
HAL Id: hal-01189592
https://hal.science/hal-01189592

Submitted on 29 May 2020

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Copyright

Absence of isolation by distance patterns at the regional
scale in the fungal plant pathogen Leptosphaeria

maculans
Renaud Travadon, Ivan Sache, Christian Cyril Dutech, Anna Stachowiak,

Bruno Marquer, Lydia Bousset

To cite this version:
Renaud Travadon, Ivan Sache, Christian Cyril Dutech, Anna Stachowiak, Bruno Marquer, et al.. Ab-
sence of isolation by distance patterns at the regional scale in the fungal plant pathogen Leptosphaeria
maculans. Fungal Biology, 2011, 115 (7), pp.649-659. �10.1016/j.funbio.2011.03.009�. �hal-01189592�

https://hal.science/hal-01189592
https://hal.archives-ouvertes.fr


V
er

si
on

 p
os

tp
rin

t

Comment citer ce document :
Travadon, R., Sache, I., Dutech, C. C., Stachowiak, A., Marquer, B., Bousset, L. (2011).

Absence of isolation by distance patterns at the regional scale in the fungal plant pathogen
Leptosphaeria maculans. Fungal Biology, 115 (7), 649-659. , DOI : 10.1016/j.funbio.2011.03.009

This file is the post-print of: Travadon et al. Fungal Biology (2011) 115: 649-659 Doi: 10.1016/j.funbio.2011.03.009 

1 
 

Absence of isolation by distance patterns at the regional scale in the fungal plant pathogen Leptosphaeria 

maculans 

 

Renaud TRAVADONa,, Ivan SACHEb, Cyril DUTECHc, Anna STACHOWIAKb,d, 

Bruno MARQUERa, Lydia BOUSSETa 

 
aINRA, AgroCampus Ouest, UMR1099 BiO3P, 35653 Le Rheu, France 
bINRA, UR1290 BIOGER-CPP, Campus AgroParisTech, 78850 Thiverval-Grignon, France 
cINRA, UMR1202 BIOGECO, _Equipe de Pathologie Foresti_ere, 33612 Cestas, France 
dInstitute of Plant Genetics, Polish Academy of Sciences, Strzeszynska 34, PL-60479 Poznan, Poland 

 

Abstract 

Outcomes of host-pathogen coevolution are influenced by migration rates of the interacting species. Reduced 

gene flow with increasing spatial distance between populations leads to spatial genetic structure, as predicted 

by the isolation by distance (IBD) model. In wind-dispersed plant-pathogenic fungi, a significant spatial 

genetic structure is theoretically expected if local spore dispersal is more frequent than long-distance dispersal, 

but this remains to be documented by empirical data. For 29 populations of the oilseed rape fungus 

Leptosphaeria maculans sampled from two French regions, genetic structure was determined using eight 

minisatellite markers. Gene diversity (H = 0.62–0.70) and haplotypic richness (R = 0.96–1) were high in all 

populations. No linkage disequilibrium was detected between loci, suggesting the prevalence of panmictic 

sexual reproduction. Analysis of molecular variance showed that >97 % of genetic diversity was observed 

within populations. Genetic differentiation was low among populations (Fst < 0.05). Although direct methods 

previously revealed short-distance dispersal for L. maculans, our findings of no correlation between genetic 

and geographic distances among populations illustrate that the IBD model does not account for dispersal of 

the fungus at the spatial scale we examined. These results indicate high gene flow among French populations 

of L. maculans, suggesting high dispersal rates and/or large effective population sizes, two characteristics 

giving the pathogen high evolutionary potential against the deployment of resistant oilseed rape cultivars. 
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Highlights 

- We investigate the spatial genetic structure of Leptosphaeria maculans in France.  

- We test the relevance of the isolation by distance model to describe spore dispersal.  

- We found no correlation between genetic and geographic distances among populations.  

- Results indicate high gene flow among populations.  

- High dispersal rates and large effective population sizes characterize L. maculans. 

 

Introduction 

Dispersal has an important influence on patterns of local adaptation of plant pathogens to their host (Kaltz & 

Shykoff 1998), especially in agricultural ecosystems where migration of virulent pathogen genotypes is 

favoured compared to immobile, cultivated resistant host genotypes. These unbalanced migration rates 

between host plants and pathogens eventually lead to a reduced efficacy of plant resistance (Gandon et al. 

