A

 

–

 

C

 

i

 

 curves from each study,
for reasons illustrated below. However, in two cases the

original data were no longer available (Kirschbaum & Far-
quhar 1984; Harley 

 

et al

 

. 1992). Temperature responses
from these two studies have been extensively used in mod-
elling, so we thought it important to include them in the
comparison. Therefore, in these two cases, typical 

 

A

 

–

 

C

 

i

 

curves were reconstructed from reported parameter values
and the model was re-fitted to these curves. Statistical
information on parameters obtained in this way is neces-
sarily missing. Details of all data sets used are given in
Table 1.

In most cases, temperature responses were obtained by
applying temperature control to leaves for the duration of
the gas exchange measurements. In contrast, in the exper-
iments carried out by Dreyer 

 

et al

 

. (2001) and Robakowski,
Montpied & Dreyer (2002) (Table 1), temperature changes
were applied to the whole seedlings for the night preceding
the measurements. This procedure could potentially have
modified the temperature response, as there is evidence
that the thermal properties of photosystem II (PSII) and of
electron transport may begin to acclimate after even a few
hours at a given temperature (e.g. Havaux 1993). The
results presented below, however, do not appear to indicate
any difference between the experiments carried out by this
group and other experiments.

 

Model

 

Overview of the Farquhar et al. (1980) model of 
photosynthesis

 

Farquhar 

 

et al

 

. (1980) proposed that net leaf photosynthe-
sis, 

 

A

 

n

 

, could be modelled as the minimum of two limiting
rates:

(1)

 

A

 

c

 

 is the rate of photosynthesis when Rubisco activity is
limiting and 

 

A

 

j

 

 the rate when ribulose-1,5-

 

bis

 

phosphate
(RuBP)-regeneration is limiting. 

 

R

 

d

 

 is the rate of mitochon-
drial respiration. Rubisco-limited photosynthesis is given
by:

(2)

where 

 

V

 

cmax

 

 is the maximum rate of Rubisco activity, 

 

C

 

i

 

 and

 

O

 

i

 

 are the intercellular concentrations of CO

 

2

 

 and O

 

2

 

,
respectively, 

 

K

 

c

 

 and 

 

K

 

o

 

 are the Michaelis–Menten coeffi-
cients of Rubisco activity for CO

 

2

 

 and O

 

2

 

, respectively, and
Γ* is the CO2 compensation point in the absence of mito-
chondrial respiration. This formulation of the model
assumes that the cell-wall conductance, the conductance
between the intercellular space and the site of carboxyla-
tion, is negligible. Some authors have argued that this con-
ductance is significant and may vary with leaf temperature
(e.g. Makino, Nakano & Mae 1994). For most species con-
sidered here, we did not have access to appropriate data to
evaluate the cell-wall conductance and hence were obliged
to use the form of the model given above.

A A A Rn c j d= ( ) -min ,

A
V C

C K
O
K

c
cmax i

i c
i

0

=
-( )

+ +Ê
Ë

ˆ
¯

È
ÎÍ

˘
˚̇

G *

1
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The rate of photosynthesis when RuBP regeneration is
limiting is given by:

(3)

where J is the rate of electron transport. J is related to
incident photosynthetically active photon flux density, Q,
by:

(4)

where Jmax is the potential rate of electron transport, θ is the
curvature of the light response curve and α is the quantum
yield of electron transport. The value of α was fixed at
0·3 mol electrons mol−1 photon, based on an average C3 pho-
tosynthetic quantum yield of 0·093 and a leaf absorptance
of 0·8 (Long, Postl & Bolharnordenkampf 1993). The value
of θ was taken to be 0·90. These parameter values have only
a slight effect on the estimated value of Jmax.

The key parameters of the model, which vary among
species, are Jmax and Vcmax. It is the temperature depen-
dences of these parameters that we set out to examine. In
addition, it is known that the parameters Kc, Ko and Γ*
vary with temperature. These parameters, by contrast, are
thought to be intrinsic properties of the Rubisco enzyme
and are generally assumed constant among species, thereby
minimizing the number of parameters to be fitted (Harley
et al. 1986).

