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A hypoplastic macroelement for single vertical piles in sand

subject to three-dimensional loading conditions

Zheng Li1,2 • Panagiotis Kotronis1 • Sandra Escoffier2 • Claudio Tamagnini3

Abstract This paper presents a novel macroelement for

single vertical piles in sand developed within the hypo-

plasticity theory, where the incremental nonlinear consti-

tutive equations are defined in terms of generalized forces,

displacements and rotations. Inspired from the macroele-

ment for shallow foundations of Salciarini and Tamagnini

(Acta Geotech, 4(3):163–176, 2009), the new element

adopts the ‘‘intergranular displacement’’ mutuated from

Niemunis and Herle (Mech Cohes Frict Mater, 2:279–299,

1997) to reproduce the behavior under cyclic loading.

Analytical and numerical strategies are provided to cali-

brate the macroelement’s parameters. Comparisons with

experimental results show the performance of the

macroelement that while being simple and computational

fast is suitable for finite element calculations and engi-

neering design.

Keywords Foundation � Hypoplasticity � Macroelement �

Pile � Soil-structure interaction

1 Introduction

According to the scale adopted for the formulation of the

underlying theoretical model, numerical simulations of

geotechnical problems can be—and often are—classified in

two broad categories: meso-scale and macro-scale com-

putations. In a typical meso-scale approach such as, for

example, in the Discrete Element Method (DEM) [7, 13],

the description of soil behavior is made at the particle

scale. Particles are modeled as rigid bodies, and grain to

grain interactions at the contacts are described by means of

suitable contact laws. Various successful applications of

the DEM method in geotechnical engineering can be found

in the literature, see e.g., [6, 19, 71].

In computational geomechanics, the paradigm for the

macro-scale approach is provided by the finite element

method (FEM), in which a mathematical problem cast

within the framework of continuum mechanics is trans-

formed into a discrete algebraic problem by approximating

the unknown fields with simple functions with local sup-

port, see e.g., [43, 60, 81]. In this case, the description of

soil behavior is made at the macroscopic (phenomenolog-

ical) level, in terms of a suitable constitutive equation

providing the stress evolution for a given strain history.

The constitutive equation is often formulated in rate-form,

in order to capture the non-linear, irreversible and history-

dependent character of soil behavior, see, e.g., [16, 75].

In relatively recent times, a new class of macroscopic

models have been developed mainly for soil-foundation-

structure interaction (SFSI) applications, which can be
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considered an ‘‘upscaled’’ version of classical macroscopic

models considering the soil as a continuous (albeit,

sometimes multiphase) medium. In this approach, called

macroelement modeling, the global behavior of the foun-

dation and of the soil volume interacting with it is

‘‘lumped’’ into a single, integral, constitutive equation

linking the evolution of the resultant loads/moments on the

foundation to the corresponding displacements/rotations

histories. The macroelement concept was introduced in

foundation engineering by Nova and Montrasio [58];

however, it shares some similarities with simplified meth-

ods developed in structural engineering, to model, e.g.,

plastic hinge areas in beam-column joints [17, 20, 62, 69].

As compared to macroscopic approaches based on con-

tinuum mechanics, the striking advantages of the

macroelement approach are in its remarkable computa-

tional efficiency, in the relatively simple formulation of

their constitutive equations, and in the ease of numerical

implementation into general purpose FE codes.

For the following reasons, this approach has found

widespread applications in the modeling of structures with

isolated shallow foundations. Among the available non-

linear macroelement models of this class present in the

literature, we can distinguish two groups, based on the

mathematical framework used to construct the constitutive

equations:

(a) Plasticity theory-based macroelements;

(b) Hypoplasticity theory-based macroelements.

In the first group of models, the basic principles of

isotropic or anisotropic hardening plasticity are used to

define the elastic behavior, the flow rule and the hardening

law of the macroelement. All the relevant constitutive

functions—i.e., elastic constitutive equation, yield func-

tion, plastic potential and hardening laws—are formulated

in terms of the (generalized) load vector acting on the

foundation and the internal variables accounting for the

effects of previous loading history. As in classical

plasticity, the standard Prager’s consistency condition

provides the full set of evolution equations for the soil-

foundation system.

As already mentioned, Nova and Montrasio [58] pio-

neered the development of elastoplastic macroelements for

shallow footings, considering a perfectly rigid strip footing

resting on a purely frictional soil. Further developments of

the macroelement approach for shallow footings under

monotonic loading conditions can be found, e.g., in [8, 33,

42, 46, 53]. More recently, the attention has been focused

on the simulation of the cyclic/dynamic response of shal-

low footings for seismic SFSI analysis. Paolucci [59]

adopted an elastic-perfectly plastic macroelement with a

non-associated flow rule for seismic SFSI simulations.

Crémer et al. [11, 12] developed a isotropic/kinematic

hardening macroelement for cyclic/dynamic loading con-

ditions incorporating the effects of geometric nonlinearity

(foundation uplift), and applied it for cyclic and seismic

loading conditions. Grange et al. [34] used a multi-mech-

anism, isotropic/kinematic hardening model to improve the

description of the foundation overturning mechanism and

uplift. The same authors successfully combined the

macroelement with multifiber Timoshenko beams [41, 47]

to evaluate the effects of soil-structure interactions under

seismic loadings [35, 36]. Further contributions in this field

can be found in [9, 23, 25, 27, 70].

An inelastic, rate-type macroelement model based on

the principles of the theory of hypoplasticity [40, 55, 76]

has been first developed by Salciarini and Tamagnini [68].

This model, which shares some key features with the

elastoplastic macroelement of Nova and Montrasio, differs

from the other elastoplastic macroelements mentioned

before in the incrementally non-linear character of the

constitutive equations, which precludes the existence of an

elastic domain in the generalized loading space. The model

incorporates a vector-like internal variable (the internal

displacement) which, accounting for the effects of recent

deformation history, allows to reproduce satisfactorily

most of the relevant features of the experimentally

observed response of the foundation-soil system under

rather complex loading paths, including load reversals.

Extended versions of the original hypoplastic model have

been presented in [66, 67]. A comparison between the

predictions provided by the advanced elastoplastic

macroelement of Grange et al. [34] and the hypoplastic

macroelement of Salciarini and Tamagnini [68] in the

seismic SFSI analysis of a 4-span r.c. bridge has been

presented in [65].

A third possible approach to macroscopic modeling of

shallow footing/soil systems which is somewhat in between

the continuum-based finite element (FE) modeling and the

use of plasticity- or hypoplasticity-based macroelement

models is provided by the so-called ‘‘Beam on Non-linear

Winkler Foundation’’ (BNWF) models-based on the work

of Bartlett [3] and Wiessing [79] for rocking-dominated

strip footings-in which the foundation soil is treated as a

(non-linear and possibly unilateral) Winkler bed, some-

times endowed with viscous damping. Recent works in this

field include, e.g., Refs. [26, 38, 72, 80].