1996). Durable disease control, therefore, requires the deployment of resistant varieties in a spatial 

arrangement that limits disease transmission (Aubertot et al. 2006). The spatial scale of relevance for such an 

arrangement should match the scale of gene flow between pathogen populations. For wind-dispersed, plant-

pathogenic fungi, spore dispersal usually occurs both at long distances over hundreds of kilometres (low-

frequency, atmospheric dispersal) and at short distances within a few hundred metres (high-frequency, local 

dispersal) (Aylor & Irwin 1999). Locally, the number of deposited spores decreases with increasing distance 

from the inoculum source (Gregory 1973). Spore trapping experiments, however, do not always yield 

consistent estimates at increasing distances from the inoculum source, thereby underestimating rare events of 

long-distance dispersal (McCartney et al. 2006). 
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When direct measures fail, the scale of spore dispersal can be inferred from indirect genetic measures. 

If local dispersal is predominant, the resulting pattern of neutral genetic differentiation between populations 

is expected to follow the ‘isolation by distance’ (IBD) model (Wright, 1943, Slatkin, 1987; Rousset 1997). 

Assuming that neutral genetic structure is primarily due to genetic drift and is counterbalanced by gene 

dispersal (in a two-dimensional environment), and that it reflects the dispersal capacities of the studied species, 

a linear correlation is expected between the logarithm of the geographical distance and 

estimated between pairs of populations (Fst being the index of genetic differentiation among 

populations; Wright 1943). The detection of an IBD pattern requires a precise framework, assuming mutation–

drift equilibrium, and considering spatial distances ranging between σ and 20σ, where σ2 is the second moment 

of parent-offspring distance dispersal (Rousset 1997). Estimations through this method have been shown to 

be robust to the mutational process of microsatellite loci (i.e. allele size homoplasy), and to spatial and 

temporal heterogeneities of demographic parameters (i.e. variation in dispersal and density) (Leblois et al. 

2003, 2004). Furthermore, analysis conducted at a local scale allows reducing the influence of selection 

pressure on genetic differentiation (Rousset 2001). For several tropical tree species, indirect gene dispersal 

estimates were consistent with direct estimates of seed and pollen dispersal (Hardy et al. 2006). 

Among wind-dispersed fungi, IBD patterns have been tested at inter-continental scales, at which the 

spatial genetic structure could either reflect past, stochastic, and rare long-distance colonisation events (Linde 

et al. 2002; Rivas et al. 2004; Zaffarano et al. 2006), or the presence of physical barriers to gene flow 

(mountains, seas, and deserts) (Hayden et al. 2007). At broad spatial scales, the effects of selection, mutation, 

and demographic variation on genetic differentiation are not negligible; thus, translating measures of genetic 

differentiation such as Fst and related indices into a quantitative evaluation of spore dispersal when 

transformed as a direct measure of the product of effective population size and number of successful migrants 

per generation, could often lead to misinterpretation (see for example Whitlock & McCauley 1999). One way 

to test for the relevance of the IBD model to plant-pathogenic fungi when σ is not known is to compare spatial 

scales. For instance, in populations of the poplar rust fungus Melampsora larici-populina, Barrès et al. (2008) 

detected IBD patterns within Europe, but population genetic structures from Iceland and Canada were shown 

to result from rare long-distance dispersal events. 

Leptosphaeria maculans (Desm.) Ces. & de Not. (anamorph Phoma lingam Tode ex Fr.), is a 

heterothallic, haploid fungus causing Phoma stem canker, a disease responsible of severe yield losses of 

Brassica, especially oilseed rape (Brassicanapus) world-wide (Fitt et al. 2006). In French oilseed rape crops, 

the life-cycle of the fungus matches the host presence, which is from Sep. to Jun. A single, sexual reproduction 

cycle per year occurs during summer on infected stubble (Fitt et al. 2006). While the resulting ascospores 

were once thought to travel on distances up to 10 km (McGee 1977), direct measures recently suggested that 

most ascospores were indeed concentrated within a few hundred metres from the previous year’s crop (Salam 

et al., 2001, Marcroft et al., 2004). From previous indirect measures, contradictory conclusions were drawn 

on the dispersal abilities of L. maculans. At the inter-continental scale, Amplified Fragment Length 

Polymorphism (AFLP) analysis differentiated Australian, North American, and European L. maculans 

populations (Purwantara et al. 2000). In Australia, AFLP and Restriction Fragment Length Polymorphism 

markers did not reveal a genetic east–west differentiation among populations (Barrins et al. 2004), a 

differentiation which was subsequently revealed by microsatellite and minisatellite markers (Hayden et al. 