T-dependence of Kc, Ko, and Γ*

The in-vivo temperature dependence of the Michaelis–
Menten coefficients of Rubisco, Kc (µmol mol−1) and Ko

(mmol mol−1), was recently measured in transgenic tobacco
over the temperature range 10–40 °C (Bernacchi et al. 2001)
and the following relationships obtained:

(5)

(6)

Tk denotes leaf temperature in K and R is the universal gas
constant (8·314 J mol−1 K−1). Previous parameterizations of
the photosynthesis model have been based on in vitro
determinations of these functions, carried out by Badger &
Collatz (1977) and Jordan & Ogren (1984), which are given
here for comparison. Badger & Collatz (1977) determined
carboxylase and oxygenase activities over the temperature
range 5–35 °C of Rubisco purified from leaves of Atriplex
glabriscula. They obtained the following relations (as given
in Farquhar et al. 1980):

(7)

(8)

(9)

A
J C

C
j

i

i
= Ê

Ë
ˆ
¯ ¥

-( )
+( )4 2

G
G

*
*

q a aJ Q J J QJ2 0- +( ) + =max max

K
T
RT

c
k

k
= ◊

-( )
( )

È
ÎÍ

˘
˚̇

404 9
79430 298

298
exp

K
T
RT

o
k

k
= ◊

-( )
( )

È
ÎÍ

˘
˚̇
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36380 298

298
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K
T
RT

Tc
k

k
C=

-( )
( )

È
ÎÍ

˘
˚̇

> ∞( )460
59 536 298

298
15exp

=
-( )

( )
È
ÎÍ

˘
˚̇

< ∞( )920
109 700 298

298
15exp

T
RT

Tk

k
C

K
T
RT

o
k

k
=

-( )
( )

È
ÎÍ

˘
˚̇

330
35 948 298

298
exp

Jordan & Ogren (1984), working with Rubisco purified
from spinach over the temperature range 5–40 °C, obtained
the following relationships (equations derived by Harley &
Baldocchi 1995):

(10)

(11)

Figure 1a illustrates the temperature dependence of the
effective Michaelis–Menten coefficient for CO2,
Km = Kc(1 + Oi/Ko), at an intercellular O2 concentration of
210 mmol mol−1, using each of these three sets of equations.

Similarly, the temperature dependence of the CO2 com-
pensation point, Γ* (µmol mol−1), was estimated by Bernac-
chi et al. (2001) to be:

(12)

Alternative expressions of the temperature dependence of
the CO2 compensation point, Γ*, are generally based on
the work of either Badger and colleagues (Badger &
Andrews 1974, Badger & Collatz 1977), Jordan & Ogren
(1984) or Brooks & Farquhar (1985). These three alterna-
tive temperature dependences are illustrated in Fig. 1b. The
CO2 compensation point is related to Kc and Ko and to the
maximum oxygenation activity of Rubisco, Vomax(Farquhar
et al. 1980):

(13)

Badger & Andrews (1974) observed that the ratio Vomax/
Vcmax = 0·21, independent of temperature, allowing the tem-
perature dependence of Γ* to be determined from that of
Kc and Ko. Jordan & Ogren (1984) studied the CO2 speci-
ficity factor τ = KcVomax/(KoVcmax) of Rubisco purified from
spinach and obtained (equation derived by Harley et al.
1992):

(14)

Brooks & Farquhar (1985) estimated the CO2 compensa-
tion point of spinach in vivo using a gas-exchange technique
and obtained the following relation, valid over the range
15–30 °C:

(15)

They report that this relationship closely resembles that
obtained by Jordan & Ogren (1984).

We explored the significance of the differences between
these alternative formulations when fitting the parameters
Jmax and Vcmax. We found that the parameter Jmax was only
very slightly sensitive to the formulation of either Km or Γ*
(not shown). However, the parameter Vcmax was highly sen-
sitive to the formulation of Km chosen (Fig. 1c). The ratio of
Jmax: Vcmax was thus also highly sensitive to Km (Fig. 1d). This
sensitivity is the reason why we considered it necessary to
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use a consistent method to derive all parameters in a con-
sistent fashion from original A–Ci curves before comparing
the temperature responses.

In the current work, we chose to use the temperature
functions obtained by Bernacchi et al. (2001), because these
functions were measured in vivo, without disturbance of
the leaf, and are hence more likely to reflect accurately
activity within the leaf. When using the temperature depen-
dences of Jmax and Vcmax presented below, it is important to
also use the Bernacchi et al. (2001) temperature depen-
dences for Kc, Ko and Γ*, because of the sensitivity of the
model to these functions illustrated in Fig. 1.

