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TIME AVERAGING FOR ORDINARY DIFFERENTIAL
EQUATIONS AND RETARDED FUNCTIONAL DIFFERENTIAL

EQUATIONS

MUSTAPHA LAKRIB, TEWFIK SARI

Abstract. We prove averaging theorems for non-autonomous ordinary dif-

ferential equations and retarded functional differential equations in the case

where the vector fields are continuous in the spatial variable uniformly with re-
spect to the time and the solution of the averaged system exists on some given

interval. Our assumptions are weaker than those required in the results of the

existing literature. Usually, we require that the non-autonomous differential
equation and the autonomous averaged equation are locally Lipschitz and that

the solutions of both equations exist on some given interval. Our results are

formulated in classical mathematics. Their proofs use the stroboscopic method
which is a tool of the nonstandard asymptotic theory of differential equations.

1. Introduction

Averaging is an important method for analysis of nonlinear oscillation equations
containing a small parameter. This method is well-known for ordinary differen-
tial equations (ODEs) and fundamental averaging results (see, for instance, [6, 13,
16, 38, 39] and references therein) assert that the solutions of a non-autonomous
equation in normal form

x′(τ) = εf(τ, x(τ)), (1.1)

where ε is a small positive parameter, are approximated by the solutions of the
autonomous averaged equation

y′(τ) = εF (y(τ)). (1.2)

The approximation holds on time intervals of order 1/ε when ε is sufficiently small.
In (1.2), the function F is the average of the function f in (1.1) defined by

F (x) = lim
T→∞

1
T

∫ T

0

f(t, x)dt. (1.3)

The method of averaging for ODEs is known also as the Krylov-Bogolyubov-
Mitropolsky (KBM) method [6].
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The method of averaging was extended by Hale [15] (see also of [26, Section 2.1])
to the case of retarded functional differential equations (RFDEs) containing a small
parameter when the equations are considered in normal form

x′(τ) = εf(τ, xτ ), (1.4)

where, for θ ∈ [−r, 0], xτ (θ) = x(τ + θ). Equations of the form (1.4) cover a
wide class of differential equations including those with point-wise delay for which
a method of averaging was developed by Halanay [14], Medvedev [34] and Volosov
et al. [44]. Note that the averaged equation corresponding to (1.4) is the ODE

y′(τ) = εF (ỹτ ), (1.5)

where, for τ fixed and θ ∈ [−r, 0], ỹτ (θ) = y(τ) and the average function F is
defined by (1.3). Recently, Lehman and Weibel [27] proposed to retain the delay
in the averaged equation and proved that equation (1.4) is approximated by the
averaged RFDE

y′(τ) = εF (yτ ). (1.6)
They observed, using numerical simulations, that equation (1.4) is better approxi-
mated by the RFDE (1.6) than by the ODE (1.5), see Remark 2.9.

The change from the fast time scale τ to the slow time scale t = ετ transforms
equations (1.1) and (1.2), respectively, into

ẋ(t) = f(t/ε, x(t)) (1.7)

and
ẏ(t) = F (y(t)). (1.8)

Thus a method of averaging can be developed for (1.7), that is, if ε is sufficiently
small, the difference between the solution x of (1.7) and the solution y of (1.8),
with the same initial condition, is small on finite time intervals.

The analog of equation (1.7) for RFDEs is

ẋ(t) = f (t/ε, xt) . (1.9)

The averaged equation corresponding to (1.9) is the RFDE

ẏ(t) = F (yt),

where the average function F is defined by (1.3).
Notice that the RFDEs (1.4) and (1.9) are not equivalent under the change of

time t = ετ , as it was the case for the ODEs (1.1) and (1.7). Indeed, by rescaling
τ as t = ετ equation (1.4) becomes

ẋ(t) = f (t/ε, xt,ε) , (1.10)

where, for θ ∈ [−r, 0], xt,ε(θ) = x(t+εθ). Equation (1.10) is different from (1.9), so
that the results obtained for (1.10) cannot be applied to (1.9). This last equation
deserves a special attention. It was considered by Hale and Verduyn Lunel in
[17] where a method of averaging is developed for infinite dimensional evolutionary
equations which include RFDEs such (1.9) as a particular case (see also Section 12.8
of Hale and Verduyn Lunel’s book [18] and Section 2.3 of [26]).

Following our previous works [19, 20, 21, 22, 24, 25, 39, 41, 42] we consider in this
paper all equations (1.7), (1.9) and (1.10). Our aim is to give theorems of averaging
under weaker conditions than those of the literature. We want to emphasize that
our main contribution is the weakening of the regularity conditions on the equation
under which the averaging method is justified in the existing literature. Indeed,
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usually classical averaging theorems require that the vector field f in (1.7), (1.9) and
(1.10) is at least locally Lipschitz with respect to the second variable uniformly with
respect to the first one (see Remarks 2.4, 2.8 and 2.13 below). In our results this
condition is weakened and it is only assumed that f is continuous in the second
variable uniformly with respect to the first one. Also, it is often assumed that
the solutions x and y exist on the same finite interval of time. In this paper we
assume only that the solution y of the averaged equation exists on some finite
interval and we give conditions on the vector field f so that, for ε sufficiently
small, the solution x of (1.7), (1.9) or (1.10) will be defined at least on the same
interval. The uniform quasi-boundedness of the vector field f is thus introduced
for this purpose. Recall that the property of quasi-boundedness is strongly related
to results on continuation of solutions of RFDEs. It should be noticed that the
existing literature [15, 17, 26] proposed also important results on the infinite time
interval [0,∞), provided that more hypotheses are made on the non-autonomous
system and its averaged system. For example, to a hyperbolic equilibrium point of
the averaged system there corresponds a periodic solution of the original equation
if ε is small. Of course, for such results, stronger assumptions on the regularity of
the vector field f are required.

In this work our averaging results are formulated in classical mathematics. We
prove them within Internal Set Theory (IST) [35] which is an axiomatic approach
to Nonstandard Analysis (NSA) [37]. The idea to use NSA in perturbation theory
of differential equations goes back to the 1970s with the Reebian school. Relative to
this use, among many works we refer the interested reader, for instance, to [3, 5, 10,
28, 29, 30, 31, 32, 33, 43, 47] and the references therein. It has become today a well-
established tool in asymptotic theory of differential equations. Among the famous
discoveries of the nonstandard asymptotic theory of differential equations we can
cite the canards which appear in slow-fast vector fields and are closely related to
the stability loss delay phenomenon in dynamical bifurcations [1, 2, 4, 7, 8, 10, 11,
12, 45, 46].

The structure of the paper is as follows. In Section 2 we introduce the notations
and present our main results : Theorems 2.2, 2.6 and 2.11. We discuss also both
periodic and almost periodic special cases. In Section 3 we start with a short tutorial
to NSA and then state our main (nonstandard) tool, the so-called stroboscopic
method. In Section 4, we give the proofs of Theorems 2.2, 2.6 and 2.11. Some of
the auxiliary results can be found, for instance, in [22, 39, 41]. They are included
here to keep the paper self-contained for the benefit of the reader. In Section 5 we
say exactly what are the results that are already proved in our previous articles
and we discuss the differences with the previous works.

Let us notice that our proofs do not need to be translated into classical mathe-
matics, because IST is a conservative extension of ZF, that is, any classical state-
ment which is a theorem of IST is also a theorem of ZFC.

2. Notation and Main Results

In this section we will present our main results on averaging for fast oscillating
ODEs (1.7), RFDEs in normal form (1.10) and fast oscillating RFDEs (1.9). First
we introduce some necessary notations. We assume that r ≥ 0 is a fixed real number
and denote by C = C([−r, 0], Rd) the Banach space of continuous functions from
[−r, 0] into Rd with the norm ‖φ‖ = sup{|φ(θ)| : θ ∈ [−r, 0]}, where | · | is a norm of
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Rd. Let L ≥ 0. If x : [−r, L] → Rd is a continuous function then, for each t ∈ [0, L],
we define xt ∈ C by setting xt(θ) = x(t+θ) for all θ ∈ [−r, 0]. Note that when r = 0
the Banach space C can be identified with Rd and xt with x(t) for each t ∈ [0, L].

2.1. Averaging for ODEs. Let U be an open subset of Rd and let f : R+×U →
Rd, (t, x) 7→ f(t, x), be a continuous function. Let x0 ∈ U be an initial condition.
We consider the initial value problem

ẋ(t) = f (t/ε, x(t)) , x(0) = x0, (2.1)

where ε > 0 is a small parameter. We state the precise assumptions on this problem
in the following definition.

Definition 2.1. A vector field f : R+ × U → Rd is said to be a KBM-vector field
if it is continuous and satisfies the following conditions

(C1) The function f is continuous in the second variable uniformly with respect
to the first one.

(C2) For all x ∈ U , there exists a limit F (x) := limT→∞
1
T

∫ T

0
f(t, x)dt.

(C3) The initial value problem

ẏ(t) = F (y(t)), y(0) = x0 (2.2)

has a unique solution.