2007), and explained as a result of the separation of these two regions by an arid desert. In Canada, Random 

Amplified Polymorphic DNA markers differentiated two populations sampled from 20 km distant fields 

(Mahuku et al. 1997). In contrast, a study conducted in France, including four minisatellite markers used in 

the present study, showed low genetic differentiation among L. maculans populations (Gout et al. 2006). 

Findings of Gout et al. (2006) are based on only four populations with a scatter distribution across France. 

This sampling was not designed to infer spore dispersal parameters through indirect genetic measures, but 

rather allowed the examination of levels and distribution of within-population genetic diversity. The low 

measures of genetic differentiation reported by Gout et al. (2006), who estimated that >99.5 % of genetic 

diversity measured at four minisatellite markers was present within two square metres field plots, do not allow 

the assessment of the minor variation in genetic differentiation within a local spatial scale, which could 

possibly reflect the evolution of L. maculans populations under an IBD model. 
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The aim of the present study was to test the relevance of the IBD model to a windborne plant-

pathogenic fungus. Indeed, it remains to be proven that IBD patterns can be detected in agricultural ecosystems 

characterized by pathogen populations with a high multiplication rate, a large population size alternating with 

recurrent yearly bottlenecks, or with a recent range expansion. Based on a priori knowledge of the organism’s 

dispersal abilities, the genetic structure of L. maculans was investigated at a spatial scale where gene flow was 

expected to occur. Direct measures of ascospore dispersal distances suggest that L. maculans populations 

separated by geographic distances ranging from several hundred metres to 10 km evolve under IBD (Salam 

et al., 2001, Marcroft et al., 2004). We developed four new minisatellite markers and genotyped 693 isolates 

at eight loci. We sampled 29 field populations in two regions of France, covering distances ranging from a 

few hundred metres to one hundred kilometres in each region. Our objective was to test for the presence of 

IBD pattern in the genetic structure of L. maculans populations. Also, we tested whether the detection of IBD 

pattern was not erased by a recent range expansion of the pathogen. To this aim, we compared pathogen 

genetic structure in Region Brittany, where the cultivation of B. napus – and thus the presence of its L. 

maculans pathogen – is less than 25-y-old, with that of Region Centre, where oilseed rape has been intensively 

cultivated for more than 60 y. 

 

Materials and methods 

Sample collection and DNA extraction 

In autumn 2004 and 2005, 693 isolates were collected from 29 commercial oilseed rape fields in two regions 

[western France (Region Brittany, n = 17) and central France (Region Centre, n = 12) (Fig 1)]. In 2007, 

66 405 ha of oilseed rape were grown in the Department Cher (Region Centre), compared to only 12 950 ha 

in the Department Ille-et-Vilaine (Region Brittany) (Prolea 2008). Pair-wise distances between field 

populations ranged from 0.44 km to 364 km (from 0.44 km to 99.7 km and from 1.32 km to 114.5 km in 

Region Brittany and in Region Centre, respectively). In each field, one infected leaf displaying typical phoma 

leaf spots was collected from each of 23–25 plants. Monospore mycelial cultures were increased on V8 juice 

agar at 20 °C for 21 d (Chèvre et al. 2008), then scraped with a sterile scalpel. DNA was extracted from 

lyophilized mycelia following the standard protocol supplied in the Nucleospin® Plant II kit (Macherey-Nagel, 

Düren, Germany). 