T-dependence of Jmax and Vcmax

On reviewing the literature, it is daunting to observe the
number of alternative functions that have been used to
model the temperature dependences of Jmax and Vcmax (com-
pare, for example, Harley et al. 1986; Long 1991; Harley et
al. 1992; Harley & Baldocchi 1995; Lloyd et al. 1995). How-
ever, all these equations are actually just alternative expres-
sions of two basic functions. The first is the Arrhenius
function:

(16)

which has parameters k25 (the value at 25 °C) and Ea (the
exponential rate of rise of the function). The second is a
peaked function (Johnson, Eyring & Williams 1942), which
is essentially the Arrhenius equation (Eqn 16) modified by
a term that describes how conformational changes in the
enzyme at higher temperatures start to negate the on-going
benefits that would otherwise come from further increasing
temperature. This equation can be written in two equivalent
forms:

(17)

(18)
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Figure 1. (a) Alternative forms for the response of Km = Kc(1 + Oi/Ko) to leaf temperature. (b) Alternative forms for the response of Γ* to 
leaf temperature. (c) Response of Vcmax to leaf temperature obtained by fitting a sample data set using alternative forms for Km. (d) Response 
of ratio Jmax : Vcmax to leaf temperature obtained by fitting a sample data set using alternative forms for Km. Key: Solid line: data from Badger 
& Collatz (1977). Dotted line: data from Jordan & Ogren (1984). Dashed line: data from Bernacchi et al. (2001).
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The first form has parameters k25, Ha, Hd and DS, whereas
the second form has parameters kopt, Ha, Hd and Topt. Ha and
Hd are the same between the two forms, whereas DS and
Topt are related by:

(19)

The parameters can be interpreted as follows: k25 and kopt

are the values of Jmax or Vcmax at temperatures 25 °C and
Topt, respectively; Ha gives the rate of exponential increase
of the function below the optimum (and is analogous to
parameter Ea in the Arrhenius function); Hd describes the
rate of decrease of the function above the optimum; and
Topt is the optimum temperature. DS is known as an entropy
factor but is not readily interpreted.

Model fitting

The first step in fitting the model was to obtain a value of
Jmax and Vcmax for each individual A–Ci curve. This step
was carried out by fitting Eqns 1, 2, 3 and 4 to each curve
using the non-linear regression routine with Gaussian
algorithm in SAS (SAS Institute Inc., Cary, NC, USA).
The parameter Rd was also fitted but was not used further,
because this parameter was found to be poorly estimated
by the model.

Temperature response parameters were then obtained by
fitting Eqns 16, 17 and 18 to response curves of Jmax and Vcmax

to leaf temperature, using SigmaPlot (SPSS Inc. Chicago, IL,
USA). It was assumed that Jmax and Vcmax at a given tem-
perature could vary between leaves (according to factors
such as leaf nitrogen per unit area) but that relative tem-
perature responses of the parameters would be constant.
This assumption was incorporated in the model by intro-
ducing dummy variables li to represent each leaf and putting:

(20)

in Eqns 16, 17 and 18 (Kleinbaum et al. 1998). Here, li = 1 for
leaf i and 0 otherwise, and ki is the value of k25 or kopt for
leaf i. Reported values of the parameters k25 and kopt are
mean and standard deviation of values of ki.

The Arrhenius model is a subset of the peaked model
(compare Eqns 16 and 17). Therefore, an F-test was used to
determine whether the peaked model gave a significantly
better fit to data than the Arrhenius model (Kleinbaum et
al. 1998). As others have found, the four-parameter peaked
model was often over-parameterized, i.e. there was insuffi-
cient data to determine all parameters (Harley et al. 1992;
Dreyer et al. 2001). Hence, this model was also fitted under
the assumption that Hd = 200 kJ mol−1, and an F-test used to
determine whether Hd was significantly different from this
value.