Notice that from conditions (C1) and (C2) we deduce that the average of the
function f , that is, the function F : U → Rd in (C2), is continuous (see Lemma 4.1).
So, the averaged initial value problem (2.2) is well defined.

The main theorem of this section is on averaging for fast oscillating ODEs. It
establishes nearness of solutions of (2.1) and (2.2) on finite time intervals, and reads
as follows.

Theorem 2.2. Let f : R+ ×U → Rd be a KBM-vector field. Let x0 ∈ U . Let y be
the solution of (2.2) and let L ∈ J , where J is the positive interval of definition of
y. Then, for every δ > 0, there exists ε0 = ε0(L, δ) > 0 such that, for all ε ∈ (0, ε0],
every solution x of (2.1) is defined at least on [0, L] and satisfies |x(t) − y(t)| < δ
for all t ∈ [0, L].

Let us discuss now the result above when the function f is periodic or more
generally almost periodic in the first variable. We will see that some of the condi-
tions in Theorem 2.2 can be removed. Indeed, in the case where f is periodic in t,
from continuity plus periodicity properties one can easily deduce condition (C1).
Periodicity also implies condition (C2) in an obvious way. The average of f is then
given, for every x ∈ U , by

F (x) =
1
T

∫ T

0

f(t, x)dt, (2.3)

where T is the period. In the case where f is almost periodic in t it is well-known
that for all x ∈ U , the limit

F (x) = lim
T→∞

1
T

∫ s+T

s

f(t, x)dt (2.4)

exists uniformly with respect to s ∈ R. So, condition (C2) is satisfied when s = 0.
We point out also that in a number of cases encountered in applications the func-
tion f is a finite sum of periodic functions in t. As in the periodic case above,
condition (C1) is satisfied. Hence we have the following result.
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Corollary 2.3 (Periodic and Almost periodic cases). The conclusion of Theo-
rem 2.2 holds when f : R+ × U → Rd is a continuous function which is periodic
(or a sum of periodic functions) in the first variable and satisfies condition (C3).
It holds also when f is continuous, almost periodic in the first variable and satisfies
conditions (C1) and (C3).

Remark 2.4. In the results of the classical literature, for instance [26, Theorem
1, p. 202], it is assumed that f has bounded partial derivatives with respect to the
second variable.

2.2. Averaging for RFDEs in normal form. This section concerns the use of
the method of averaging to approximate initial value problems of the form

ẋ(t) = f(t/ε, xt,ε), x(t) = φ(t/ε), t ∈ [−εr, 0]. (2.5)

Here f : R+×Ω → Rd, (t, x) 7→ f(t, x), is a continuous function, Ω = C([−r, 0], U),
r > 0, where U is an open subset of Rd, φ ∈ Ω is an initial condition and ε > 0
is a small parameter. For each t ≥ 0, xt,ε denotes the element of C given by
xt,ε(θ) = x(t + εθ) for all θ ∈ [−r, 0].

We recall that the change of time scale t = ετ transforms (2.5) into the following
initial value problem, associated to a RFDE in normal form :

x′(τ) = εf(τ, xτ ), x0 = φ.

Definition 2.5. A vector field f : R+ × Ω → Rd is said to be a KBM-vector field
if it is continuous and satisfies the following conditions.

(H1) The function f is continuous in the second variable uniformly with respect
to the first one.

(H2) The function f is quasi-bounded in the second variable uniformly with
respect to the first one, that is, for every compact subset W ⊂ U , f is
bounded on R+ × Λ, where Λ = C([−r, 0],W ).

(H3) For all x ∈ Ω, the limit F (x) := limT→∞
1
T

∫ T

0
f(t, x)dt exists.

(H4) The initial value problem

ẏ(t) = G(y(t)), y(0) = φ(0) (2.6)

has a unique solution. Here G : U → Rd is defined by G(x) = F (x̃) where,
for each x ∈ U , x̃ ∈ Ω is given by x̃(θ) = x, θ ∈ [−r, 0].

As we will see later, condition (H2) is used essentially to prove continuability
of solutions of (2.5) at least on every finite interval of time on which the solu-
tion of (2.6) is defined. For more details and a complete discussion about quasi-
boundedness and its crucial role in the continuability of solutions of RFDEs, we
refer the reader to Sections 2.3 and 3.1 of [18].

In assumption (H4) we anticipate the existence of solutions of (2.6). This will be
justified a posteriori by Lemma 4.1 where we show that the function F : Ω → Rd

in (H3), which is the average of the function f , is continuous. This implies the
continuity of G : U → Rd in (2.6) and then guaranties the existence of solutions.

The result below is our main theorem on averaging for RFDEs in normal form.
It states closeness of solutions of (2.5) and (2.6) on finite time intervals.

Theorem 2.6. Let f : R+ × Ω → Rd be a KBM-vector field. Let φ ∈ Ω. Let y be
the solution of (2.6) and let L ∈ J , where J is the positive interval of definition of
y. Then, for every δ > 0, there exists ε0 = ε0(L, δ) > 0 such that, for all ε ∈ (0, ε0],
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every solution x of (2.5) is defined at least on [−εr, L] and satisfies |x(t)−y(t)| < δ
for all t ∈ [0, L].

As in Section 2.1, we discuss now both periodic and almost periodic special
cases. In each one, some of the conditions in Theorem 2.6 can be either removed
or weakened. Let us consider the following (weak) condition which will be used
hereafter instead of condition (H2):

(H5) The function f is quasi-bounded, that is, for every compact interval I of
R+ and every compact subset W ⊂ U , f is bounded on I × Λ, where
Λ = C([−r, 0],W ).

When f is periodic it is easy to see that condition (H1) derives from the conti-
nuity and the periodicity properties of f . On the other hand, by periodicity and
condition (H5), condition (H2) is also satisfied. The average F in condition (H3)
exists and is now given by formula (2.3) where T is the period. When f is almost
periodic, condition (H5) imply condition (H2) and the average F is given by for-
mula (2.4). Quite often the function f is a finite sum of periodic functions so that
condition (H1) is satisfied. Hence we have the following result.

Corollary 2.7 (Periodic and Almost periodic cases). The conclusion of Theorem
2.6 holds when f : R+ × Ω → Rd is a continuous function which is periodic (or
a sum of periodic functions) in the first variable and satisfies condition (H4) and
(H5). It holds also when f is continuous, almost periodic in the first variable and
satisfies conditions (H1), (H4) and (H5).

Consider now the special case of equations with point-wise delay of the form

ẋ(t) = f(t/ε, x(t), x(t− εr))

which is obtained, by letting τ = t/ε, from equation

x′(τ) = εf(τ, x(τ), x(τ − r)).

In this case, for both periodic and almost periodic functions, condition (H5) follows
from the continuity property and then may be removed in Corollary 2.7.

Remark 2.8. In the results of the literature, for instance [26, Theorem 3, p. 206],
f is assumed to be locally Lipschitz with respect to the second variable. Note that
local Lipschitz condition with respect to the second variable implies condition (H1).
It also assures the local existence for the solution of (2.5). But, in opposition to
the case of ODEs, it is well known (see Sections 2.3 and 3.1 of [18] that without
condition (H5) one cannot extend the solution x to finite time intervals where
the solution y is defined in spite of the closeness of x and y. So, in the existing
literature it is assumed that the solutions x and y are both defined at least on the
same interval [0, L].

Remark 2.9. In the introduction, we noticed that Lehman and Weibel [27] pro-
posed to retain the delay in the averaged equation (1.6). At time scale t = ετ , their
observation is that equation (2.5) is better approximated by the averaged RFDE

ẏ(t) = F (yt,ε) (2.7)

than by the averaged ODE (2.6). It should be noticed that the averaged RFDE
(2.7) depends on the small parameter ε, which is not the case of the averaged
equation (2.6).
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2.3. Averaging for fast oscillating RFDEs. The aim here is to approximate
the solutions of the initial value problem

ẋ(t) = f (t/ε, xt) , x0 = φ, (2.8)

where f : R+×Ω → Rd, (t, x) 7→ f(t, x), is a continuous function, Ω = C([−r, 0], U),
r > 0, where U is an open subset of Rd, φ ∈ Ω is an initial condition and ε > 0 is
a small parameter.

Definition 2.10. A vector field f : R+×Ω → Rd is said to be a KBM-vector field
if it is continuous and satisfies conditions (H1), (H2), (H3) in Definition 2.5 and
the following condition

(H6) The initial value problem

ẏ(t) = F (yt), y0 = φ (2.9)

has a unique solution.

The averaged initial value problem (2.9) associated to (2.8) is well defined since
conditions (H1) and (H3) imply the continuity of the function F : Ω → Rd in (H3).

We may state our main result on averaging for fast oscillating RFDEs. It shows
that the solution of (2.9) is an approximation of solutions of (2.8) on finite time
intervals.