 

Fig 1. Map of France showing the location of the 29 French field populations sampled (○) in Regions Brittany 

and Centre. The main towns in the sampling areas are marked with a × on the map. 
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Minisatellite identification 

A systematic search approach described by Eckert et al. (2005) was undertaken in order to identify 

minisatellite loci in Leptosphaeria maculans. BAC-end sequence data, from the v23.1.3 genomic DNA 

HindIII BAC library (Attard et al. 2002), were screened for regions with tandem repeat using TANDEM 

REPEAT FINDER (Benson 1999). Primers were designed using Oligo6 (MedProbe, Norway). Genomic DNA 

of 56 isolates was extracted, comprising 50 L. maculans ‘brassicae’, one L. maculans ‘lepidii’ (IBCN84), as 

well as one Leptosphaeria biglobosa ‘brassicae’ (IBCN93), ‘thlaspii’ (IBCN65),‘canadensis’ (IBCN82), 

‘australensis’ (IBCN91), and ‘erysimii’ (IBCN83). These isolates were obtained from existing collections 

maintained at INRA Versailles, and previously described (Gall et al. 1994; Balesdent et al., 2001, Mendes-

Pereira et al., 2003). In order to analyse the genetic control of minisatellite segregation, progeny from in vitro 

cross a.2 × H5 (Balesdent et al. 2001) was used. TANDEM REPEAT FINDER highlighted 203 out of 2550 

BAC-end sequences analysed as sequences with putative tandem repeats, for which primer pairs specific to 

flanking regions of tandem repeats were designed. These primer pairs were first tested on genomic DNA from 

a set of 7 L. maculans ‘brassicae’ isolates originating from diverse geographical locations. This first screen 

resulted in 23 primer pairs generating polymorphic products (2–4 variants of alleles). Then, these 23 primer 

pairs were tested on 47 L. maculans isolates of diverse geographical origin. Moreover, 12 of them displayed 

polymorphism between a.2 and H5 parental isolates. Meiotic segregation of minisatellite markers confirmed 

that these 12 new markers were single-locus sequences. Among these 12 markers, four were chosen according 

both to their polymorphism, and to their specificity to L. maculans. 

 

Minisatellite amplification 

Multilocus genotypes were characterized with minisatellite loci MinLm2, MinLm4, MinLm5, MinLm6 (Eckert 

et al. 2005), and MinLm8, MinLm9, MinLm632, MinLm1377 for which primers were designed (Table 1). 

Forward primers were fluorescently-labelled. PCR reactions were performed in a 20-μl final volume 

containing 10–30 ng of genomic DNA, 1× PCR buffer, 200 μM of each dNTPs, 1.5 mM MgCl2, each primer 

at 0.5 μM, 0.25 U GoTaq® DNA Polymerase (Promega, WI, USA). Amplifications were carried out in a G-

STORM GS4 thermocycler (GRI Ltd., Braintree, UK) using one cycle of 94 °C for 4 min, followed by 30 

cycles of 94 °C for 30 s, annealing temperature for 30 s (Table 1), 72 °C for 1 min, and 5 min of final extension 

at 72 °C. Allele assignments were performed on an ABI PRISM® 3130xl sequencer using manufacturer’s 

instructions with the GENEMAPPER 3.7 software (Applied Biosystems). 

 

Table 1. Minisatellite markers and PCR primers used to characterise molecular diversity in populations of 

Leptosphaeria maculans sampled in two regions of France. 

 

 
a Eckert et al. 2005. 
b GenBank database accession number. 
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Data analysis 

Multilocus haplotypes were constructed for each isolate. All isolates collected within the same field were 

considered as one population. We determined the number of identical multilocus haplotypes within and across 

populations, using GENCLONE 2.0 (Arnaud-Haond & Belkhir 2007). The same program was used to estimate 

the probability that identical multilocus haplotypes were the result of a distinct sexual reproductive event 

(Psex), rather than clonal spread, based on the number of loci and allelic frequencies. For each locus within 

each population, mean number of alleles (Nall), Nei’s gene diversity corrected for sample size (h) (Nei 1987) 

and allele frequencies were estimated using SPAGEDI 1.2 (Hardy & Vekemans 2002). At a given locus, Nei’s 

gene diversity (h) is defined as the probability that two sampled alleles are different. Mean gene diversity (H) 

was calculated as the mean of h across loci within each population. In each population, haplotypic richness 

(R) was estimated as R = (G – 1)/ (N – 1), where G is the number of unique haplotypes and N is the number 

of isolates (Dorken & Eckert 2001). 