Although BNWF models for shallow footings appear to

have gained some popularity mainly in the structural

earthquake engineering community, their main drawback

stems from the impossibility of modeling correctly the

experimentally observed coupling between the different

degrees of freedom of the footing, except, perhaps in

rocking-dominated loading conditions. As compared to

inelastic macroelements, this drawback of BNWF models

is not compensated by their computational efficiency or
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ease of implementation. This can explain the relatively

large diffusion of macroelement approaches for SFSI

analysis of isolated shallow footings.

When the deformation and failure behavior of deep,

piled foundations under cyclic/dynamic loading condition

is of concern, the current state of the art in SFSI modeling

is almost reversed, with BNWF models largely dominating

among macroscopic ‘‘global’’ modeling approaches.

Notable works in this respect are those of Nogami

et al. [57], who combined springs and dashpots to describe

soil damping, and of Boulanger et al. [4], who analyzed the

seismic soil-pile-structure interaction of a single pile in a

two-layer soil, and validated their approach by means of

small-scale dynamic model tests in the centrifuge. Subse-

quent developments include the works of Taciroglu

et al. [63, 73], who incorporated frictional forces and gap

opening at the pile-soil interface; Curras et al. [14], who

extended the BNWF approach to pile group systems;

Gerolymos and Gazetas [30–32], who applied the BNWF

approach to rigid caissons under static and dynamic loads,

and Varun [77], who proposed the use of multiple p� y

curves to take into account the effects of pore pressure

build-up and liquefaction.

This state of affairs is certainly due to the difficulties

encountered in properly defining a complete failure domain

for deep foundations, even in the simple case of a single

pile, and perhaps to the appeal that BNWF models have for

the structural engineer, as they provide important infor-

mations concerning the distribution of shear forces and

bending moments along the pile axis. However, the same

limitations stressed for BNWF shallow footing models

apply, perhaps even to a larger extent, to pile models

developed within the same approach. In fact, BNWF

models require as input data a series of soil pressure–dis-

placement (p� y) curves, which are very difficult to select

in the absence of data from instrumented lateral pile load

tests. For example, Murchison and O’Neill [54], in a study

comparing four proposed procedures for selecting p� y

curves with data from field tests, have shown that errors in

pile-head deflection predictions could be as large as 75 %.

It is also uncertain how the p� y curves are affected by

pile head constraints and the relative stiffness of the pile

and the soil.

One of the first attempts to develop a global non-linear

model for a single pile, considering the soil interacting with

the pile as a continuous medium, can be found in the works

of Davies and Budhu [5, 18], who employed a variable

module elastic constitutive equations and modeled the pile-

soil interaction using Mindlin solution as in Ref. [2]. A

more recent application of the same approach has been

presented in [61]. Although more appealing than BNWF

models, these approaches still fail to capture the coupling

existing between the different degrees of freedom in the

nonlinear range.

It is only very recently that, due to the development in

both experimental techniques and computing facilities, the

problem of developing a single, global constitutive equa-

tion capable of reproducing the observed non-linear, irre-

versible, hysteretic behavior of the soil-pile system under

cyclic/dynamic loading conditions has been addressed

within the framework of elastoplastic macroelement mod-

els, where plastic flow mechanisms are inherently coupled.

In particular, Correia [10] introduced an elastoplastic

macroelement for a single concrete pile in purely cohesive

soil. In his model, coupling is considered only in the hor-

izontal force-bending moment plane, but does not include

the effects of the vertical load.

In this paper, a new macroelement for a single pile

embedded in a homogeneous sand layer and head located at

the ground surface, is developed within the framework of

hypoplasticity, inspired from the work of Salciarini and

Tamagnini [68] on shallow foundations. The behavior of

the pile is assumed linear elastic (no plastic deformations in

the pile are considered). The constitutive equations in rate

form are defined in terms of generalized forces, displace-

ments and rotations, and are constructed based on the 3D

failure envelope for a single pile in Fontainebleau sand

(NE34) proposed by Li et al. [45]. The capability of

reproducing the non-linear soil-pile response under cyclic

loading has been incorporated by introducing a displace-

ment-like internal variable—the internal displacement

vector—mutuated from the concept of ‘‘intergranular

strain’’, first introduced by Niemunis and Herle [56] in the

context of continuum hypoplasticity.

The outline of the paper is as follows. In Sect. 2 the

details of the mathematical formulation of the model and

the numerical strategy adopted for its FE implementation

are presented. Section 3 addresses the very important point

of macroelement calibration, providing different possible

strategies to determine the relevant model constants con-

trolling the model response. In Sect. 4 the performance of

the macroelement is assessed by comparing its predictions

with available experimental observations from a number of

small-scale tests performed under artificial gravity [64].

Section 5 provides some insights concerning the applica-

bility of the proposed macroelement model to more com-

plex stratigraphic conditions. Finally, some concluding

remarks and suggestions for further developments are

provided in Sect. 6.

In the following, vectors and matrices are represented

with boldface symbols. The operator vj jj j applied to a

vector v denotes the Euclidean norm of v. The symbol mT

indicates the transpose of a vector/matrix m. A superposed

dot, like in _x, denotes the time derivative of the variable x.
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2 Constitutive equations of the hypoplastic

macroelement

2.1 Basic structure of the hypoplastic constitutive

equations

In developing the constitutive equation for the pile-foun-

dation system, we assume that the pile head is subjected to

a three-dimensional loading system, composed by a verti-

cal, axial load V, an horizontal, tangential load H, and a

bending moment M orthogonal to the direction of the

horizontal load, so that the deformations of the pile axis are

contained in the vertical plane containing the forces V and

H. Although such a loading system is not the most general

possible, it includes the majority of the cases of practical

interest.

In a global macroscopic setting, the mechanical

response of the pile-foundation system is described by

means of a single constitutive equation between the gen-

eralized load vector t and the (work-conjugate) generalized

displacement vector u, defined as:

t :¼ fV;H;M=dgT u :¼ fw; u; dhgT ð1Þ

where w, u and h are the pile head vertical displacement,

horizontal displacement and rotations, respectively, and d is

the pile diameter, used here as a characteristic length scale to

homogeneize the dimensions of the components of t and u.