Theorem 2.11. Let f : R+ × Ω → Rd be a KBM-vector field. Let φ ∈ Ω. Let
y be the solution of (2.9) and let L ∈ J be positive, where J is the interval of
definition of y. Then, for every δ > 0, there exists ε0 = ε0(L, δ) > 0 such that, for
all ε ∈ (0, ε0], every solution x of (2.8) is defined at least on [−r, L] and satisfies
|x(t)− y(t)| < δ for all t ∈ [0, L].

In the same manner as in Section 2.2 we have the following result corresponding
to the periodic and almost periodic special cases.

Corollary 2.12 (Periodic and Almost periodic cases). The conclusion of Theorem
2.11 holds when f : R+ × Ω → Rd is a continuous function which is periodic (or
a sum of periodic functions) in the first variable and satisfies condition (H5) and
(H6). It holds also when f is continuous, almost periodic in the first variable and
satisfies conditions (H1), (H5) and (H6).

For fast oscillating equations with point-wise delay of the form

ẋ(t) = f(t/ε, x(t), x(t− r)),

in the periodic case as well as in the almost periodic one, condition (H5) derives
from the continuity property and then can be removed in Corollary 2.12.

Remark 2.13. In the results of the classical literature, for instance, [26, Theorem
4, p. 210], it is assumed that f is locally Lipschitz with respect to the second
variable and the existence of the solutions x and y on the same interval [0, L] is
required.

3. The Stroboscopic Method

3.1. Internal Set Theory. In this section we give a short tutorial of NSA. Addi-
tional information can be found in [5, 10, 35, 37]. Internal Set Theory (IST) is a
theory extending ordinary mathematics, say ZFC (Zermelo-Fraenkel set theory with
the axiom of choice), that axiomatizes (Robinson’s) nonstandard analysis (NSA).
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We adjoin a new undefined unary predicate standard (st) to ZFC. In addition to
the usual axioms of ZFC, we introduce three others for handling the new predicate
in a relatively consistent way. Hence all theorems of ZFC remain valid in IST.
What is new in IST is an addition, not a change. In the external formulas, we use
the following abbreviations [35] :

∀stA for ∀x(stx ⇒ A) and ∃stA for ∃x(stx &A).

A real number x is said to be infinitesimal if |x| < a for all standard positive
real numbers a and limited if |x| ≤ a for some standard positive real number a.
A limited real number which is not infinitesimal is said to be appreciable. A real
number which is not limited is said to be unlimited. The notations x ' 0 and
x ' +∞ are used to denote, respectively, x is infinitesimal and x is unlimited
positive.

Let D be a standard subset of some standard normed space E. A vector x ∈ D is
infinitesimal (resp. limited, unlimited) if its norm ‖x‖ is infinitesimal (resp. limited,
unlimited). Two elements x, y ∈ D are said to be infinitely close, in symbols, x ' y,
if ‖x− y‖ ' 0. An element x ∈ D is said to be near-standard (resp. near-standard
in D) if x ' x0 for some standard x0 ∈ E (resp. for some standard x0 ∈ D). The
element x0 is called the standard part or shadow of x. It is unique and is usually
denoted by ox. Note that when E = Rd, each limited vector x ∈ D is near-standard
(but not necessary near-standard in D).

The shadow of a subset A of E, denoted by oA, is the unique standard set whose
standard elements are precisely those standard elements x ∈ E for which there
exists y ∈ A such that y ' x. Note that oA is a closed subset of E and if A ⊂ B
then oA ⊂ oB. When A is standard, oA = A. We need the following result

Lemma 3.1. Let U be a standard open subset of Rd. Let A be near-standard in U
(i.e. ∀x ∈ A, x is near-standard in U). Then, there exists a standard and compact
set W such that A ⊂ W ⊂ U .

Proof. For better readability we break the proof into three steps.
Step 1. We show that the shadow oA of A is compact in Rd. oA is standard and

closed. Let us prove that oA is bounded. Since A is near-standard, each element
of A is limited. Hence ∀x ∈ A ∃sta > 0 |x| ≤ a. By idealization, there exists a
standard and finite set a′ such that ∀x ∈ A ∃a ∈ a′ |x| ≤ a. Let a = max(a′). Then
∀x ∈ A |x| ≤ a. Hence A ⊂ F = {x ∈ Rd : |x| ≤ a}, from where we deduce that
oA ⊂ oF = F . This proves that oA is bounded. Finally, we conclude that oA is
compact in Rd since it is closed and bounded.

Step 2. We show that oA ⊂ U . Let x be standard in oA. Let y ∈ A such that
y ' x. Since A is near-standard in U and x is the standard part of y, we have
x ∈ U . By transfer we deduce that every x ∈ oA belongs to U . Thus oA ⊂ U .

Step 3. We show that there exists a standard and compact set W such that
A ⊂ W ⊂ U . Let W be the standard and compact neighborhood, around the
standard and compact set oA, given by W = {y ∈ Rd/ ∃x ∈ oA : |x − y| ≤ ρ},
for some standard ρ > 0 chosen such that W ⊂ U . Let x ∈ A and x0 ∈ U , x0

standard, such that x ' x0. Thus x0 ∈ oA. Hence x ∈ W , since W is a standard
neighborhood of x0, which proves that A ⊂ W . �

Let I ⊂ R be some interval and f : I → Rd be a function, with d standard. We
say that f is S-continuous at a standard point x ∈ I if, for all y ∈ I, y ' x implies
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f(y) ' f(x), f is S-continuous on I if f is S-continuous at each standard point of I
and f is S-uniformly-continuous on I if, for all x, y ∈ I, x ' y implies f(x) ' f(y).
If I is standard and compact, S-continuity on I and S-uniform-continuity on I are
the same. When f (and then I) is standard, the first definition is the same as saying
that f is continuous at a standard point x, the second definition corresponds to the
continuity of f on I and the last one to the uniform continuity of f on I.

We need the following result on S-uniformly-continuous functions on compact
intervals of R. This result is a particular case of the so-called “Continuous Shadow
Theorem” [10].

Theorem 3.2. Let I be a standard and compact interval of R, D be a standard
subset of Rd (with d standard) and x : I → D be a function. If x is S-uniformly-
continuous on I and for each t ∈ I, x(t) is near-standard in D then there exists a
standard and continuous function y : I → D such that, for all t ∈ I, x(t) ' y(t).

The function y in Theorem 3.2 is unique. It is defined as the unique standard
function y which, for t standard in I, is given by y(t) = ox(t). The function y is
called the standard part or shadow of the function x and denoted by y = ox.

3.2. The Stroboscopic Method for ODEs. Let U be a standard open subset
of Rd. Let x0 ∈ U be standard and let F : R+ × U → Rd be a standard and
continuous function. Let I be some subset of R and let x : I → U be a function
such that 0 ∈ I and x(0) ' x0.

Definition 3.3 (F -Stroboscopic property). A real number t ≥ 0 is said to be an
instant of observation if t is limited, [0, t] ⊂ I and x(s) is near standard in U for all
s ∈ [0, t]. The function x is said to satisfy the F -Stroboscopic property on I if there
exists µ > 0 such that, for all instant of observation t ∈ I, there exists t′ ∈ I such
that µ < t′−t ' 0, [t, t′] ⊂ I, x(s) ' x(t) for all s ∈ [t, t′] and x(t′)−x(t)

t′−t ' F (t, x(t)).

Now, if a function satisfies the F -stroboscopic property on I, the result below
asserts that it can be approximated by a solution of the ODE

ẏ(t) = F (t, y(t)), y(0) = x0. (3.1)

Theorem 3.4 (Stroboscopic Lemma for ODEs). Suppose that
(a) The function x satisfies the F-stroboscopic property on I (Definition 3.3).
(b) The initial value problem (3.1) has a unique solution y. Let J = [0, ω),

0 < ω ≤ ∞, be its maximal positive interval of definition.
Then, for every standard L ∈ J , [0, L] ⊂ I and the approximation x(t) ' y(t) holds
for all t ∈ [0, L].

The proof of Stroboscopic Lemma for ODEs needs some results which are given
in the section below.

3.2.1. Preliminaries.

Lemma 3.5. Let L > 0 be limited such that [0, L] ⊂ I. Suppose that
(i) For all t ∈ [0, L], x(t) is near-standard in U .
(ii) There exist some positive integer N and some infinitesimal partition {tn :

n = 0, . . . , N + 1} of [0, L] such that t0 = 0, tN ≤ L < tN+1 and, for n =
0, . . . , N , tn+1 ' tn, x(t) ' x(tn) for all t ∈ [tn, tn+1], and x(tn+1)−x(tn)

tn+1−tn
'

F (tn, x(tn)).
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Then the function x is S-uniformly-continuous on [0, L].