For each pair of loci within each population, gametic linkage disequilibria were computed using 

GENEPOP 4.0 (Raymond & Rousset 1995). The index of multilocus linkage disequilibrium rd (Agapow & 

Burt 2001) was computed for each population. The significance of rd, which is expected to equal zero if there 

is no linkage disequilibrium, was tested by comparing the observed variance with the distribution of the 

variance expected under the null hypothesis of random mating, as determined from 1000 randomizations of 

the haplotype data implemented in MULTILOCUS 1.3 (Agapow & Burt 2001). 

For each locus and across all populations, Nei’s estimator of genetic differentiation (GST) was 

calculated with FSTAT 2.9.3 (Goudet 1995). GST indicates the proportion of the total genetic variation 

attributable to population differentiation. Values close to zero indicate little differentiation while values close 

to unity indicate nearly complete differentiation. The null hypothesis of no genetic differentiation between 

field populations was also tested using FSTAT to estimate θ (Weir & Cockerham 1984), an unbiased estimator 

of the parameter Fst. Significance levels were determined after Bonferroni corrections based on the adjusted 

P-value following 8000 permutations. Genetic differentiation was estimated with a hierarchical analysis of 

molecular variance (AMOVA) using ARLEQUIN 3.1 (Excoffier et al. 2005). AMOVA was used to determine 

the proportion of genetic variation partitioned among the two regions, among fields within a region, or among 

individuals within a field. The number of permutations to test for significance was set at 5000. 

IBD between populations was tested using the method described by Rousset (1997), under which a 

correlation is expected between the logarithm of the geographical distance and the genetic distance θ/ (1-θ), 

assuming gene flow in a two-dimensional environment. Data analysis involves the regression of FST / (1-FST) 

estimates for each pair of subpopulations. Pair-wise geographical distances among field populations were 

calculated without correcting for the Earth’s curvature because of the limited spatial distance among fields. 

Significance was tested using a Mantel test (1000 permutations) implemented in GENEPOP. 

A test to detect evidence of recent demographic fluctuations was performed with BOTTLENECK (Piry 

et al. 1999). For each population and for each locus, we estimated gene diversity as expected under the 

assumption of mutation–drift equilibrium (expected gene diversity), from the number of alleles and sample 

size, and compared it to gene diversity calculated directly from the allele frequencies (Hobs, observed gene 

diversity). In a population that has undergone a bottleneck, gene diversity is higher than expected at 

equilibrium, due to a high-frequency of rare alleles (Cornuet & Luikart 1996). Gene diversity was estimated 

under three mutation models: the infinite allele model (IAM), the stepwise mutation model (SMM), and the 

two-phase model (TPM) (Rienzo et al. 1994). In the IAM, each mutation creates a novel allele at constant 

rate. In the SMM, each mutation creates a novel allele by adding or deleting a single repeated unit of the 

minisatellite. TPM is an offshoot of SMM developed to account for a proportion of larger mutation events 

(addition or deletion of several units). We tested these three mutation models because patterns of mutation for 

minisatellites are not perfectly known and can vary from one locus to another. The proportion of alleles 

attributed to SMM under TPM was 70 %, with a variance of 30 (default parameters). Estimations were based 

on 1000 replications. The Wilcoxon sign-rank test (Luikart et al. 1997) was performed to determine if the 

allele frequency distribution deviates significantly from that expected under mutation-drift equilibrium. 
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Results 

Genetic diversity within populations 

Across all 29 populations, the number of alleles at each locus ranged from 3 (MinLm4) to 21 (MinLm632), 

and only one locus (MinLm4) presented one allele occurring at a frequency greater than 95 %. Average gene 

diversity across populations ranged from 0.05 (MinLm4) to 0.87 (MinLm2) (Table 2). Mean number of alleles 

per locus (Nall) was 5.88 (±0.45, standard deviation), ranging from 4.88 to 7 in the Ce11 (Region Centre) and 

Br14 (Region Brittany) field populations, respectively. Mean gene diversity H across all loci was high 

(0.66 ± 0.02) and homogeneous (Table 3). Among all 693 isolates analysed, 687 multilocus haplotypes were 

obtained. Isolates sharing identical multilocus haplotypes were recovered from the same population (Br06, 

Ce08, and Br16) and likely resulted from clonal spread, as the probability that these repeated multilocus 

haplotypes originated from distinct sexual reproduction events was low (Psex < 0.005). In contrast, isolates 

sharing identical multilocus haplotypes were identified from different populations in the same region (Br16-

Br06, Br04-Br13) or from different populations in different regions (Ce10-Br15) and likely resulted from 

distinct sexual reproduction events (Psex > 0.096). Numbers of haplotypes equalled numbers of isolates in 26 

field populations (Table 3), and haplotypic richness (R) was high in all field populations (0.96–1). 