According to [68], the basic structure of the constitutive

equation in rate-form for a hypoplastic macroelement, in

the simplest possible case in which the state of the system

is sufficiently represented by the current load t, is given by:

_t ¼ LðtÞ _uþ NðtÞ _uj jj j ð2Þ

where the matrix L and the vector N are

suitable constitutive functions to be defined based on

available experimental evidence on the system response. In

Eq. (2), the first term on the right-hand side represents the

incrementally linear part of the constitutive equation. The

second term, nonlinear in _u, is responsible for the

incremental non-linearity of the system response, i.e.,

for the continuous dependence of the system stiffness on

the loading direction, see, e.g., [15, 76]. This feature of

the hypoplastic constitutive Eq. (2) can be better

appreciated by recasting it in the following quasi-linear

format:

_t ¼ Kðt; gÞ _u ð3Þ

in which the tangent stiffness matrix K is given by:

K ¼ LðtÞ þ NðtÞgT g :¼
_u

_uj jj j
ð4Þ

Looking at Eq. (4)1, it is immediately apparent that the

tangent stiffness matrix varies continuously with the

direction g of the system generalized velocity _u. This is a

characteristic feature of hypoplasticity which—together

with the absence of any decomposition of displacement

rates into an elastic and a plastic part—marks a significant

difference with elastoplasticity, where the stiffness matrix

assumes only two possible values at each state, one for

plastic loading and one for elastic unloading.

2.2 Extension to cyclic/dynamic loading conditions

The constitutive Eqs. (2) or (3) is suitable for monotonic

loading conditions, but the impossibility of distinguishing

loading states characterized by the same value of t but

different loading histories makes it unsuitable to reproduce

the behavior of the pile-soil system under cyclic/dynamic

loading conditions.

In order to do that, the model should be enriched with a

set of suitable internal variables capable of taking into

account the effects of the previous loading history on the

system response. Following Salciarini and Tamagnini [68],

this is obtained by introducing a new displacement-like

vectoria internal variable, d, defined internal displacement.

This internal variable mimics the ‘‘intergranular strain’’

tensor, introduced by Niemunis and Herle [56] in the

context of continuum hypoplasticity.

In the enriched version of the hypoplastic macroelement

model, the internal displacement vector is defined by the

following evolution equation:

_d¼cHðd;gÞ _u cH¼
I �qbrgdgd

T if gd �g[0;

I if gd �g � 0:

(
ð5Þ

where I is the identity matrix, the unit vector gd and the

scalar q define the internal displacement direction and a

normalized measure of its magnitude, respectively:

gd :¼
d= dj jj j ðif dj jj j[ 0Þ

0 ðif dj jj j ¼ 0Þ

�
q :¼

1

R
dj jj j ð6Þ

while br and R are model constants. In a deformation

process starting from a very low (or zero) magnitude of the

internal displacement, q ’ 0 and _d ’ _u. If the system

continues to move in the same direction (i.e., at constant g)

eventually q approaches 1 ( dj jj j ! R). At this point, d

remains constant and gd ¼ g: the internal displacement

vector remains constant and aligned with the system tra-

jectory. We expect that in such a state, the response of the

system would be identical to the one predicted by the

constitutive Eq. (2) of the standard macroelement.

However, if the displacement path of the system expe-

rience a complete reversal, the difference between the unit

vectors gd and g ¼ �gd registers that the system is

undergoing a load reversal process. In such a condition, we

expect the response of the system to be quasi-elastic, with a
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stiffness higher than in the previous loading stage. The

particular formulation of the evolution Eq. (5) guarantees

that the transition between this pseudo-elastic behavior and

the fully non-linear, asymptotic hypoplastic regime

requires some further deformation along the new loading

path.

The model constants R and br control the magnitude of

the additional displacements required to reach the asymp-

totic hypoplastic regime and the speed at which the

realignment between the vectors gd and g may take place.

Taking into account the previous observations con-

cerning the evolution of the internal displacement during a

given loading process, the expected cyclic response of the

system can be obtained by modifying the constitutive

equations of the macroelement as follows:

_t ¼ bKðt; d; gÞ _u ð7Þ

where:

bK ¼ ½qvmT þ ð1� qvÞmR�LðtÞ þ eKðt; d; gÞ ð8Þ

eK ¼
qvð1� mTÞðLgdÞg

T
d þ qvNgTd ðif gd � g[ 0Þ

qvðmR � mTÞðLgdÞg
T
d ðif gd � g� 0Þ

(

ð9Þ

where v, mT and mR are model constants.

Equations (8) and (9) define a smooth interpolation law

for the stiffness matrix of the pile-soil system between the

following limiting cases:

(a) continued loading at constant g, with dj jj j ¼ R and

gd ¼ g; in this case, the system is in the full

hypoplastic regime, and:

_t ¼ mTL _uþ ð1� mTÞLgdðg
T
d _uÞ þ NgTd _u

¼ L _uþ N _uj jj j
ð10Þ

since ðgTd _uÞgd ¼ ðgT _uÞg ¼ _u and gTd _u ¼ gT _u ¼ _uj jj j;

(b) orthogonal loading with gTdg ¼ 0 and dj jj j ¼ R; in

this case, the response of the system is hypoelastic,

as:

_t ¼ mTL _uþ ðmR � mTÞLgdðg
T
d _uÞ ¼ mTL _u ð11Þ

as gTd _u ¼ gTdg _uj jj j ¼ 0;

(c) full load reversal with gd ¼ �g and dj jj j ¼ R; in this

case, the system response is again hypoelastic, as in

case (b), but characterized by a different stiffness:

_t ¼ mTL _uþ ðmR � mTÞLgdðg
T
d _uÞ ¼ mRL _u ð12Þ

as ðgTd _uÞgd ¼ ðgT _uÞg ¼ _u.

Equations (10)–(12) provide also the physical interpreta-

tion of the role played by the model constants mT , mR and

v. The first two affect the magnitude of the apparent

hypoelastic stiffness matrix for orthogonal and full reverse

loading, respectively. Typically, mR[mT as the response

under full loading reversal is generally stiffer than under

orthogonal loading. The third constant v controls the speed

at which the three limiting cases are reached as q

approaches 1.

In order to complete the description of the hypoplastic

macroelement constitutive equations, it is necessary to

define the constitutive functions L and N. This point is

addressed in the following sections.

2.3 Constitutive matrix L

Considering that for a full load reversal the incremental

response of the system can be described by a (pseudo) elastic

stiffness matrixKe and taking into account Eq. (12), we can

link the constitutive matrix L to the stiffness matrix K
e by

means of the following simple relation:

K
e¼mRL , L¼

1

mR

K
e¼

1

mR

kvv 0 0

0 khh khm

0 khm kmm

2
64

3
75 ð13Þ

where kvv, khh, kmm and khm are the vertical, horizontal,

rotational and coupled horizontal-rotational stiffness coef-

ficients of the pile-soil system, obtained, e.g., from fun-

damental solutions of the theory of elasticity. In this case,

differently from what is typically observed in the response

of shallow footings—see, e.g., [34]—the coupling coeffi-

cent khm is not negligible as compared to the direct stiffness

coefficients kvv, kmm.