Proof. Let t, t′ ∈ [0, L] and p, q ∈ {0, . . . , N} be such that t ≤ t′, t ' t′, t ∈ [tp, tp+1]
and t′ ∈ [tq, tq+1]. We write

x(tq)− x(tp) =
q−1∑
n=p

(x(tn+1)− x(tn)) =
q−1∑
n=p

(tn+1 − tn)[F (tn, x(tn)) + ηn], (3.2)

where

ηn =
x(tn+1)− x(tn)

tn+1 − tn
− F (tn, xtn

) ' 0,

for all n ∈ {p, . . . , q − 1}. Denote

η = max
p≤n≤q−1

|ηn| and m = max
p≤n≤q−1

|F (tn, x(tn))|.

We have η ' 0 and m = |F (ts, x(ts))| for some s ∈ {p, . . . , q − 1}. Since the
function F is standard and continuous, and (ts, x(ts)) is near-standard in R+ × U ,
F (ts, x(ts)) is near-standard. So is m. Hence (3.2) leads to the approximation

|x(t′)− x(t)| ' |x(tq)− x(tp)| ≤ (m + η)(tq − tp) ' 0

which proves the S-uniform-continuity of x on [0, L] and completes the proof. �

When we suppose L standard instead of limited, then more properties about the
function x can be obtained and the following lemma can be written.

Lemma 3.6. Let L > 0 be standard such that [0, L] ⊂ I. Suppose that conditions
(i) and (ii) in Lemma 3.5 hold. Then the shadow y = ox of the function x is a
solution of (3.1). Moreover, the approximation x(t) ' y(t) holds for all t ∈ [0, L].

Proof. By Lemma 3.5 the function x is S-uniformly-continuous on [0, L]. From
hypothesis (i) and Theorem 3.2 we deduce that y is continuous on [0, L] and y(t) '
x(t) for all t ∈ [0, L]. Let us show now that the function y is a solution of (3.1),
that is, for all t ∈ [0, L] it satisfies

y(t) = x0 +
∫ t

0

F (s, y(s))ds.

Let t ∈ [0, L] be standard and let n ∈ {0, . . . , N} be such that t ∈ [tn, tn+1]. Then

y(t)− x0 ' x(tn)− x(0) =
n−1∑
k=0

(x(tk+1)− x(tk))

=
n−1∑
k=0

(tk+1 − tk)[F (tk, x(tk)) + ηk],

where ηk ' 0 for all k ∈ {0, . . . , n − 1}. As F is standard and continuous, and
x(tk) ' y(tk) with x(tk) near-standard in U , we have F (tk, x(tk)) = F (tk, y(tk))+βk

where βk ' 0 for all k ∈ {0, . . . , n− 1}. Hence (3.3) gives

y(t)− x0 '
n−1∑
k=0

(tk+1 − tk)[F (tk, y(tk)) + βk + ηk] '
∫ t

0

F (s, y(s))ds.

Thus the approximation

y(t) ' x0 +
∫ t

0

F (s, y(s))ds (3.3)
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holds for all standard t ∈ [0, L]. Actually (3.3) is an equality since both sides of
which are standard. We have thus, for all standard t ∈ [0, L],

y(t) = x0 +
∫ t

0

F (s, y(s))ds (3.4)

and by transfer (3.4) holds for all t ∈ [0, L]. The proof is complete. �

The following statement is a consequence of Lemma 3.6.

Lemma 3.7. Let L > 0 be standard such that [0, L] ⊂ I. Suppose that
(i) For all t ∈ [0, L], x(t) is near-standard in U .
(ii) The function x satisfies the F-stroboscopic property on [0, L] (Definition

3.3).
Then the function x is S-uniformly-continuous on [0, L] and its shadow is a solution
y of (3.1). So, we have x(t) ' y(t) for all t ∈ [0, L]

Proof. First of all we have λ ∈ Aµ for all standard real number λ > 0, where Aµ

is the subset of R defined by Aµ = {λ ∈ R / ∀t ∈ [0, L] ∃t′ ∈ I : Pµ(t, t′, λ)} and
Pµ(t, t′, λ) is the property

µ < t′−t < λ, [t, t′] ⊂ I, ∀s ∈ [t, t′] |x(s)−x(t)| < λ,
∣∣x(t′)− x(t)

t′ − t
−F (t, x(t))

∣∣ < λ.

By overspill there exists also λ0 ∈ Aµ with 0 < λ0 ' 0. Thus, for all t ∈ [0, L],
there is t′ ∈ I such that Pµ(t, t′, λ0) holds. Applying now the axiom of choice
to obtain a function c : [0, L] → I such that c(t) = t′, that is, Pµ(t, c(t), λ0)
holds for all t ∈ [0, L]. Since c(t)− t > µ for all t ∈ [0, L], there are a positive
integer N and an infinitesimal partition {tn : n = 0, . . . , N + 1} of [0, L] such that
t0 = 0, tN ≤ L < tN+1 and tn+1 = c(tn). Finally, the conclusion follows from
Lemma 3.6. �

3.2.2. Proof of Theorem 3.4. Let L > 0 be standard in J . Fix ρ > 0 to be standard
such that the (standard) neighborhood around Γ = {y(t) : t ∈ [0, L]} given by
W = {z ∈ Rd / ∃t ∈ [0, L] : |z − y(t)| ≤ ρ} is included in U .

Let A be the subset of [0, L] defined by

A = {L1 ∈ [0, L] / [0, L1] ⊂ I and {x(t) : t ∈ [0, L1]} ⊂ W}.

The set A is nonempty (0 ∈ A) and bounded above by L. Let L0 be the upper bound
of A and let L1 ∈ A be such that L0−µ < L1 ≤ L0. Since {x(t) : t ∈ [0, L1]} ⊂ W ,
the function x is near-standard in U on [0, L1]. Hence, for any standard real number
T such that 0 < T ≤ L1, hypotheses (i) and (ii) of Lemma 3.7 are satisfied. We
have then

x(t) ' y(t), ∀t ∈ [0, T ], (3.5)

where y is as in hypothesis (b). By overspill approximation (3.5) still holds for
some T ' L1. Next, by the S-uniform-continuity of x and the continuity of y on
[0, L1] we have x(t) ' x(T ) and y(t) ' y(T ), for all t ∈ [T,L1]. Combining this
with (3.5) yields

x(t) ' y(t), ∀t ∈ [0, L1]. (3.6)

Moreover, by hypothesis (a) there exists L′1 ' L1 such that L′1 > L1+µ, [L1, L
′
1] ⊂ I

and x(t) ' y(t) for all t ∈ [L1, L
′
1]. By (3.6) we have x(t) ' y(t) for all t ∈ [0, L′1].
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It remains to verify that L ≤ L′1. If this is not true, then [0, L′1] ⊂ I and
{x(t) : t ∈ [0, L′1]} ⊂ W imply L′1 ∈ A. This contradicts the fact that L′1 > L0. So
the proof is complete.

3.3. The Stroboscopic Method for RFDEs. Let r ≥ 0 be standard. Let Ω =
C([−r, 0], U), where U is a standard open subset of Rd and φ ∈ Ω be standard. Let
F : R+ × Ω → Rd be a standard and continuous function. Let I be some subset of
R and let x : I → U be a function such that [−r, 0] ⊂ I, x0 ' φ and, for each t ∈ I,
t ≥ 0, xt ∈ Ω.

Definition 3.8 (F -Stroboscopic property). A real number t ≥ 0 is said to be
an instant of observation if t is limited, [0, t] ⊂ I and for all s ∈ [0, t], x(s) is
near-standard in U and F (s, xs) is limited. The function x is said to satisfy the
F -Stroboscopic property on I if there exists µ > 0 such that, for all instant of
observation t, there exists t′ ∈ I such that µ < t′ − t ' 0, [t, t′] ⊂ I, x(s) ' x(t) for
all s ∈ [t, t′] and x(t′)−x(t)

t′−t ' F (t, xt).

In the same manner as in Section 2, for r = 0 we identify the Banach space C
with Rd (and then Ω with U) and xt with x(t). By continuity property of F , if x(s)
is near-standard in U for all s ∈ [0, t] then F (s, x(s)) is near-standard and then
limited for all s ∈ [0, t]. So, Definition 3.3 is a particular case of Definition 3.8.

In the following result we assert that a function which satisfies the F -stroboscopic
property on I can be approximated by a solution of the RFDE

ẏ(t) = F (t, yt), y0 = φ. (3.7)

Theorem 3.9 (Stroboscopic Lemma for RFDEs). Suppose that
(a) The function x satisfies the F-stroboscopic property on I (Definition 3.8).
(b) The initial value problem (3.7) has a unique solution y. Let J = [−r, ω),

0 < ω ≤ ∞, be its maximal interval of definition.
Then, for every standard and positive L ∈ J , [−r, L] ⊂ I and the approximation
x(t) ' y(t) holds for all t ∈ [−r, L].

To prove Stroboscopic Lemma for RFDEs we need first to establish the following
preliminary lemmas.