Implied temperature response of photosynthesis

We wanted to identify the implications for photosynthesis
of differences in the temperature responses of model

T
H

S R
H

H H

opt
d

a

d a

=
-

-( )
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ÎÍ

˘
˚̇

D ln

k l ki ii
= Â

parameters. To do so, Eqns 1, 2, 3 and 4 were used to cal-
culate a typical temperature response of net photosynthesis
from the derived parameter values. This calculation was
made by assuming standard ambient environmental condi-
tions for light-saturated photosynthesis: an atmospheric
[CO2] concentration of 350 µmol mol−1, a constant Ci : Ca

ratio of 0·7, and a value for J of 0·9Jmax. Leaf respiration was
modelled for all species using a base rate of 0·01 Vcmax and
a Q10 of 2.

RESULTS

Temperature response of Vcmax

Fitted parameters of the temperature response of Vcmax are
given in Table 2. In most cases, the peaked function (Eqn
17) with Hd fixed at 200 kJ mol−1 gave a significantly better
fit to the data than the Arrhenius function (Eqn 16). In no
case, however, did relaxing the constraint on Hd signifi-
cantly improve the fit to the data. Species for which no
peak in the temperature response of Vcmax was discernible
were Fraxinus excelsior, Prunus persica, Pinus taeda and
Pinus radiata. Note, however, that measurements on P.
radiata did not go above 30 °C (Table 1), and that peak val-
ues close to 40 °C (maximal measurement temperature)
are statistically difficult to estimate (e.g. for F. excelsior); in
all cases a peak may well occur above the highest measure-
ment temperature.

Values of k25, the maximum rate of Rubisco activity at
25 °C, varied across data sets by a factor of three. Some of
this variation is probably caused by variations in leaf nitro-
gen content between data sets. Values were highest for crop
species, but were comparable for coniferous and deciduous
species. Note that all rates are expressed on a one-sided leaf
area basis.

The activation energy Ha was generally in the range 60–
80 kJ mol−1, implying a similarity in the temperature
responses of Vcmax across data sets. Two data sets had values
of Ha slightly below this range (F. excelsior and fertilized P.
radiata) whereas another two had values of Ha consider-
ably above this range (Gossypium hirsutum and Juglans
regia).

The optimum temperature for Vcmax, Topt, was undeter-
mined for those experiments where the peaked function
was not a significantly better fit than the Arrhenius func-
tion. Among the other experiments, Topt was generally in
the range 35–41 °C, with no clear pattern in the variation,
with two exceptions. Betula pendula and Pinus sylvestris,
grown in Finland, experienced the lowest growing temper-
atures and showed significantly lower values of Topt (27–
29 °C).

The variability in the temperature response of Vcmax is
illustrated in Fig. 2a, which shows the temperature
responses normalized to 1 at 25 °C. Most of the tempera-
ture responses lie between the two curves shown for
Juglans regia and Acer pseudoplatanus. The exceptions are
cotton, Gossypium hirsutum, which has a much steeper
Vcmax–T response owing to its high value of Ha, and the
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Finnish plants, B. pendula and P. sylvestris, which have a
much lower optimal temperature for Vcmax.

Temperature response of Jmax

The peaked function (Eqn 17) described the temperature
response of Jmax significantly better than the Arrhenius
function (Eqn 16) for all experiments other than P. radiata
and P. taeda. Parameters for the peaked function are given
in Table 3.

Values of the activation energy Ha were in general high-
est for crop species (80–90 kJ mol−1), intermediate for
deciduous species (40–60 kJ mol−1) and lowest for conifer-
ous species (30–40 kJ mol−1). The major exceptions to this
pattern were again the cold-climate trees from Finland, B.
pendula and P. sylvestris, which both had high values of Ha,
and F. excelsior. Values of Hd were significantly less than
200 kJ mol−1 for these three species and for soybean.

The optimal temperature for Jmax is generally in the
range 30–38 °C, with no clear pattern among species, with
the exception again of the Finnish plants. Betula pendula
and P. sylvestris had much lower optimal temperatures for
Jmax of about 20 °C.

The variability in the temperature response of Jmax is
illustrated in Fig. 2b. The two Finnish species have similar
responses, with low optimal temperatures. The other coni-
fers have responses resembling that of P. pinaster, with a

relatively low slope owing to low values of Ha. Deciduous
tree responses generally lie between those of F. excelsior
and F. sylvatica. Crop species responses are steeper again,
as illustrated by the G. hirsutum response.