2.4 Constitutive vector N

Since the nonlinear part of the constitutive Eq. (2) or (7)—

controls the response of the system near or at failure states,

the definition of a failure locus in the generalized stress

state is a fundamental step towards its definition. In this

work, we adopt the failure surface proposed by Li

et al. [45] for a single pile in sand (Fontainebleau sand

NE34), defined by the following failure criterion:

FðtÞ ¼
H

H0

� �2

þ
M

M0

� �2

�a
H

H0

� �
M

M0

� �

� 1þ HðVÞ
Vt0

Vc0

� �2

þHð�VÞ

( )
V

Vt0

� �2

¼ 0 ð14Þ

The failure surface described by Eq. (14) is shown in Fig. 1

in the three-dimensional loading space. In Eq. (14), the

constants H0, M0, Vc0 and Vt0 represent the failure loads

under pure horizontal, bending, axial compression and

axial tension loads, respectively, while the coupling
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constant a controls the orientation of the failure surface in

the H : M/d plane. The symbol HðxÞ denotes the Heaviside

step function, defined by:

HðxÞ ¼
1 if x[ 0

0 if x� 0

�

Its use in the two terms within curly brackets in Eq. (14)

allows to switch from failure under axial compression

states (V[ 0) to failure under axial tension states (V � 0).

As shown in [55], the failure locus defined by Eq. (14)

can be incorporated in the hypoplastic model by defining

the constitutive function N as follows:

NðtÞ ¼ �YðtÞLmðtÞ ð15Þ

where m is a unit vector oriented in the opposite direction

of L�1N, and the scalar function YðtÞ 2 ½0; 1�—called

loading function—is defined so that: (1) it is equal to 1 for

loading states on the failure surface; and, (2) it decreases

monotonically with increasing distance from the failure

surface. With this definition, in fully hypoplastic loading

states the constitutive equation of the macroelement reads:

_t ¼ L _u� YðtÞm _uj jj jf g ð16Þ

It is clear from Eq. (16) that the loading function Y

quantifies the degree of nonlinearity in the model

response. In the limit Y ! 0, the response of the

macroelement becomes hypoelastic. When the pile-soil

system reaches failure, _t ¼ 0 and Y ¼ 1. From Eq. (16)

we obtain:

m ¼
_u

_uj jj j

� �

f

¼ gf ð17Þ

The unit vector m thus provides the direction of the

macroelement velocity at failure (plastic flow direction).

Assuming for simplicity an associative plastic flow rule in

the generalized loading space, we can evaluate the vector

m for states on the failure surface as follows:

mf ¼
1

oF

ot

����
����

����
����

oF

ot
ð18Þ

The loading function Y is defined by assuming that for each

loading state t inside the failure surface, an image state t� is

defined on the failure surface by a simple projection from

the origin of the loading space:

t
� ¼

1

n
t n 2 ð0; 1� ð19Þ

The value of n can be computed imposing the condition

f ðt�Þ ¼ 0, which yields the following simple solution:

n ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
H

H0

� �2

þ
M

M0

� �2

�a
H

H0

� �
M

M0

� �
þ

V

V0

� �2
s

ð20Þ

where V0 ¼ Vc0 for V[ 0 and V0 ¼ Vt0 otherwise.

Taking n as a suitable measure of the distance of the

current loading state from the failure surface, we adopt the

following simple power law for the loading function Y:

YðtÞ ¼ nj ð21Þ

with j a material constant controlling the stiffness decay of

the model response upon monotonic loading paths at con-

stant g.

From a purely geometric point of view, the condition

f ðntÞ ¼ 0 can be interpreted as the definition of a loading

surface, homothetic to the failure surface FðtÞ ¼ 0, but of

smaller size:

f ðtÞ ¼
H

h0

� �2

þ
M

m0

� �2

�a
H

h0

� �
M

m0

� �

� 1þ HðVÞ
vt0

vc0

� �2

þHð�VÞ

( )
V

vt0

� �2

¼ 0 ð22Þ

with:

vc0 ¼ nVc0 �Vc0 vt0 ¼ nVt0 �Vt0

h0 ¼ nH0 �H0 m0 ¼ nM0 �M0

ð23Þ

A representation of the loading and failure surfaces in the

three-dimensional loading space is given in Fig. 2.This

geometrical interpretation suggests that, for all the

admissible loading states, the vector m can be defined as

the unit gradient to the loading surface:

m ¼
1

of

ot

����
����

����
����

of

ot
ð24Þ

Obviously, when n ¼ 1 the functions F and f coincide and

Eq. (24) provides the same result as Eq. (18).

The failure condition provided by Eq. (14) represents an

attractor for the evolution Eq. (16), so that for proportional

Fig. 1 Three-dimensional failure surface proposed by Li et al. [45],

plotted for Vt0 = 5100 kN; Vc0 = 25000 kN; H0 = 5000 kN; M0 = 0.42

� 105 kNm, and a = 1.5
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displacement paths the generalized load t will converge

toward it. However, this does not guarantee that, for

complex loading conditions, the loading path will never

cross it, reaching states with f [ 0 (or Y[ 1). In order to

overcome this problem, the following modification has

been introduced to the flow direction vector m in the

vicinity of the failure surface:

m ¼
v

vj jj j
v ¼ ½1�HsðY ; �Þ�mf þHsðY ; �Þ g ð25Þ

where g is the generalized velocity direction, mf is

provided by Eq. (18) and Hs is a smoothed Heaviside

step function defined as:

HsðY ; �Þ ¼

0 for Y � 1

1

2
1� cos

Y � 1

�
p

� �� �
for 1\Y � 1þ �

1 for Y[ 1þ �

8
>><
>>:

ð26Þ

with � a small regularizing coefficient. According to

Eq. (27), the flow direction m equals mf on the failure

surface, while for states characterized by Y � 1þ �; m is

set equal to g, thus forcing _t ’ 0 according to Eq. (16). A

linear interpolation between these two limits is adopted in

the region where Y 2 ð1; 1þ �Þ. A series of preliminary

numerical simulations has shown that a value of � ¼ 10�6

can be considered adequate in most circumstances.

2.5 Numerical implementation issues

The practical application of the hypoplastic macroelement

in the analysis of SFSI problems requires its implementa-

tion in a FE code as a user-defined element. In particular, a

fundamental task that the element routine has to address is

the numerical integration of the constitutive equations

Eqs. (5) and (8), for a given displacement history, in order

to compute the internal force vector at each global equi-

librium iteration.