3.3.1. Preliminaries.

Lemma 3.10. Let L > 0 be limited such that [0, L] ⊂ I. Suppose that
(i) For all t ∈ [0, L], x(t) is near-standard in U and F (t, xt) is limited.
(ii) There exist some positive integer N and some infinitesimal partition {tn :

n = 0, . . . , N + 1} of [0, L] such that t0 = 0, tN ≤ L < tN+1 and, for n =
0, . . . , N , tn+1 ' tn, x(t) ' x(tn) for all t ∈ [tn, tn+1], and x(tn+1)−x(tn)

tn+1−tn
'

F (tn, xtn).
Then the function x is S-uniformly-continuous on [0, L].

Proof. The proof is similar to the proof of Lemma 3.5. For t, t′ ∈ [0, L] with t ≤ t′

and t ' t′ we have

x(tq)− x(tp) =
q−1∑
n=p

(x(tn+1)− x(tn)) =
q−1∑
n=p

(tn+1 − tn)[F (tn, xtn) + ηn], (3.8)
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where p, q ∈ {0, . . . , N} are such that t ∈ [tp, tp+1] and t′ ∈ [tq, tq+1] with tp ' tq.
Let

η = max
p≤n≤q−1

|ηn| and m = max
p≤n≤q−1

|F (tn, xtn
)|.

Since ηn ' 0 for n = p, . . . , q − 1, we have η ' 0. Since m = |F (ts, xts)| for some
s ∈ {p, . . . , q − 1}, by hypothesis (i), m is limited. Hence (3.8) yields

|x(t′)− x(t)| ' |x(tq)− x(tp)| ≤ (m + η)(tq − tp) ' 0

which shows the S-uniform-continuity of x on [0, L]. �

If the real number L in Lemma 3.10 is standard, instead of limited, one obtains
more precise information about the function x.

Lemma 3.11. Let L > 0 be standard such that [0, L] ⊂ I. Suppose that conditions
(i) and (ii) in Lemma 3.10 are satisfied. Then the shadow y = ox, of the function
x is a solution of (3.7) and satisfies

x(t) ' y(t), ∀t ∈ [0, L]. (3.9)

Proof. The proof is the same as the proof of Lemma 3.6. Notice that by (3.9) we
obtain that for all t ∈ [0, L], xt is near-standard in Ω with xt ' yt. The details are
omitted. �

From Lemma 3.11 we deduce the result below.

Lemma 3.12. Let L > 0 be standard such that [0, L] ⊂ I. Suppose that
(i) For all t ∈ [0, L], x(t) is near-standard in U and F (t, xt) is limited.
(ii) The function x satisfies the F-stroboscopic property on [0, L] (Definition

3.8).
Then the function x is S-uniformly-continuous on [0, L] and its shadow is a solution
of (3.7) and satisfies approximation (3.9).

Proof. As in the proof of Lemma 3.7, we obtain a function c : [0, L] → I satisfying,
for all t ∈ [0, L],

µ < c(t)− t ' 0, [t, c(t)] ⊂ I, ∀s ∈ [t, c(t)] x(s) ' x(t),
x(c(t))− x(t)

c(t)− t
' F (t, xt).

If we let t0 = 0 and tn+1 = c(tn) for n = 0, . . . , N , where the integer N is such that
tN ≤ L < tN+1, the conclusion follows by applying Lemma 3.11. �

3.3.2. Proof of Theorem 3.9. Let L > 0 be standard in J and let W0 ⊂ U be the
standard neighborhood around Γ0 = {y(t) : t ∈ [0, L]} defined by W0 = {z ∈
Rd / ∃t ∈ [0, L] : |z − y(t)| ≤ ρ0}, where ρ0 > 0 is a given standard real number.

Now, since F is standard and continuous, and [0, L] × Γ is a standard compact
subset of R+ ×Ω, where Γ = {yt : t ∈ [0, L]}, there exists ρ > 0 and standard such
that F is limited on [0, L]×W , where W ⊂ Ω is the standard neighborhood around
Γ given by W = {z ∈ C / ∃t ∈ [0, L] : |z − yt| ≤ ρ}. Consider the set

A = {L1 ∈ [0, L] / [0, L1] ⊂ I, {x(t) : t ∈ [0, L1]} ⊂ W0 and {xt : t ∈ [0, L1]} ⊂ W}.
The set A is nonempty (0 ∈ A) and bounded above by L. Let L1 ∈ A such that
L0 − µ < L1 ≤ L0, where L0 = supA. Then

{x(t) : t ∈ [0, L1]} ⊂ W0 and [0, L1]× {xt : t ∈ [0, L1]} ⊂ [0, L]×W.

Hence, for all t ∈ [0, L1], x(t) is near-standard in U and F (t, xt) is limited.
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Thus, for any standard real number T such that 0 < T ≤ L1, hypotheses (i) and
(ii) of Lemma 3.12 are satisfied. We have then

x(t) ' y(t), ∀t ∈ [0, T ],

where y is as in hypothesis (b). By overspill the property above holds for some
T ' L1. On the other hand, due to the S-uniform-continuity of x on [0, L1] and
the continuity of y on the same interval, we have x(t) ' x(T ) and y(t) ' y(T ), for
all t ∈ [T,L1], which achieves to prove that

x(t) ' y(t), ∀t ∈ [0, L1]. (3.10)

By hypothesis (a), there exists some L′1 ' L1 such that L′1 > L1 + µ, [L1, L
′
1] ⊂ I

and x(t) ' y(t), for all t ∈ [L1, L
′
1]. Combining with (3.10) yields

x(t) ' y(t), ∀t ∈ [0, L′1]. (3.11)

Now, taking into account that x0 ' φ = y0, from (3.11) we deduce that xt ' yt for
all t ∈ [0, L′1].
It remains to verify that L ≤ L′1. Assume that L′1 ≤ L. Then [0, L′1] ⊂ I, {x(t) :
t ∈ [0, L′1]} ⊂ W0 and {xt : t ∈ [0, L′1]} ⊂ W . This implies L′1 ∈ A, which is absurd
since L′1 > L0. Thus L′1 > L. Finally, for any standard L ∈ J we have shown that
x(t) ' y(t) for all t ∈ [0, L] ⊂ [0, L′1]. This completes the proof of the theorem.

4. Proofs of the Results

We prove Theorems 2.2, 2.6 and 2.11 within IST. By transfer it suffices to prove
those results for standard data f , x0 and φ. We will do this by applying Strobo-
scopic Lemma for ODEs (Theorem 3.4) in both cases of Theorems 2.2 and 2.6, and
Stroboscopic Lemma for RFDEs (Theorem 3.9) in case of Theorem 2.11. For this
purpose we need first to translate all conditions (C1) and (C2) in Section 2.1, and
(H1), (H2) and (H3) in Section 2.2 into their external forms and then prove some
technical lemmas.

Let U be a standard open subset of Rd and let Ω = C([−r, 0], U), where r ≥ 0 is
standard. Let f : R+ ×U → Rd or f : R+ ×Ω → Rd be a standard and continuous
function. The external formulations of conditions (C1) and (C2) are:

(C1’) ∀stx ∈ U ∀x′ ∈ U ∀t ∈ R+

(
x′ ' x ⇒ f(t, x′) ' f(t, x)

)
.

(C2’) ∃stF : U → Rd ∀stx ∈ U ∀R ' +∞ F (x) ' 1
R

∫ R

0
f(t, x)dt.

The external formulation of conditions (H1), (H2) and (H3) are, respectively:
(H1’) ∀stx ∈ Ω ∀x′ ∈ Ω ∀t ∈ R+

(
x′ ' x ⇒ f(t, x′) ' f(t, x)

)
.

(H2’) ∀stW compact, W ⊂ U , ∀t ∈ R+, ∀x ∈ Λ = C([−r, 0],W ), f(t, x) is limited.
(H3’) ∃stF : Ω → Rd ∀stx ∈ Ω ∀R ' +∞ F (x) ' 1

R

∫ R

0
f(t, x)dt.

4.1. Technical Lemmas. In Lemmas 4.1 and 4.2 below we formulate some prop-
erties of the average F of the function f defined in (C2) and (H3).

Lemma 4.1. Suppose that the function f satisfies conditions (C1) and (C2) when
r = 0 and conditions (H1) and (H3) when r > 0. Then the function F in (C2) or
(H3) is continuous and satisfies

F (x) ' 1
R

∫ R

0

f(t, x)dt

for all x ∈ U or x ∈ Ω, x near-standard in U or in Ω and all R ' +∞.
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Proof. The proof is the same in both cases r = 0 and r > 0. So, there is no
restriction to suppose that r = 0. Let x, ox ∈ U be such that ox is standard and
x ' ox. Fix δ > 0 to be infinitesimal. By condition (C2) there exists T0 > 0 such
that ∣∣∣F (x)− 1

T

∫ T

0

f(t, x)dt
∣∣∣ < δ, ∀T > T0.

Hence there exists T ' +∞ such that

F (x) ' 1
T

∫ T

0

f(t, x)dt.

By condition (C1’) we have f(t, x) ' f(t, ox) for all t ∈ R+. Therefore

F (x) ' 1
T

∫ T

0

f(t, ox)dt.