Ratio of Jmax : Vcmax

Figure 3 shows the relationship between values of Jmax and
Vcmax at 25 °C. Most of the data points fall close to a straight
line with a slope of 1·67. The major exceptions to this pat-
tern are soybean, with a ratio of 2·4, and the two Finnish
plants, which both have ratios of about 1. For each experi-
ment, a linear function was fitted to the relationship
between the Jmax : Vcmax ratio and leaf temperature. There
was a significant negative slope in all cases, ranging from −
0·045 to −0·08, highlighting the difference in activation
energies for Jmax and Vcmax.

Implications for the temperature response of 
light-saturated photosynthesis

The temperature response of photosynthesis was modelled
for each data set, under the assumption of a constant Ci : Ca

ratio. From the resulting curves, the optimal temperature
for photosynthesis and its rate of increase over the range
15–30 °C were calculated, and these are plotted in  Figs 4
and 5 against growth temperature. Figure 4 illustrates that

Figure 2. Sample responses of (a) Vcmax and (b) Jmax to leaf temperature. Values are normalized to 1 at 25 °C.
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for the majority of broadleaf and coniferous trees, the opti-
mal temperature for photosynthesis varies between 23 and
30 °C and is largely unrelated to growth temperature. How-
ever, the trees grown in cold conditions in Finland had
considerably lower optimal temperatures. The optimal tem-
peratures for the two crop species, which were grown in
warm conditions, were comparable to the highest optimal
temperatures obtained for the tree species. The rate of

increase of photosynthesis between 15 and 30 °C was also
similar for most plants in the survey, ranging from 1·2 to 1·6
(Fig. 5). The exceptions were the Finnish trees, again, for
which photosynthesis actually decreased over this temper-
ature range, and walnut (J. regia) and cotton (G. hirsutum),
which had particularly high rates of increase. From Figs 4
and 5 we can identify three broad classes of implied photo-
synthetic temperature response (Fig. 6). Most plants had

Table 3. Parameters of the temperature response of Jmax

Species k25(µmol m−2 s−1) kopt(µmol m−2 s−1) Ha(kJ mol−1) Hd(kJ mol−1) Topt(°C) r2

Crops
Glycine max 217·88 (2·89) 328·57 (4·35) 88·82 (36·57) 113·77 (10·78) 38·17 (2·33) 0·89
Gossypium hirsutum 131·82 221·57 77·17 200 34·44 1·00

Deciduous trees
Acer pseudoplatanus 142·23 (12·37) 173·90 (15·12) 44·14 (10·02) 200 31·96 (1·16) 0·82
Betula pendula OTC 111·89 (1·48) 128·45 (1·70) 108·45 (18·29) 156·84 (12·60) 19·20 (0·70) 0·96
Betula pendula GH 116·33 (13·21) 169·66  (19·27) 42·83 (4·09) 200 35·77 (0·41) 0·98
Fagus sylvatica GH 97·91 (12·31) 173·18 (18·20) 48·09 (7·86) 200 35·24 (0·78) 0·95
Fagus sylvatica ME 44·83 (7·50) 51·89 (8·68) 43·36 (12·37) 200 30·78 (0·65) 0·94
Fraxinus excelsior 147·03 (18·51) 170·10 (21·42) 91·20 (15·20) 131·89 (7·58) 31·38 (0·62) 0·95
Juglans regia 103·81 (16·75) 165·86 (26·76) 56·30 (8·59) 200 35·53 (0·60) 0·97
Prunus persica 106·27 (7·83) 154·81 (11·41) 42·04 (8·73) 200 35·87 (1·56) 0·95
Quercus petraea 144·01 (12·02) 220·75 (18·43) 42·14 (2·99) 200 36·89 (0·34) 0·99
Quercus robur GH 139·59 (23·98) 212·90 (36·57) 36·92 (7·19) 200 37·91 (1·29) 0·92
Quercus robur ME 66·03  (20·18) 80·75 (24·68) 35·87 (13·52) 200 32·86 (1·19) 0·89