 

Table 2. Frequency of the most common (frequency greater than 0.05) minisatellite alleles, gene diversity (h), 

number of alleles at the eight minisatellite loci, and Nei’s estimator of genetic differentiation (GST) per locus 

across the 29 field populations of Leptosphaeria maculans. 

 

 
a Alleles are scored as the number of repeat units. 
b Nei’s estimator of genetic differentiation. 
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Table 3. Field population code, number of analysed isolates (N), number of observed haplotypes (G), 

haplotypic richness (R), mean number of alleles over the eight loci (Nall), mean gene diversity over the eight 

loci (H) and index of multilocus linkage disequilibrium (rd). 

 
a Field population from region Brittany (Br01–Br17) and from region Centre (Ce01–Ce12), geographically localized in 

Fig 1. 

 

Linkage disequilibrium 

Seventeen populations showed random association of all alleles at all loci. Linkage disequilibrium among 

alleles was not significant in 801 of 812 pair-wise comparisons (98.6 %). The index of multilocus linkage 

disequilibrium rd was low (|rd| < 0.041) and not significant, and the null hypothesis of random mating was not 

rejected for all field populations (Table 3). When the complete data set was analysed as a single population, 

none of the pair-wise comparisons showed evidence of significant linkage disequilibrium. 

 

Genetic diversity among populations 

Hierarchical AMOVA revealed that ca. 97 % of the genetic variability was distributed within populations, 

compared to only 2.56 % among populations within a region, and 0.06 % among regions. None of these three 

factors contributed significantly to total molecular variance (P > 0.05). Similarly, none of the pair-wise 

comparisons revealed significant population differentiation among populations (θ = −0.02 to 0.05; P > 0.05), 

with an average Fst value of 0.003 (±0.004). Fst maximal value (0.05) was reached for the comparison between 

field populations Ce08 and Br10, two field populations from the two distinct regions sampled, separated by 

one of the farthest distance in the overall sampling (318 km; Fig 1). Nonetheless, there was no significant 

correlation between logarithmic geographic distance and genetic distance FST / (1-FST), neither among all 

populations, nor within regions. Among all populations, the maximum distance between two populations was 

364.2 km; the linear regression between logarithmic geographic distance and pair-wise genetic distance was 

y = 1.13 × 10−4x + 0.0015 (r2 = 1.7 × 10−4; P = 0.35) (Fig 2A). Among populations from Region Brittany, the 

maximum distance between two populations was 99.6 km; the linear regression between logarithmic 
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geographic distance and pairwise FST / (1-FST) was y = −1.5 × 10−3x + 0.018 (r2 = 0.016; P = 0.88) (Fig 2B). 

Among populations from Region Centre, the maximum distance between two populations was 122.2 km; the 

regression is y = 3.4 × 10−4x + 2.53 × 10−5 (r2 = 1.5 × 10−3; P = 0.38) (Fig 2C). 

 

Fig 2. Genetic differentiation among Leptosphaeria maculans populations. Multilocus estimates (θ) of genetic 

differentiation Fst expressed as FST / (1-FST) are plotted against logarithm of geographic distance (km) for (A) 

each pair of L. maculans field populations (maximum distance between two populations is 364.2 km; the 

regression is y = 1.13 × 10−4x + 0.0015; r2 = 1.7 × 10−4; P = 0.35), (B) each pair of L. maculans field 

populations from region Brittany (maximum distance between two populations is 99.6 km; the regression is 

y = −1.5 × 10−3x + 0.018; r2 = 0.016; P = 0.88), and (C) each pair of L. maculans field populations from 

region Centre (maximum distance between two populations is 122.2 km; the regression is 

y = 3.4 × 10−4x + 2.53 × 10−5; r2 = 1.5 × 10−3; P = 0.38). Fst was estimated according to Weir & Cockerham 

(1984). 
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Effective population size fluctuations 

Comparisons between observed and expected gene diversity revealed significant gene diversity excess for 20 

of 29 populations, under TPM (Wilcoxon sign-rank test, P < 0.05; Table 4) and IAM (P < 0.05). Conversely, 

under SMM, none of the populations displayed significant gene diversity excess (P > 0.05). For the three 

models, no differences were found between regions. 