In this work, the integration algorithm adopted is the

explicit, embedded Runge–Kutta scheme of the 3rd order

with adaptive substepping and error control proposed in [74]

for a hypoplastic macroelement for shallow footings. Let

½tn; tnþ1� be the time interval corresponding to a generic time

step, and letDunþ1 be the prescribed displacement increment

obtained from the solution of the global equilibrium equa-

tions at a given iteration. Due to the rate-independent char-

acter of the constitutive equations, the evolution problem

provided by Eqs. (5) and (8) can be recast in terms of the

following non-dimensional time measure:

T ¼
t � tn

tnþ1 � tn
¼

t � tn

Dtnþ1

so that :
d

dt
ð�Þ ¼

1

Dtnþ1

d

dT
ð�Þ

As the velocity _u is assumed constant during the time step,

the constitutive equations of the macroelement define the

following standard system of ODEs:

dx

dT
¼ FðxÞ where x :¼

t

d

� 	

and F :¼
bKDunþ1

cHDunþ1

( ) ð27Þ

The integration of Eq. (27)1 is performed using an adaptive

substepping strategy in which the normalized time step

[0, 1] is split into substeps DTkþ1 ¼ Tkþ1 � Tk such thatP
DTk ¼ 1. Let ~xkþ1 and x̂kþ1 be the solution at time Tkþ1

provided by 2nd- and 3rd-order explicit Runge–Kutta

schemes, respectively, and let:

Rkþ1: ¼
Rkþ1j jj j

x̂kþ1j jj j
with: Rkþ1: ¼ x̂kþ1 � ~xkþ1

be a measure of the relative difference between the two

solutions. For a prescribed error tolerance TOL, the

solutions obtained meet the required accuracy level if

Rkþ1\TOL. Thus, xkþ1 ¼ x̂kþ1 and the integration

procedure continues with a new substep. A new, larger

substep size is computed according to the following

extrapolation formula:

DTkþ2 ¼ min 0:9DTkþ1

TOL

Rkþ1

� �1=3

; 4DTkþ1 ; 1� Tk

( )

ð28Þ

If, on the contrary, Rkþ1 �TOL the substep is rejected and

a new, smaller substep size is computed according to the

following extrapolation formula:

Fig. 2 Loading and failure surfaces in the generalized loading space.

In the figure, a is the current loading state and b its image state on the

failure surface
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DTkþ1 max 0:9DTkþ1

TOL

Rkþ1

� �1=3

;
1

4
DTkþ1

( )
ð29Þ

From Eqs. (28) and (29), it is apparent that the extrapola-

tion to bigger substep sizes after an accepted substep is

limited to four times the initial value (or by the time

increment necessary to reach the final time station T ¼ 1),

while the reduction of substep size after a rejected substep

is limited to 25 % of the initial value.

The integration algorithm has been implemented in the

finite element Matlab toolbox FedeasLab [24], developed

at the University of California, Berkeley. This FE platform

has been used in all the simulations presented in the fol-

lowing Sects. 3, 4 and 5.

3 Calibration of macroelement constants

The hypoplastic macroelememt for a single pile is fully

characterized by the pile diameter d and 15 model con-

stants, collected in 4 groups as shown in Table 1. The first

group collects the four stiffness coefficients defining the

pseudo-elastic response of the system upon load reversal,

Equation (13); the second group is composed by the 5

constants entering in the definition of the failure surface,

Eq. (14); the third group is made by the loading function

constant j only, Eq. (21); and, finally, the fourth group

collects all the constants controlling the response of the

model under cyclic loading conditions, Eqs. (5)–(9).

In the following, we describe the calibration procedures

adopted for the particular problem of the single pile in sand

considered in the small-scale model tests performed by

Rosquoët [64] under artificial gravity at the centrifuge

facility of IFSTTAR Nantes. The pile geometry is illus-

trated in Fig. 3. At the prototype scale, the tested pile has

an embedded length L = 13 m; a diameter d = 0.72 m; a

stiffness Ep = 3.8�104 MPa, and a bending stiffness EpIp ¼

2638 � 106 Nm2. The soil in which the pile is immersed is

a homogeneous dry Fontainebleau sand (NE34) layer, with

a unit weight c = 16.30 kN/m3 and a relative density Dr =

86 %.

Two different calibration strategies have been

considered:

(a) calibration based on 3d FE simulations and experi-

mental results from Rosquoët [64] cyclic loading tests

(Sect. 3.1); and

(b) calibration based on empirical correlations

(Sect. 3.2).

In both cases, the performance of the macroelement is

validated using experimental results obtained in a new

series of centrifuge tests (see Sect. 4).

3.1 Calibration based on 3d FE simulations

and experimental results

In this approach, the results of a series of 3d FE simulations

of the soil-pile behavior is used to obtain information on

the different macroelement constants. Figure 4 shows the

FE model adopted in the simulations of Rosquoët tests. The

load on the pile head is applied in the X direction. Thus, the

Z = const. plane containing the pile axis is a plane of

symmetry. The bottom of the soil layer is modeled as a

rigid, perfectly rough plane (u = 0). Zero normal dis-

placements and tangential tractions have been imposed on

the remaining (fictitious) lateral boundaries of the soil

volume.

In the simulations, two different constitutive models

have been used for the soil: a linear elastic, isotropic model

with (small-strain) shear modulus G0 varying with depth

according to Hardin’s empirical equation [39], and the

hypoplastic model for sand proposed by von Wolffersdorff

[78], in the cyclic loading version with intergranular strain

proposed in [56]. The Abaqus implementation of von

Wolffersdorff model freely available in the Soilmodels

Project website [37] has been used in this work. The elastic

model has been used to characterize the pseudo-elastic

response of the macroelement upon unloading, while the

fully inelastic hypoplastic model has been used to charac-

terize the failure locus of the pile-soil system and the

stiffness degradation properties of the model.

Table 1 Summary of hypoplastic macroelement constants

Constant Description Group

kvv Vertical stiffness Pseudo-elastic stiffness

khh Horizontal stiffness

kmm Rotational stiffness

khm Coupled translation-

rotation stiffness

H0 Limit horizontal load Failure surface

M0 Limit bending moment

Vc0 Axial bearing capacity

(compr.)

Vt0 Axial bearing capacity

(tens.)

a H vs. (M/d) coupling

coefficient

j Loading function constant Stiffness degradation

mR Stiffness at load reversal

point

Cyclic behavior (internal

displacement)

mT Stiffness when neutral

loading

R Range of linearity

br Rate of evolution of IS

v Transition of stiffness
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The hypoplastic constitutive model has been calibrated

using triaxial test results on Fontainebleau sand from

ref. [1]. The values of the material constants thus deter-

mined are reported in Table 2, see [44] for the details of the

calibration process. A comparison between the experi-

mentally observed behavior of Fountainebleau sand and the

hypoplastic model predictions under drained TX com-

pression at different confining pressures is reported in

Fig. 5, which shows a very good agreement between pre-

dictions and measurements at the local representative ele-

mentary volume (REV) level. The comparison between the

numerical prediction of the pile head horizontal displace-

ments in a horizontal cyclic loading test—shown in

Fig. 6—demonstrates that the good predictive capabilities

of the continuum hypoplastic model carry over to the

boundary value problem level as well, even for cyclic

loading conditions.