Evergreen trees
Abies alba 95·49 (5·73) 128·15 (7·69) 50·82 (8·20) 200 33·20 (0·78) 0·90
Eucalyptus pauciflora 141·94 175·13 43·79 200 32·19
Pinus pinaster 154·74 (10·80) 220·91 (15·40) 34·83 (9·24) 200 36·87 (9·34) 0·97
Pinus radiata fert. 175·43 (14·29) 189·66 (15·46) 43·18 (12·41) 200 29·01 (2·76) 0·95
Pinus radiata unfert. 136·57 (17·66) 145·99 (18·85) 44·14 (16·60) 200 28·63 (3·21) 0·92
Pinus sylvestris 70·77 (2·65) 78·36 (2·93) 100·28 (17·76) 147·92 (10·28) 19·89 (0·73) 0·96
Pinus taeda 98·54 (14·09) 155·76 (22·26) 37·87 (394·31) 200 38·48 (1213) 0·95

Values of k25 and kopt are expressed on a one-sided leaf area basis. Standard deviations of k25 and kopt, and standard errors of other 
parameters, are given in parentheses. OTC, open top chamber experiment; GH, greenhouse experiment; ME, mini-ecosystem experiment.

Figure 3. Relationship 
between Jmax and Vcmax at 
25 °C. Filled symbols: crop 
species; open symbols: 
broadleaf species; crosses: 
coniferous species. Fitted 
regression line has slope of 
1·67.
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fairly similar responses, falling between those of A. pseudo-
platanus and Q. petraea. The two Finnish trees, B. pendula
and P. sylvestris, had distinctly different responses, with
much lower optimal temperatures. Finally, cotton (and to a
lesser extent J. regia) differed in having a much steeper
response curve.

DISCUSSION

The aim of this review was to investigate variability in the
temperature responses of the model parameters Jmax and
Vcmax, with a view to improving parameter choice when
modelling photosynthetic processes. The major factors
thought to affect these responses are growth temperature

and genotype or species (Berry & Björkman 1980). It has
also been suggested that nutrition (Martindale & Leegood
1997) and light availability (Niinemets et al. 1999) may play
a role.

We found that the temperature responses of Jmax and
Vcmax obtained in gas exchange experiments were quite sim-
ilar across many of the species included in the review
(Tables 2 and 3), a promising finding as it potentially sim-
plifies parameter choice. Parameter values obtained by
alternative means (in vitro, chlorophyll fluorescence) are
included for comparison in Table 4, and generally fall
within the range of values reported in Tables 2 and 3.
Responses of coniferous and broadleaf trees were broadly
similar, with only a slight trend for lower Ha of Jmax in coni-
fers. However, the responses of the two crop species, par-

Figure 4. Modelled optimal 
temperature of light-saturated net 
photosynthesis plotted against mean 
temperature in month prior to 
measurements. Filled symbols: crop 
species; open symbols: broadleaf species; 
crosses: coniferous species.

Figure 5. Modelled ratio of light-
saturated net photosynthesis at 30 °C to 
that at 15 °C, plotted against mean 
temperature in month prior to 
measurements. Filled symbols: crop 
species; open symbols: broadleaf species; 
crosses: coniferous species.
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ticularly cotton, differed from tree species in several
aspects including activation energies of both Jmax and Vcmax

and the ratio of Jmax : Vcmax at 25 °C, suggesting that alterna-
tive parameter sets are required for modelling these two
plant types. This result needs to be clarified by expansion of
the database on herbaceous species and crops, however.

It is not possible to draw inferences about acclimation of
photosynthesis to growing conditions from such a diverse
set of studies, because several alternative explanations are
possible for any observed differences, such as differences in
experimental protocol or genotypic differences. Neverthe-
less some interesting comparisons can be made which can
serve as a preliminary basis for generalizations about tem-
perature responses in different environments.

For example, we can compare studies on the same spe-
cies growing in different environmental conditions. Both
Fagus sylvatica and Quercus robur were the subject of two
different studies, one with seedlings growing individually in

pots and one with seedlings growing densely in mini-eco-
systems. Low foliar nitrogen in the mini-ecosystem studies
led to low values of k25 for both Jmax and Vcmax. The relative
temperature response of Vcmax was unchanged, but Topt of
Jmax was lower in the mini-ecosystem experiment. This
result parallels that of Niinemets et al. (1999) who found
that the temperature optimum of Jmax was positively corre-
lated with light availability and suggested that the correla-
tion was a result of photosynthetic acclimation to
microclimate.