 

Table 4. Probability for an excess in observed gene diversity (Hobs) compared to that expected under mutation-

drift equilibrium, in each field population, tested with Wilcoxon sign-rank test, under three models: the IAM, 

the TPM, with 70 % of alleles attributed to SMM and the SMM. P-values after 1000 simulation replicates are 

presented. 

 
 

Discussion 

In characterizing the genetic structure of Leptosphaeria maculans populations in France, we intended to 

demonstrate that, in the case of this wind-dispersed phytopathogenic fungus, the scale of spore dispersal could 

be obtained from the theoretical migration model IBD. Despite the fact that our sampling scheme was based 

on a priori knowledge of spore dispersal, however, we did not detect a significant IBD pattern among 

populations. We will discuss how deviations from model assumptions occurring in populations, including 

departure from genetic equilibrium or gene flow higher than previously assumed, are likely to explain the 

inapplicability of the IBD model at the spatial scale studied. 

The detection of IBD pattern strongly depends on the spatial scale studied, as the studied area should 

match the spatial scale at which gene dispersal occurs (Rousset 1997) and sampling at larger distances leads 

to an overestimation of demographic parameters (Leblois et al. 2003). Our sampling scheme was designed 

assuming that migration was due to ascospore dispersal over a few hundred metres, distances estimated from 
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spore (Salam et al. 2001) and disease (Marcroft et al. 2004) gradients. As both methods are known to be 

inaccurate at large distances, i.e. over several kilometres (McCartney et al. 2006), it is possible that our 

sampling scale was too small, and that we underestimated ascospore dispersal. Our findings suggest that 

ascospore dispersal occurs at distances greater than several hundred metres. Undetected by direct methods, 

widespread spore dispersal at continental scale by atmospheric turbulence could occur for this fungus. Such 

long-distance dispersal events are known to be the main cause of the world-wide spread of plant diseases 

(Brown & Hovmøller 2002). But assuming that these events have a low-frequency compared to local dispersal, 

based on reduced fungal spore viability under atmospheric conditions (Rotem et al. 1985), an IBD pattern 

should be detectable at the studied regional spatial scales. 

Alternatively, it is possible that human transport of infected seeds is responsible for long-distance 

dispersal of L. maculans (Hall et al. 1996). Long-distance dispersal via human transport and, thus, high 

migration rates that reduce genetic differentiation between populations (Slatkin 1987), were suggested to 

explain the world-wide spread of other plant pathogens, such as the banana black leaf streak fungus 

Mycosphaerella fijiensis (Rivas et al. 2004), the wheat leaf blotch fungus Mycosphaerella graminicola (Linde 

et al. 2002), and the poplar rust fungus Melampsora larici-populina (Barrès et al. 2008). Nonetheless, long 

distance human-mediated transport of infected plant material would have to be regular and intense to erase 

population differentiation, which is locally driven by genetic drift in the absence of selection. Further 

investigations of infected seed material are necessary to elucidate its effect on the spread of L. maculans. 

The absence of demographic equilibrium in the studied populations may have prevented the detection 

of IBD patterns, though empirical data showed that demographic estimates through the method used were 

robust to population density changes that occur within just a few generations (Leblois et al. 2004). In Region 

Brittany, oilseed rape acreage increased from 0 ha in 1983 to ca. 50 000 ha in 2007 (Agreste 2008), yet a 

matching increase in effective population sizes was not detected in this region. As the test implemented in the 

BOTTLENECK software only allows the detection of recent size fluctuations, pathogen spread in Brittany, 

which possibly dates back from about 25 generations ago assuming one sexual cycle per season, may be too 

ancient for detection. In Region Centre, where oilseed rape has been intensively grown for more than 60 y, 

we might expect that coevolving L. maculans populations have reached demographic equilibrium. 