By condition (C2’) we deduce that F (x) ' F (ox). Thus F is continuous. Moreover,
for all T ' +∞, we have

F (x) ' F (ox) ' 1
T

∫ T

0

f(t, ox)dt ' 1
T

∫ T

0

f(t, x)dt.

So, the proof is complete. �

Lemma 4.2. Suppose that the function f satisfies conditions (C1) and (C2) when
r = 0 and conditions (H1) and (H3) when r > 0. Let F be as in (C2) or (H3).
Let ε > 0 be infinitesimal. Then, for all limited t ∈ R+ and all x ∈ U or x ∈ Ω,
x near-standard in U or in Ω, there exists α = α(ε, t, x) such that 0 < α ' 0,
ε/α ' 0 and

ε

α

∫ t/ε+Tα/ε

t/ε

f(τ, x)dτ ' TF (x), ∀T ∈ [0, 1].

Proof. The proof is the same in both cases r = 0 and r > 0. Let t be limited in R+

and let x be near-standard in Ω. We denote for short g(r) = f(r, x). Let T ∈ [0, 1].
We consider the following two cases.

Case 1: t/ε is limited. Let α > 0 be such that ε/α ' 0. If Tα/ε is limited then
we have T ' 0 and

ε

α

∫ t/ε+Tα/ε

t/ε

g(r)dr ' 0 ' TF (x).

If Tα/ε ' +∞ we write

ε

α

∫ t/ε+Tα/ε

t/ε

g(r)dr =
(
T +

t

α

) 1
t/ε + Tα/ε

∫ t/ε+Tα/ε

0

g(r)dr − ε

α

∫ t/ε

0

g(r)dr.

By Lemma 4.1 we have

1
t/ε + Tα/ε

∫ t/ε+Tα/ε

0

g(r)dr ' F (x).

Since ε
α

∫ t/ε

0
g(r)dr ' 0 and t/α ' 0, we have

ε

α

∫ t/ε+Tα/ε

t/ε

g(r)dr ' TF (x).

This approximation is satisfied for all α > 0 such that ε/α ' 0. Choosing then α
such that 0 < α ' 0 and ε/α ' 0 gives the desired result.
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Case 2: t/ε is unlimited. Let α > 0. We have

ε

α

∫ t/ε+Tα/ε

t/ε

g(r)dr = Tη(α) +
t

α
[η(α)− η(0)] , (4.1)

where

η(α) =
1

t/ε + Tα/ε

∫ t/ε+Tα/ε

0

g(r)dr.

By Lemma 4.1 we have η(α) ' F (x) for all α ≥ 0. Return to (4.1) and assume
that α is not infinitesimal. Then

ε

α

∫ t/ε+Tα/ε

t/ε

g(r)dr ' TF (x), (4.2)

By overspill (4.2) holds for some α ' 0 which can be chosen such that ε/α ' 0. �

4.2. Proof of Theorem 2.2. We need first to prove the following result which
discuss some properties of solutions of a certain ODE needed in the sequel.

Lemma 4.3. Let ω ∈ R+, ω ' +∞. Let g : R+ ×B(0, ω) → Rd and h : R+ → Rd

be continuous functions, where B(0, ω) ⊂ Rd is the ball of center 0 and radius ω.
Let x0 be limited in Rd. Suppose that

(i) g(t, x) ' h(t) holds for all t ∈ [0, 1] and all x ∈ B(0, ω).
(ii)

∫ t

0
h(s)ds is limited for all t ∈ [0, 1].

Then any solution x of the initial value problem

ẋ = g(t, x), t ∈ [0, 1]; x(0) = x0

is defined and limited on [0, 1] and satisfies

x(t) ' x0 +
∫ t

0

h(s)ds, ∀t ∈ [0, 1].

Proof. Assume that there exists t ∈ [0, 1] such that x(t) ∈ B(0, ω) and x(t) ' ∞.
Then we have

x(t) = x0 +
∫ t

0

g(s, x(s))ds ' x0 +
∫ t

0

h(s)ds

whence, in view of hypothesis (ii), x(t) is limited; this is a contradiction. Therefore
x(t) is defined and limited for all t ∈ [0, 1]. �

Let us now prove Theorem 2.2. Assume that x0 and L are standard. To prove
Theorem 2.2 is equivalent to show that, for every infinitesimal ε > 0, every solution
x of (2.1) is defined at least on [0, L] and satisfies x(t) ' y(t) for all t ∈ [0, L]. Fix
ε > 0 to be infinitesimal and let x : I → U be a maximal solution of (2.1). We
claim that x satisfies the F -stroboscopic property on I (Definition 3.3). To see this,
let t0 ≥ 0 be an instant of observation of the stroboscopic method for ODEs; that is
t0 is limited, t0 ∈ I and x(t) is near-standard in U for all t ∈ [0, t0]. By Lemma 4.2
there exists α = α(ε, t0, x(t0)) such that 0 < α ' 0, ε/α ' 0 and

ε

α

∫ t0/ε+Tα/ε

t0/ε

f(t, x(t0))dt ' TF (x(t0)), ∀T ∈ [0, 1]. (4.3)

Introduce the function

X(T ) =
x(t0 + αT )− x(t0)

α
, T ∈ [0, 1].
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Differentiating and substituting the above into (2.1) gives, for T ∈ [0, 1],

dX

dT
(T ) = f

( t0
ε

+
α

ε
T, x(t0) + αX(T )

)
. (4.4)

By (C1’) and Lemma 4.3 the function X, as a solution of (4.4), is defined and
limited on [0, 1] and, for T ∈ [0, 1],

X(T ) '
∫ T

0

f
( t0

ε
+

α

ε
t, x(t0)

)
dt =

ε

α

∫ t0/ε+Tα/ε

t0/ε

f(t, x(t0))dt.

Using now (4.3) this leads to the approximation

X(T ) ' TF (x(t0)), ∀T ∈ [0, 1].

Define t1 = t0 + α and set µ = ε. Then µ < α = t1 − t0 ' 0, [t0, t1] ⊂ I and
x(t0 + αT ) = x(t0) + αX(T ) ' x(t0) for all T ∈ [0, 1], that is, x(t) ' x(t0) for all
t ∈ [t0, t1], whereas

x(t1)− x(t0)
t1 − t0

= X(1) ' F (x(t0)),

which shows the claim. Finally, by (C3) and Theorem 3.4, the solution x is defined
at least on [0, L] and satisfies x(t) ' y(t) for all t ∈ [0, L]. The proof of Theorem 2.2
is complete.

4.3. Proof of Theorem 2.6. We start by showing the following auxiliary lemma,
which is needed to prove Lemmas 4.5 and 4.6. Lemma 4.5 is used in the proof of
Theorem 2.6 and Lemma 4.6 is used in the proof of Theorem 2.7.

Lemma 4.4. Let U be a standard open subset of Rd and Ω = C([−r, 0], U), where
r ≥ 0 is standard. Let g : R+ × Ω → Rd be a continuous function. Suppose that

(A) for all standard and compact subset W ⊂ U , all t ∈ R+ and all x ∈ Λ =
C([−r, 0]),W ), g(t, x) is limited.

Let φ ∈ Ω be standard. Let x : I = [−εr, b) → U , with b > 0, be a maximal solution
of the initial value problem

ẋ(t) = g(t, xt,ε), x(t) = φ(t/ε), t ∈ [−εr, 0], (4.5)

or x : I = [−r, b) → U , with b > 0, be a maximal solution of the initial value
problem

ẋ(t) = g(t, xt), x0 = φ. (4.6)

Let t0 ∈ [0, b) be limited such that x(t) is near-standard in U for all t ∈ [0, t0].
If b ' t0 then x(t′) is not near-standard in U for some t′ ∈ [t0, b).

Proof. The proof is the same for the solution x of the initial value problem (4.5)
or the solution x of the initial value problem (4.6). We give the details in the first
case. Assume by contradiction that x(t) is near-standard in U for all t ∈ [t0, b).

Claim 1: supt∈[t0,b) |g(t, xt,ε)| is limited. Since x([−εr, 0]) = φ([−r, 0]), x(θ) is
near-standard in U for all θ ∈ [−εr, 0]. Thus x(t) is near-standard in U for all
t ∈ [−εr, b). By Lemma 3.1, there exists a standard and compact set W such that
x([−εr, b)) ⊂ W ⊂ U . We have xt,ε ∈ Λ = C([−r, 0],W ) for all t ∈ [t0, b). By
assumption (A), supt∈[t0,b) |g(t, xt,ε)| is limited.
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Claim 2: limt→b x(t) exists and is in U . Let (τn)n be a sequence in [t0, b) which
converges to b. For n, m ∈ N, we have

|x(τm)− x(τn)| =
∣∣ ∫ τm

τn

g(t, xt,ε)dt
∣∣ ≤ |τm − τn| sup

t∈[t0,b)

|g(t, xt,ε)|.