There was generally a poor relationship between param-
eter values and growth temperature, with the clear excep-
tion of the lowest-temperature-grown plants, B. pendula
and P. sylvestris, which had distinctly different temperature
responses compared to plants of the same genus grown in
temperate climates. The low-temperature-grown plants had
low optimal temperatures for both Jmax and Vcmax, and low
Jmax : Vcmax ratios. Although not completely comparable, a

Figure 6. Sample responses of 
modelled leaf photosynthesis to leaf 
temperature. Values are normalized to 1 
at 25 °C.

Parameter
values Material Authors

Vcmax
Ea
58·52 Atriplex glabriscula,

purified Rubisco
Badger & Collatz (1977)1

65·33 transgenic Nicotiana tabacum Bernacchi et al. (2001)2

Jmax
Ha Hd Topt
65·01 179·2 33·7 Populus tremula, intact leaves Niinemets et al. (1999)3

54·97 325·5 40·3 Tilia cordata, intact leaves Niinemets et al. (1999)3

37 220 31 barley chloroplasts Nolan & Smillie (1976)1

1in vitro; 2in vivo measurements with transgenic low-Rubisco plants; 3chlorophyll 
fluorescence.

Table 4. Comparable parameter values 
obtained by other methods
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study on alpine grasses growing in low temperature envi-
ronments (Wohlfahrt et al. 1999) does not show such dra-
matic differences in the temperature optima of Jmax and
Vcmax. Further research is required to clearly establish the
effects of growth in a cold climate on the temperature
responses of Jmax and Vcmax. No data were available for trop-
ical species; it would be interesting to see how optimal tem-
peratures for such species compare with those reported
here.

Another key requirement for future research high-
lighted by this study is the need for more information on
the temperature dependence of Kc and Ko, the Michaelis–
Menten coefficients for Rubisco activity. We have illus-
trated the fact that values of Vcmax derived from gas
exchange data depend strongly on the assumed values of Kc

and Ko and hence are not readily comparable between stud-
ies. In the absence of a clear resolution of the temperature
dependence of these parameters, it is important, particu-
larly when modelling, to ensure that parameter sets are
consistent (Medlyn et al. 1999).

It should be noted that photosynthetic rates are deter-
mined not only by biochemical processes, but also by sto-
matal conductance to CO2. In this study we have omitted to
consider the effects on photosynthesis of possible acclima-
tion of stomatal conductance to temperature.  (Figs 4–6
were constructed assuming a constant Ci : Ca ratio.) In the
companion paper (Medlyn, Loustau & Delzon 2002), we
showed that changes in stomatal conductance could con-
tribute considerably to photosynthetic temperature accli-
mation. A similar result was found by Ferrar, Slatyer &
Vranjic (1989) for Eucalyptus species and Ellsworth (2000)
for Pinus taeda. Berry & Björkman (1980) suggested sto-
matal acclimation to temperature was uncommon but also
noted that information on this topic was scarce. Even with-
out acclimation, photosynthetic rates at ambient CO2 con-
centration at optimum temperature, and the temperature of
optimum photosynthesis itself, can be strongly affected by
stomatal responses to temperature and water vapour pres-
sure deficits (Kirschbaum & Farquhar 1984). Hence, even
with identical photosynthetic parameters, leaves can have
different photosynthetic rates under ambient conditions
due to different stomatal conductances caused by internal
(e.g. water stress) or external (e.g. water vapour pressure
deficits) factors. It has also been suggested that changes in
the temperature response of cell-wall conductance may be
a factor in temperature acclimation (Makino et al. 1994).
We were unable to evaluate this possibility owing to lack of
data.

CONCLUSION

The primary aim of this review of the temperature
responses of model parameters Jmax and Vcmax was to high-
light variability in these responses among species and
growth environments in order to improve parameter choice
when modelling temperature effects on photosynthesis and
growth. In general, it was found that parameters for crop

species, temperate trees, and boreal trees, fell into three dis-
tinct groups (see Tables 2 and 3), suggesting that modellers
should use a set of parameters from the appropriate group.
The limited data analysed here also revealed differences in
photosynthetic temperature response parameters among
growth environments, suggesting that equations should be
chosen, where possible, to be appropriate for given radia-
tion and temperature conditions. However, to better model
temperature responses, a greater understanding of the
functional significance of differences among broad plant
types and growth environments is needed, which will
require more careful experimental comparisons of within-
versus among-species variation in temperature response
parameters.
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