The constants Vc0, Vt0, H0 and M0—representing the

bearing capacity of the pile for pure vertical (compression

and extension), horizontal and bending loads, respectively,

and the H:(M/d) coupling coefficient a—have been deter-

mined from the extensive program of loading tests con-

ducted by Li et al. [45] with the 3d FE model to investigate

the failure condition of the pile-soil system under general

three-dimensional loading conditions. The corresponding

values are listed in Table 4.

The pseudo-elastic stiffness coefficients have been

evaluated from the response of the pile-soil system to the

following simple loading conditions:

Sand

D

1.6 m

F

Fig. 3 Geometric layout of cyclic loading tests on a single vertical

pile by Rosquoët [64]

Fig. 4 Finite element model adopted in the macroelement calibration

Table 2 Material constants of von Wolffersdorff model for Foun-

tainebleau sand

Constant Description Value

/ Critical state friction angle (deg.) 31.6

hs Granular hardness (MPa) 4800

n Exponent of limiting void ratio curves (–) 0.29

ed0 Reference minimum void ratio (–) 0.37

ec0 Reference critical void ratio (–) 0.88

ei0 Reference maximum void ratio (–) 0.99

a Dependency of peak friction (–) 0.24

b Dependency of soil stiffness (–) 1.97

mR Intergranular strain constants (–) 5.0

mT 2.0

ruc 1.e-4

br 0.8

v 6.0
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(a) the horizontal khh and coupling khm stiffness compo-

nents are obtained by applying a small horizontal

displacement on the pile head while keeping its

rotation fixed (Fig. 7a);

(b) the bending kmm and coupling kmh stiffness coeffi-

cients are obtained by applying a small rotation on the

pile head while keeping the horizontal displacement

fixed (Fig. 7b). The quantities khm and kmh are

identical in the pseudo-elastic regime;

(c) the axial stiffness coefficient kvv is obtained by

applying a small vertical displacement on the pile-

head.

In running these calibration simulations, both the elastic

and the von Wolffersdorff models have been adopted for

the sand, obtaining substantially identical stiffness con-

stants, as long as the von Wolffersdorff model remains in

the pseudo-elastic range within the entire soil mass. The

values adopted for the 3 stiffness constants are reported in

Table 4.

For the calibration of the loading function constant j, a

single 3d FE simulation of a purely horizontal loading path

has been carried out to provide the load-displacement

response of the system for a large range of applied dis-

placements (umax = 1.0 m). The results obtained are shown

in Fig. 8, in the H:u plane. The results of a series of

macroelement simulations for the same loading path and

different values of j are shown in the same figure. The

comparison between the load-displacement curve obtained

in the 3d FE simulation and the macroelement prediction

indicate an optimum value for j = 1.2. Note that, for the

monotonic character of the loading path and the magnitude

of the imposed maximum displacements, the constants mR,

mT , R, br and v, controlling the cyclic macroelement

response, have no effect on the computed results, except

for the initial part of the loading path.

The remaining constants, related to the cyclic response

of the pile-soil system, have been calibrated by comparing

the macroelement predictions directly with the experi-

mental data from a cyclic horizontal loading test provided

by Rosquoët [64], using a trial and error procedure to find

the optimum set of values. This task is facilitated by the

fact that the macroelement response is not so sensitive to

the constants br and v. The size R of the pseudo-elastic

domain in the generalized displacement space can be

guessed from the lenght of the quasi-linear portion of the

load-displacement curves upon unloading or reloading,

(a)

(b)

Fig. 5 Comparison of TX-CD test results of Andria–Ntoanina

et al. [1] on Fontainebleau sand (NE34) and von Wolffersdorff

hypoplastic model predictions, for different confining stresses:

a deviatoric stress versus axial strain; b volumetric strain versus

axial strain

Fig. 6 FEM model with the von Wolffersdorff hypoplastic law and

Rosquoët’s cyclic tests on a lateral loaded pile [64]

Fig. 7 Loading conditions adopted in the FE model to determine the

stiffness coefficients khh, kmm and khm
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while the constants mR and mT affect the ratio between the

system stiffness under reverse or tangential loading and

continued loading conditions. The values adopted for the 5

cyclic loading constants of the macroelement are reported

in Table 4. The comparison between experimental results

and macroelement response for Rosquoët cyclic loading

test is shown in Fig. 9.

3.2 Calibration using empirical equations

The procedure described in the previous Sect. 3.1 repre-

sents the ‘‘optimal’’ strategy for the calibration of the

macroelement constants when some experimental data

concerning the prototype response are available and a full

3d, non-linear finite element model of the soil-pile system

can be used to run additional numerical tests (under

monotonic conditions) to provide information on relevant

aspects of the system response.

However, this procedure is both expensive from the

experimental point of view and computationally quite

demanding. Therefore it can be adopted only in cases

where the importance of the project justifies the efforts. In

this respect, it is interesting to explore the possibility that

(at least) some of the macroelement constants could be

deduced from empirical correlations deriving from decades

of experience in the design of piled foundations in sandy

soils. This is the main goal of this section.

As far as the failure locus of the macroelement is con-

cerned, the constants H0, M0 and V0 can be estimated using

the formulas introduced by Meyerhof and his co-workers

[49, 52]. In particular, the failure loads for pure horizontal

loading, H0, and pure bending, M0, are given by [52]:

H0 ¼ 0:12 cdL2eKb M0 ¼ 0:09 cdL3eKb ð30Þ

where c is the soil unit weight; Le the effective embedded

length of the (flexible) pile, and Kb the net lateral pressure

coefficient. The last two quantities are related to the

empbedded pile length L, its relative bending stiffness and

the soil peak friction angle by the following relations [48,

50]:

Le

L
¼ fu

EpIp

Esd4

� �0:12

Kb ¼ ð1� sin/pÞNqð/pÞ ð31Þ

In Eq. (31), fu is a dimensionless factor, equal to 1.65 for

sand soils; Es the average (secant) Young modulus of the

soil along the pile lenght (assumed equal to 52.0 MPa); /p

the sand peak friction angle (assumed equal to 39	), and Nq

the bearing capacity factor proposed by Meyerhof [51],

which for the given value of the peak friction angle is

approximately equal to 110.

For a dry soil, the ultimate vertical bearing capacity of

the pile in compression, Vc0, and in tension, Vt0, is given by

[52]:

Vc0 ¼ cLNq


 �
Ab þ

1

2
cLKs tan d

� �
As

Vt0 ¼
1

2
cLKs tan d

� �
As

ð32Þ

where: Ap ¼ pd2=4 and As ¼ pdL are the pile base area and

the lateral shaft surface, respectively; Ks is the average

coefficient of earth pressure on the shaft, assumed equal to

0.5; and d is the friction angle at the soil-pile interface,

assumed equal to 27	.