By Claim 1, the sequence (x(τn))n is a Cauchy sequence, and hence, it converges
to some ξ ∈ Rn. Let t ∈ [t0, b) and n ∈ N such that τn ≥ t. By

|x(τn)− x(t)| ≤
∫ τn

t

|g(s, xs,ε)|ds ≤ (τn − t) sup
s∈[t0,b)

|g(s, xs,ε)|,

we conclude that limt→b x(t) = ξ. By Claim 1, for each t ∈ [t0, b), we have

|x(t)− x(t0)| ≤
∫ t

t0

|g(s, xs,ε)|ds ≤ (t− t0) sup
s∈[t0,t]

|g(s, xs,ε)| ' 0.

Since x(t0) is near-standard in U and x(t) ' x(t0), we have ξ ∈ U .
Now, one can extend x to a continuous function on [−εr, b] by setting x(b) = ξ.

Consequently, xb,ε ∈ Ω and then one can find a solution of (4.5) through the point
(b, xb,ε) to the right of b, which contradicts the noncontinuability hypothesis on x.
So the proof is complete. �

Lemma 4.5. Let U be a standard open subset of Rd and Ω = C([−r, 0], U), where
r ≥ 0 is standard. Let g : R+ × Ω → Rd be a continuous function. Suppose that
condition (A) in Lemma 4.4 holds. Let φ ∈ Ω be standard and let x : I = [−εr, b) →
U , with 0 < b ≤ ∞, be a maximal solution of the initial value problem (4.5). Let
t0 ∈ [0, b) be limited such that x(t) is near-standard in U for all t ∈ [0, t0]. Then
the solution x is such that

(i) the restriction of x to interval [0, t0] is S-uniformly-continuous.
(ii) x(t) is defined and near-standard in U for all t ≥ t0 such that t ' t0.

Proof. (i) Let t, t′ ∈ [0, t0] such that t ≤ t′ and t ' t′. We have

|x(t′)− x(t)| ≤
∫ t′

t

|g(s, xs,ε)|ds ≤ (t′ − t) sup
s∈[t,t′]

|g(s, xs,ε)|.

By Lemma 3.1, there exists a standard and compact set W such that x([−εr, t0]) ⊂
W ⊂ U . We have xs,ε ∈ Λ = C([−r, 0],W ) for all s ∈ [t, t′]. By assump-
tion (A), sups∈[t,t′] |g(s, xs,ε)| is limited so that x(t′) ' x(t). Thus x is S-uniformly-
continuous on [0, t0].

(ii) Assume, by contradiction, that x(t) is not defined or not near-standard in
U for all t ≥ t0 such that t ≥ t0. If x(t) is not defined for some t ≥ t0 such that
t ≥ t0, then b ' t0. By Lemma 4.4, we have x(t′) is not near-standard in U for
some t′ ∈ [t0, b). If x(t) is not near-standard in U for some t ≥ t0 such that t ≥ t0,
then obviously, we have x(t′) is not near-standard in U for some t′ ∈ [t0, b). Hence,
in both cases there exists t′ > t0, t′ ' t0 such that x(t′) is not near-standard in U .
Now, by the continuity of x, there exists t1 ∈ [t0, t′] such that x(t) is near-standard
in U for all t ∈ [t0, t1] and x(t1) 6' x(t0). By property (i) of the lemma, x is
S-uniformly-continuous on [0, t1]. Thus x(t1) ' x(t0), which is a contradiction. �

The proof of Theorem 2.6 is as follows. Assume that φ and L are standard. To
prove Theorem 2.6 is equivalent to prove that, when ε > 0 is infinitesimal, every
solution x of (2.5) is defined at least on [−εr, L] and satisfies x(t) ' y(t) for all
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t ∈ [0, L]. Let ε > 0 be infinitesimal. Let x be a maximal solution of (2.5) defined
on I, an interval of R. Let t0 ≥ 0 be an instant of observation of the stroboscopic
method for ODEs; that is t0 is limited, t0 ∈ I and x(t) is near-standard in U for
all t ∈ [0, t0]. Since x(t0) is near-standard so is x̃t0 where x̃t0 ∈ Ω is defined by
x̃t0(θ) = x(t0) for all θ ∈ [−r, 0]. Now we apply Lemma 4.2 to obtain some constant
α = α(ε, t0, x̃t0) such that 0 < α ' 0, ε/α ' 0 and

ε

α

∫ t0/ε+Tα/ε

t0/ε

f(t, x̃t0)dt ' TF (x̃t0) = TG(x(t0)), ∀T ∈ [0, 1]. (4.7)

By Lemma 4.5 x(t) is defined and near-standard in U for all t ≥ t0 and t ' t0.
Hence one can consider the function

X(θ, T ) =
x(t0 + αT + εθ)− x(t0)

α
, θ ∈ [−r, 0], T ∈ [0, 1].

We have, for T ∈ [0, 1],

X(0, T ) =
x(t0 + αT )− x(t0)

α
, xt0+αT,ε = x̃t0 + αX(·, T ).

Note that, since x̃t0(θ) + αX(θ, T ) is near-standard in U for all θ ∈ [−r, 0] and all
T ∈ [0, T ], by Lemma 3.1 there exists a standard and compact set W such that
{x̃t0(θ) + αX(θ, T ) : θ ∈ [−r, 0], T ∈ [0, T ]} ⊂ W ⊂ U . From this we deduce that
x̃t0 + αX(·, T ) ∈ Λ = C([−r, 0],W ) for all T ∈ [0, 1]. Differentiate now X(0, ·) to
obtain

∂X

∂T
(0, T ) = f

( t0
ε

+
α

ε
T, x̃t0 + αX(·, T )

)
, T ∈ [0, T ].

Integration between 0 and T , for T ∈ [0, 1], yields

X(0, T ) =
∫ T

0

f
( t0

ε
+

α

ε
t, x̃t0 + αX(·, t))

)
dt. (4.8)

Here after we will consider the following two cases:
Case 1: T ∈ [0, εr/α]. Using (H2’) and taking into account that εr/α ' 0, (4.8)

leads to the approximation
X(0, T ) ' 0. (4.9)

Case 2: T ∈ [εr/α, 1]. By Lemma 4.5 the restriction of x to interval [0, t0 + α] is
S-uniformly-continuous so that, for θ ∈ [−r, 0],

αX(θ, T ) = x(t0 + αT + εθ)− x(t0) ' 0,

since t0 + αT + εθ ∈ [t0, t0 + α] ⊂ [0, t0 + α] and t0 + αT + εθ ' t0.
Return now to (4.8). For T ∈ [0, 1], we write

X(0, T ) =
( ∫ εr/α

0

+
∫ T

εr/α

)
f
( t0

ε
+

α

ε
t, x̃t0 + αX(·, t)

)
dt.

Using (4.9), (H1’), (H2’) and (4.7), we thus get, for T ∈ [0, 1],

X(0, T ) '
∫ T

εr/α

f
( t0

ε
+

α

ε
t, x̃t0

)
dt '

∫ T

0

f
( t0

ε
+

α

ε
t, x̃t0

)
dt

=
ε

α

∫ t0/ε+Tα/ε

t0/ε

f(t, x̃t0)dt ' TG(x(t0)).
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Defining t1 = t0 + α and setting µ = ε, the following properties are true: µ < α =
t1 − t0 ' 0, [t0, t1] ⊂ I, x(t0 + αT ) = x(t0) + αX(0, T ) ' x(t0) for all T ∈ [0, 1],
that is, x(t) ' x(t0) for all t ∈ [t0, t1], and

x(t1)− x(t0)
t1 − t0

= X(0, 1) ' G(x(t0)).

This proves that x satisfies the F -stroboscopic property on I (Definition 3.3). Tak-
ing (H4) into account, we finally apply Theorem 3.4 (Stroboscopic Lemma for
ODEs) to obtain the desired result, that is, the solution x is defined at least on
[−εr, L] and satisfies x(t) ' y(t) for all t ∈ [0, L]. The theorem is proved.

4.4. Proof of Theorem 2.11. We first prove the following result.

Lemma 4.6. Let U be a standard open subset of Rd and Ω = C([−r, 0], U), where
r ≥ 0 is standard. Let g : R+ × Ω → Rd be a continuous function. Suppose that
condition (A) in Lemma 4.4 holds. Let φ ∈ Ω be standard and let x : I = [−r, b) →
U , with 0 < b ≤ ∞, be a maximal solution of the initial value problem (4.6). Let
t0 ∈ [0, b) be limited such that x(t) is near-standard in U for all t ∈ [0, t0]. Then

(i) x is S-uniformly-continuous on [−r, t0] and xt is near-standard in Ω for all
t ∈ [0, t0].

(ii) x(t) is defined and near-standard in U for all t ' t0, t ≥ t0.

Proof. (i) We first note that x is S-uniformly-continuous on [−r, 0], since it coincides
with the standard and continuous function φ on the (standard) interval [−r, 0]. Now
consider the interval [0, t0]. Let t, t′ ∈ [0, t0] such that t ≤ t′ and t ' t′. Then

|x(t′)− x(t)| ≤
∫ t′

t

|g(s, xs)|ds ≤ (t′ − t) sup
s∈[t,t′]

|g(s, xs)|.