Nonetheless, annual, recurrent bottlenecks could hinder the detection of IBD patterns. For annual crop 

pathogens, this decrease in effective population size is expected when host plant material available for 

pathogen development dramatically decreases between growing seasons (Burdon 1993). However, the high 

levels of within-population genetic diversity revealed in this study, concordant with previous studies (Mahuku 

et al., 1997, Barrins et al., 2004, Gout et al., 2006, Hayden et al., 2007), do not support recent or recurrent 

bottlenecks. Furthermore, with SMM, considered the most conservative mutation model in the test conducted 

(i.e. the null hypothesis of no population size fluctuation is rejected only when a strong bottleneck signal is 

detected; Cornuet & Luikart 1996), none of the populations showed significant recent changes in size. Multiple 

sampling dates and years are necessary to characterize the genetic diversity of L. maculans populations and to 

further examine their local and temporal demography. 

The absence of both bottleneck signatures and significant spatial genetic structure among French 

populations of L. maculans suggest that these populations do not undergo strong loss of genetic diversity 

through genetic drift during the saprophytic stage on oilseed rape stubble. Instead, high proportion of genetic 

diversity distributed within-population (>97 %) suggests that the examined populations have large effective 

population sizes. Large effective population sizes reduce genetic differentiation among populations (Criscione 

et al. 2005) and hence limit the chance to detect IBD patterns. The substantial quantities of stubble that is not 

buried, but is instead left on the soil surface (Lydia Bousset, personal observation), can explain the 

maintenance of large effective population size in L. maculans. 

The absence of linkage disequilibrium and the uniform distribution of mating types in all populations 

(data not shown) confirm the significance of sexual reproduction in the life-cycle of L. maculans, and are 

consistent with previous research identifying ascospores, and not conidia (i.e. spores resulting from asexual 

multiplication), as the main source of inoculum to initiate epidemics (Fitt et al. 2006). Nonetheless, three 

repeated haplotypes were detected in the same field and were unlikely to originate from distinct sexual 

reproduction events. These findings provide indirect evidence for the spread of isolates through splash-

dispersal of conidia in field conditions, hence supporting the involvement of conidia in the epidemiology of 
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phoma stem canker on oilseed rape (Travadon et al. 2007). In contrast, similar associations of alleles in 

repeated haplotypes detected in distant fields were likely the result of random mating. Overall, genetic 

diversity indices estimated in all field populations are in agreement with the hypothesis that, in France, 

populations of L. maculans operate as one panmictic population. 

As discussed in this study, the absence of IBD patterns in a wind-dispersed, plant-pathogenic fungus 

may not be only due to dispersal of spores or infected plants across large geographic distances. Instead, a focus 

on the inter-generation evolution of local genetic diversity may reveal the contribution of large effective 

population sizes and the absence of demographic equilibrium as factors that mask IBD patterns. Buffering the 

effects of genetic drift, the effective population size has a large influence on overall levels of genetic diversity 

(Criscione et al. 2005). For plant-pathogenic fungi not experiencing strong effects of genetic drift during their 

life-cycle, either because of constant host availability (i.e. perennial hosts), or because of their ability to 

survive saprophytically between host growing seasons, or due to their ability to infect multiple hosts, and thus 

to survive independently of one single host persistence, high levels of within-population genetic diversity and 

low levels of among-population differentiation are expected. In these cases the IBD model does not seem 

appropriate to infer dispersal distances. 

Large effective population sizes, high dispersal rates and random mating confer a high evolutionary 

potential to L. maculans (McDonald & Linde 2002), and such characteristics are consistent with its rapid 

adaptation to major resistance genes (Sprague et al. 2006). Since effective population sizes affect local 

adaptive potential to evolve in response to host resistance, it is necessary to reduce effective population size 

in L. maculans populations. Accordingly, management practices between growing seasons, especially burial 

of the oilseed rape stubble from which the pathogen fruits, is recommended (Aubertot et al. 2006). Disease 

control strategies aiming at either the prevention of virulent spore dispersal from resistant crops to new 

resistant crops through spatial cultivar deployment, or at the reduction of sexual reproduction via stubble 

management, are essential to preserve the efficacy of the few available specific resistance genes against L. 

maculans in B. napus. 
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