It is worth noting that different values of H0 can be

calculated if the collapse mechanism for horizontal load is

characterized by the formation of a plastic hinge along the

pile shaft—see, e.g., Eurocode 7 [21]. However, since in

Rosquoët tests the pile remained always elastic, this pos-

sibility has not been considered.

Fig. 8 Comparison between FE prediction of monotonic horizontal

loading path (red dashed curve) and macroelement response for

different values of j (solid curves)

Fig. 9 Comparison between experimental results and macroelement

response for cyclic horizontal loading test. Data from Rosquoët [64]
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The stiffness parameters khh, kmm and khm can be eval-

uated using the formulas proposed by Gazetas [28] or those

reported in Eurocode 8–5 [22], listed in Table 3. In the

table, the soil profile considered is non-homogeneous, with

the Young modulus of the soil Es increasing with the

square root of depth z. The reference value Esd represents

the value of Es at z ¼ d, and in this case has been assumed

equal to 81 MPa. The vertical stiffness kvv is evaluated

from the finite element calculations presented in Sect. 3.1.

The values of the constants controlling the failure sur-

face and the pseudo-elastic stiffness of the macroelement

derived from Eqs. (30)–(32) and the formulas of Table 3

are summarized in Table 4. The empirical equations do not

provide any information concerning the coupling coeffi-

cient a appearing in the expression of the failure surface,

Eq. (14), or for the constants controlling the evolution of

the internal displacement—and thus the macroelement

behavior under cyclic loading. Therefore, the values

obtained from the calibration procedure (a) have been

retained for these quantities. In this respect, it is worth

noting that the constant a—which controls the shape of the

failure locus, not its size—is not likely to be affected by

such system properties as pile length and diameter, soil

strength and pile relative stiffness as the other failure-re-

lated constants Va0, H0 and M0, and choosing a value a =

1.5 as a first approximation could be sufficiently accurate

in most cases. Moreover, as discussed at the end of the

previous Sect. 3.2, it is not difficult to estimate the con-

stants controlling the cyclic behavior from the results of a

cyclic horizontal loading test, a type of in-situ loading test

which is relatively easy to perform and not too expensive.

By comparing the results of the two calibration procedures

shown in Table 4, it can be observed that the simplified

Eqs. (30)–(32) may lead to a significant underestimation of

Vc0 and Vt0 and, to a lesser extent, of M0. This is due to the

uncertainties related to the proper choice of the friction

angle d and the coefficient of earth pressure Ks at the pile-

soil interface, and of the bearing capacity factor Nq, which

reflects also on the computed value of M0 via Eq. (31)2. As

for the pseudo-elastic stiffness coefficients, the main dif-

ference observed in the results of the two calibration pro-

cedures are in the large underestimation of the bending

stiffness kmm and of the coupling coefficient khm provided

by the formulas of Table 3. Since the constant khh provided

by the same source is slightly higher than the one obtained

via 3d FE simulations, this limitation of Eurocode 8–5

formulas is likely to be due to the inadequacy of the linear

elastic, inhomogenoeus soil model for the particular

problem at hand, rather than to the inappropriate choice of

the reference modulus Esd.

4 Macroelement validation

In the following, the predictive capabilities of the proposed

macroelement for single piles in sand are assessed by

comparing its predictions with the observed behavior for

two additional cyclic horizontal loading tests from Ros-

quoët [64]—hereafter referred to as ‘‘Validation Test 1’’

and ‘‘Validation Test 2’’—not previously used for the

macroelement calibration. The two tests have been per-

formed using the same small-scale pile model under arti-

ficial gravity, and the same foundation soil.

The two tests considered differ for the applied loading

program: in Validation Test 1, a one-way horizontal cyclic

horizontal load with Hmin = 720 kN and Hmax = 960 kN has

been applied; in Validation Test 2, a fully symmetric, two-

way horizontal cyclic load has been imposed, with Hmax =

�Hmin = 960 kN, see [64] for details.

In the macroelement simulations, both sets of model

constants reported in Table 4 have been adopted, to assess

the level of accuracy which can be achieved using both

‘‘optimal’’ and ‘‘approximate’’ calibration procedures.

Table 3 Stiffness coefficients for a flexible pile embedded in sand

provided by Eurocode 8–5 [22]

Soil model khh

dEsd

kmm

dEsd

khm

dEsd

(*)

Es ¼ Esd

ffiffiffi
z

d

r
0:79

Ep

Esd

� �0:28

0:15
Ep

Esd

� �0:77

0:24
Ep

Esd

� �0:53

(*) The sign of the coupling stiffness coefficient is opposite from the

original value in Eurocode 8–5

Table 4 Hypoplastic macroelement constants calibrated with the

procedures (a) and (b) outlined in Sects. 3.1 and 3.2

Constant Calibration (a)

see Sect. 3.1

Calibration (b)

see Sect. 3.2

H0 (kN) 0.50� 104 0.38� 104

M0 (kNm) 0.45� 105 0.24� 105

Vc0 (kN) 2.50� 104 0.96� 104

Vt0 (kN) 0.50� 104 0.79� 103

a (–) 1.50

kv (kN/m) 1.45� 105 1.45� 105

khh (kN/m) 2.39� 105 2.58� 105

kmm (kN/m) 3.70� 106 1.01� 106

khm (kN/m) 8.03� 105 3.75� 105

j (–) 1.2

mR (–) 5.0

mT (–) 2.0

R (–) 6.0� 10�3

br (–) 0.5

v (–) 0.5
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4.1 Macroelement performance with calibration

procedure (a)

The comparison between the experimentally observed

response of the pile-soil system and the macroelement

performance—when calibration procedure (a) is adop-

ted—is shown in Fig. 10 for Validation Test 1, and in

Fig. 11 for Validation Test 2. From the results shown in

both figures it is apparent that the macroelement is

capable of reproducing quite well the observed response

of the pile-soil system for both one and two-way cyclic

loading conditions. In particular, the coupling between

horizontal and bending responses is correctly captured

under monotonic loading conditions. The only signifi-

cant difference between test results and model predic-

tions is in the underestimation of accumulated permanent

rotations in Validation Test 1 (see Fig. 10c). This is a

consequence of the simplifying hypothesis of ‘‘associa-

tive’’ behavior of the macroelement, and could be cor-

rected by using a slightly different potential function in

place of f in Eq. (22).

4.2 Macroelement performance with calibration

procedure (b)

The comparison between the experimentally observed

response of the pile-soil system and the macroelement

performance—when calibration procedure (b) is adopted—

is shown in Fig. 12 for Validation Test 1, and in Fig. 13 for

Validation Test 2. In this case, the objective of the com-

parison is to assess the impact of the simplified calibration

procedure on the quality of the predictions.