By Lemma 3.1, there exists a standard and compact set W such that x([−r, t0]) ⊂
W ⊂ U . We have xs,ε ∈ Λ = C([−r, 0],W ) for all s ∈ [t, t′]. By assump-
tion (A), sups∈[t,t′] |g(s, xs,ε)| is limited so that x(t′) ' x(t). Thus x is S-uniformly-
continuous on [0, t0].

It remains to prove that xt is near-standard in Ω for all t ∈ [0, t0]. Since x(t) is
near-standard in U for all t ∈ [−r, t0] and S-uniformly-continuous on [−r, t0] then,
for any fixed t ∈ [0, t0], xt(θ) is near-standard in U for all θ ∈ [−r, 0] and xt is
S-uniformly-continuous on [−r, 0]. So, the result follows from Theorem 3.2.

(ii) Assume, by contradiction, that x(t) is not defined or not near-standard in
U for all t ≥ t0 such that t ≥ t0. If x(t) is not defined for some t ≥ t0 such that
t ≥ t0, then b ' t0. By Lemma 4.4, we have x(t′) is not near-standard in U for
some t′ ∈ [t0, b). If x(t) is not near-standard in U for some t ≥ t0 such that t ≥ t0,
then obviously, we have x(t′) is not near-standard in U for some t′ ∈ [t0, b). Hence,
in both cases there exists t′ > t0, t′ ' t0 such that x(t′) is not near-standard in U .

By the continuity of x there exists t1 ∈ [t0, t′] such that x(t) is near-standard
in U for all t ∈ [t0, t1] and x(t1) 6' x(t0). By property (i) of the lemma x is S-
uniformly-continuous on [−r, t]. Since t ' t0, it follows that x(t) ' x(t0), which is
absurd. This proves that x(t) is defined and near-standard in U for all t ' t0. �

Let us prove Theorem 2.11. Let φ and L be standard. To prove Theorem 2.11
is equivalent to show that for every infinitesimal ε > 0, every solution x of (2.8) is
defined at least on [−r, L] and x(t) ' y(t) holds for all t ∈ [0, L]. We fix ε > 0 to be
infinitesimal and we let x : I → U to be a maximal solution of (2.8). We show that x
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satisfies the F -stroboscopic property on I (Definition 3.8). Let t0 ≥ 0 be an instant
of observation of the stroboscopic method for RFDEs; that is t0 is limited, t0 ∈ I
and x(t) is near-standard in U and F (xt) is limited for all t ∈ [0, t0]. According to
(H2’) Lemma 4.6 applies. Thus xt is near-standard in Ω for all t ∈ [0, t0].

Now, applied to t0 and xt0 , Lemma 4.2 gives

ε

α

∫ t0/ε+Tα/ε

t0/ε

f(t, xt0)dt ' TF (xt0), ∀T ∈ [0, 1] (4.10)

for some α = α(ε, t0, xt0) such that 0 < α ' 0 and ε/α ' 0.
Let X : [−r, 0]× [0, 1] → Rd be the function given by

X(θ, T ) =
x(t0 + αT + θ)− x(t0 + θ)

α
, θ ∈ [−r, 0], T ∈ [0, 1].

By Lemma 4.6 the function X is well defined. It satisfies, for T ∈ [0, 1],

X(0, T ) =
x(t0 + αT )− x(t0)

α
, xt0+αT = xt0 + αX(·, T ).

Hence, for T ∈ [0, 1],

∂X

∂T
(0, T ) = f

( t0
ε

+
α

ε
T, xt0 + αX(·, T )

)
.

Solving this equation gives, for T ∈ [0, 1],

X(0, T ) =
∫ T

0

f
( t0

ε
+

α

ε
t, xt0 + αX(·, t)

)
dt. (4.11)

According to Lemma 4.6 the solution x is S-uniformly-continuous on [−r, t0 + α].
Therefore, for θ ∈ [−r, 0] and T ∈ [0, 1], X(θ, T ) satisfies, since t0 +αT +θ ' t0 +θ,

αX(θ, T ) = x(t0 + αT + θ)− x(t0 + θ) ' 0. (4.12)

By (H1’), (4.12), (4.11) and (4.10), we have for all T ∈ [0, 1] the approximation

X(0, T ) '
∫ T

0

f
( t0

ε
+

α

ε
t, xt0

)
dt =

ε

α

∫ t0/ε+Tα/ε

t0/ε

f(t, xt0)dt ' TF (xt0).

Let t1 = t0 + α and set µ = ε. The instant t1 and the constant µ are such that:
µ < α = t1 − t0 ' 0, [t0, t1] ⊂ I, x(t0 + αT ) = x(t0) + αX(0, T ) ' x(t0) for all
T ∈ [0, 1], that is, x(t) ' x(t0) for all t ∈ [t0, t1] and

x(t1)− x(t0)
t1 − t0

= X(0, 1) ' F (xt0),

which is the F -stroboscopic property on I. Finally, using (H6) we get, by means of
Theorem 3.9 (Stroboscopic Lemma for RFDEs), that the solution x is defined at
least on [−r, L] and satisfies x(t) ' y(t) for all t ∈ [0, L]. So the proof is complete.

5. Discussion

In this paper we presented averaging results for ODEs and RFDEs. The results
are proved in an unified manner for both ODEs and RFDEs, by using the Strobo-
scopic method which is a nonstandard tool in the asymptotic theory of differential
equations. It should be noticed that the usual approaches for averaging make use of
different tools for ODEs [6, 13, 38] and for RFDEs [14, 15, 16, 17, 18, 26, 27, 34, 44].
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The results on RFDEs presented in this paper were obtained in [22], in which the
Stroboscopic method for RFDEs was stated for the first time (see also [25, 42]). We
recall that the stroboscopic method was initially proposed for ODEs. In this paper,
we presented a slightly modified version of this method (see Theorem 3.4) and then
extended it (see Theorem 3.9) in the context of RFDEs. Here, the stroboscopic
method is slightly extended since the time t′ in Definition 3.3 is assumed to exist
only for those limited values of t for which x(s) is near-standard in U for all s ∈ [0, t]
(see also Definition 6 in [42]). In the previous papers the time t′ was assumed to
exist for those limited values of t for which x(t) is near-standard in U , without any
assumption on x(s) for s ∈ [0, t] (see Theorem 1 in [41] or Definition 5 in [42]).
In the stroboscopic method for RFDEs, the main assumption is that the time t′

in Definition 3.8 is assumed to exist for those limited values of t for which x(s) is
near-standard in U and F (s, xs) is limited for all s ∈ [0, t].

The Stroboscopic method for ODEs was first obtained by Callot and Reeb [9, 36].
For more information on the discovery of the stroboscopic method, and its use in
averaging and asymptotic analysis the reader can consult [32, 40, 41]. Lemma 3.6
of the present paper is simply the Stroboscopic Theorem of Callot (see Theorem 1
in [9] or Lemma 1 in [41]). Theorem 3.4 is similar to Theorem 1 in [41]. Lemma 3.7
is similar to Lemma 2 in [41]. In the case r = 0, Lemma 4.1 is Lemma 4 in [41];
in the case r > 0 it is Lemma 4.3.6 in [22]. In the case r = 0, Lemma 4.2 is
Lemma 2 in [39] or Lemma 5 in [41]; in the case r > 0 it is Lemma 4.3.7 in [22].
Lemma 4.3 is Lemma 1 in [39] or Theorem 2 in [41]. The results of Sections 3.3,
4.3 and 4.4 are extensions of some of the results in [22]. In our previous papers
[19, 20, 21, 24], the stroboscopic method for RFDEs was not yet established and
the results of averaging were obtained directly through evaluations of integrals.

The KBM theorem of averaging on ODEs obtained previously (see Theorems 1
in [39] or Theorem 6 in [41]) concerned nonstandard differential equations of the
form ẋ = g(t/ε, x) where g(t, x) is a perturbation of a standard KBM vector field
f(t, x) satisfying the conditions in Definition 2.1. From a classical point of view
this theorem includes the case of deformations of the form

ẋ(t) = f(t/ε, x(t), ε),

where the vector field f(t, x, ε) depends also on ε. More precisely the theorem
concerns all initial value problems in a neighborhood of a KBM vector field in a
suitable topology (see Theorem 7 in [41]). The KBM theorems of averaging on
ODEs and RFDEs obtained in this paper does not concern deformations of the
above form in the case of ODEs or of the form

ẋ(t) = f(t/ε, xt, ε) or ẋ(t) = f(t/ε, xt,ε, ε),

in the case of RFDEs. However we think that our approach will permit also to
consider these deformations. We leave this problem for future investigations. An
other adapted version of the stroboscopic method for the case of ordinary differential
inclusions has been given in [23] and used there to prove an averaging result.
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