The substantially good performance shown by the

macroelement for both Validation Tests clearly indicate

that—in this case—the underestimation of the vertical and

bending collapse loads, Vc0 and M0, has only a minor

impact on the quality of the macroelement predictions. The

only relevant discrepancy between predictions and mea-

surements found in this second series of simulations refers

to the overestimation of the pile head rotations associated

to its horizontal displacements (Figs. 12c, 13c). As the

phenomenon is apparent in both the monotonic and the

cyclic stages of the simulations, its cause is to be attributed

mainly to the underestimation of the coupling stiffness

coefficient khm provided by the Eurocode 8–5 formulas.

(a) (b)

(c)

Fig. 10 Validation Test 1 with one-way loading: macroelement

predictions using model constants from calibration procedure (a) and

experimental results after [64]. a horizontal load versus number of

steps; b horizontal force versus horizontal displacement at pile head;

c rotation versus horizontal displacement at pile head

(a) (b)

(c)

Fig. 11 Validation Test 2 with two-way loading: macroelement

predictions using model constants from calibration procedure (a) and

experimental results after [64]. a horizontal load vs. number of steps;

b horizontal force versus horizontal displacement at pile head;

c rotation versus horizontal displacement at pile head
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In spite of this limitation, the results of the validation

exercise for the macroelement calibrated with the simpli-

fied procedures outlined in Sect. 3.2 can be considered

quite satisfactory, in view of the potential application of the

model in full SFSI analyses aimed at performance-based

design of engineering structures.

5 Applicability to piles in layered soil profiles

Strictly speaking, the proposed hypoplastic macroelement

is formulated for a single pile embedded in a homogeneous

soil layer. However, some studies [29, 31] show that in

piles subject to lateral loading, only a relatively small

upper portion of the pile—called ‘‘active length’’—signif-

icantly affects the pile response. For example, Gazetas and

Dobry [29] point out that piles do not deform over their

entire length: below the active length deflections, shear

loads and bending moments become negligible.

Based on these observations, it might be tempting to

extend the range of applicability of the proposed

macroelement formulation to single piles in layered soils,

provided that the applied loading at the pile head is mainly

composed by a horizontal load increment and/or a bending

moment increment, and that the soil profile is homoge-

neous within the entire active length of the pile.

To explore this possibility, an additional series of

parametric FE simulations have been carried out with the

FE model shown in Figure 14, to identify the active length

for the problem examined in Sects. 3 and 4. In this model,

a single pile identical to the one considered in previous

Sects. 3 and 4 is embedded in a two-layer soil mass. The

upper layer—modeled with the von Wolffersdorff

hypoplastic model—has the properties of Fountainebleau

sand. The lower layer is considered as isotropic and linear

elastic, and is characterized by a Young’s modulus Es2 =

280.0 MPa, and a Poisson’s ratio ms2 = 0.25.

In the parametric study, different monotonic horizontal

load tests have been carried out considering different ratios

g ¼ H1=H 2 ½0; 1�, where H is the depth to the bottom rigid

boundary, and H1 is the thickness of the upper hypoplastic

layer. The horizontal load versus horizontal deflection

curves obtained for different values of g are shown in

Fig. 15. From the results reported in the figure, it is clear

that the pile-soil response is unaffected by a non-

(a) (b)

(c)

Fig. 12 Validation Test 1 with one-way loading: macroelement

predictions using model constants from calibration procedure (b) and

experimental results after [64]. a horizontal load versus number of

steps; b horizontal force versus horizontal displacement at pile head;

c rotation versus horizontal displacement at pile head

(a) (b)

(c)

Fig. 13 Validation Test 2 with two-way loading: macroelement

predictions using model constants from calibration procedure (b) and

experimental results after [64]. a horizontal load versus number of

steps; b horizontal force versus horizontal displacement at pile head;

c rotation versus horizontal displacement at pile head

14



homogeneous soil profile if, for the case at hand, g is equal

or larger than 0.39. This figure corresponds to a thickness

of the upper layer of 6.53 m, that is, to an active length of

about 50 % of the pile length L.

A situation in which the soil can be considered as

homogeneous for at least the upper 50 % of the pile length

is not unusual in end-bearing piles, where the pile is driven

(or bored) for a significant part of its length through soft,

often quite homogeneous, soils to reach a deeper, much

stronger and stiffer layer.

6 Conclusions

In this paper a novel hypoplastic macroelement for single

vertical piles in sand has been presented, with the objective

of providing a simple, efficient and yet accurate tool for the

modeling of complex SFSI problems characterized by

cyclic/dynamic loading conditions. Inspired by the work of

Salciarini and Tamagnini for shallow foundations [68], the

macroelement has been developed, in the generalized load/

displacement setup, from the basic principles of the theory

of hypoplasticity. In particular, the failure locus obtained

by Li et al. [45] is a key ingredient in the formulation of the

rate-type, incrementally non-linear constitutive equations.

The introduction of a suitable displacement-like internal

variable—the internal displacement—provides the model

sufficient memory of past loading history to allow the

modeling of the pile-soil system response for both mono-

tonic and cyclic/dynamic loading conditions, although the

failure surface might be slightly overpassed for specific

loading conditions.

The important issue of the calibration of the constants

defining the macroelement properties has been addressed in

detail, presenting two possible calibration strategies. The

first based on the combined use of experimental results

from monotonic and cyclic loading tests, and advanced 3d

FE simulations of monotonic loading conditions; the sec-

ond exploiting the available knowledge of the failure and

deformation behavior of single piles in sand to obtain most

of the macroelement constants via simplified design

formulas.

The excellent comparison between the macroelement

predictions and the observed response in two different

validation tests—with one-way and two-way cyclic loading

programs—indicates that the proposed approach is capable

of reproducing the pile-soil system behavior with the same

level of accuracy of advanced non-linear 3d FE simula-

tions, but with a dramatic reduction of the computational

cost. This is particularly important for practical applica-

tions in which the foundation is subjected to a large number

of cycles, such as, for example, performance-based earth-

quake design of structures or offshore enginering

applications.

The relatively good performance shown by the

macroelement even when calibrated using the simplified

approach indicates that superior performance with respect

to classical methods (like, for example, the BNWF

approach) could be obtained without the need to consider

expensive and relatively time-consuming calibration pro-

cedures. However, some attention has to be paid to the

accurate characterization of the axial bearing capacity of

the pile and of the ‘‘elastic’’ coupling stiffness coefficient

khm.

Finally, the range of application of the proposed

macroelement can be extended to piles in non-homoge-

neous soils if the pile is subjected mainly to horizontal load

and/or bending moment increments at the pile head, and

the soil is homogeneous within the active length of the pile.

For the particular case considered in this study, a series of

3d FE results indicate that the active length of the pile is

approximately 50 % of the embedded pile length.
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d’analyse des structures de Génie Civil par macro-éléments
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