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Since Dicke’s seminal paper on coherence in spontaneous radiation by atomic ensembles, superradiance has

been extensively studied. Subradiance, on the contrary, has remained elusive, mainly because subradiant states

are weakly coupled to the environment and are very sensitive to nonradiative decoherence processes. Here we

report the direct observation of subradiance in an extended and dilute cold-atom sample containing a large

number of particles. We use a far detuned laser to avoid multiple scattering and observe the temporal decay

after a sudden switch-off of the laser beam. After the fast decay of most of the fluorescence, we detect a very slow

decay, with time constants as long as 100 times the natural lifetime of the excited state of individual atoms. This

subradiant time constant scales linearly with the cooperativity parameter, corresponding to the on-resonance op-

tical thickness of the sample, and is independent of the laser detuning, as expected from a coupled-dipole model.

Despite its many applications, ranging from astro-
physics [1] to mesoscopic physics [2, 3] and quantum in-
formation technology [4], light interacting with a large
ensemble of N scatterers still bears many surprising
features and is at the focus of intense research. For
N = 2 atoms placed close together, the in-phase oscilla-
tion of the induced dipoles produces a large, superradiant
dipole, whereas the out-of-phase oscillation corresponds
to a subradiant quadrupole. Generalizing for N ≫ 2,
Dicke has shown that, for samples of size small com-
pared to the wavelength of the atomic transition, the
symmetric superposition of atomic states induces super-
radiant emission, scaling with the number of particles
N , whereas the antisymmetric superpositions are decou-
pled from the environment, with vanishing emission rates
(subradiance) [5].
Dicke superradiance has been extensively studied in

the 1970s [6–8] but the observation of its counterpart,
subradiance, has been restricted to indirect evidence of
modified decay rates in one particular direction [9] or in
systems of two particles at very short distance [10, 11].
One challenge for the observation of subradiance by a
large number of particles is the fragile nature of these
states, which require protection from any local non-
radiative decay mechanism [12]. Furthermore, contrary
to the two-atom case, for which the distance between
atoms has to be small compared to the wavelength, for
N ≫ 2, the retarded, long-range resonant dipole-dipole
interaction [13] gives rise to super- and subradiant effects
(‘cooperative scattering’) also in dilute samples, with in-
teratomic distances much larger than the wavelength,
and corresponding large system sizes. As for N > 2,
the Hamiltonians for short and long-range interactions
do not commute, the collective eigenstates due to the
long-range interactions are suppressed by short-range in-
teractions [8]. These short-range or near-field effects (or
‘van der Waals dephasing’) thus need to be avoided in
this case. As a consequence, a large and dilute sample of

interacting dipoles is the most appropriate for the obser-
vation of subradiance.
In this regime, and in the weak excitation limit

(‘single-photon superradiance’) [1, 15, 16], it has been
shown that the superradiant enhancement of the emis-
sion rate scales as the cooperativity parameter N/M ,
where M is the number of available modes for the elec-
tromagnetic radiation [2, 3, 19, 20]. For a spherical sam-
ple of radius R, M ∼ (k0R)

2, where k0 = 2π/λ, this
cooperativity parameter is proportional to the peak on-
resonant optical depth of the atomic cloud, given by
b0 = 3N/(k0R)

2 for a cold-atom cloud with a Gaus-
sian density distribution of r.m.s. radius R. In a recent
work [7], we have used a coupled-dipole model to general-
ize this result to subradiance (see also the Supplemental
Material [22]). In this letter, we report the experimen-
tal observation of subradiance in this weak-excitation,
dilute- and extended-sample limit.
In our experiment, we load N ≈ 109 87Rb atoms from

a background vapour into a magneto-optical trap (MOT)
for 50 ms. A compressed MOT (30 ms) period allows for
an increased and smooth spatial density of r.m.s. size
R ≈ 1 mm and a reduced temperature T ≈ 50 µK.
We then switch off the MOT trapping beams and mag-
netic field gradient and allow for 3 ms of free expansion,
used to optically pump all atoms into the upper hyper-
fine ground state F = 2. We then apply a series of 12
pulses of a weak probe beam (waist w = 5.7 mm), lin-
early polarized and detuned by δ = (ω−ω0)/Γ from the
closed atomic transition F = 2 → F ′ = 3. Here ω is the
frequency of the laser, ω0 the frequency of the atomic
transition (of wavelength λ = 2πc/ω0 = 780.24 nm)
and Γ/2π = 6.07 MHz its linewidth. Note that when
we varied the detuning, we also varied the laser inten-
sity accordingly in order to keep the saturation param-
eter constant at s ≃ 4.5 × 10−2. The pulses of dura-
tion 30 µs and separated by 1 ms are obtained by us-
ing two acousto-optical modulators (AOMs) in series to
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Fig. 1. (color online). Principle of the experiment. A
large probe laser illuminates the atomic sample for 30 µs
and is switched off rapidly. The fluorescence at ∼ 35◦

is collected by a hybrid photomultiplier (HPM) and
recorded on a multi-channel scaler (MCS). The exper-
iment is repeated 500000 times. At each cycle, 12 pulses
are recorded during the free expansion of the cloud, al-
lowing the on-resonance optical depth to vary.

reach an extinction ratio better than 10−4. The falltime
at the switch-off is ∼ 15 ns, limiting the possibility to
study superradiance, but convenient for detecting sub-
radiance. Between subsequent pulses of each series, the
size of the cloud increases because of thermal expan-
sion, and the atom number decreases due to off resonant
optical pumping into the F = 1 hyperfine state during
each pulse. The corresponding change of the on-resonant
optical depth b0 allows us to conveniently measure the
decay of the fluorescence as a function of b0 and inves-
tigate if b0 is the relevant scaling parameter [22]. After
this stage of expansion and measurement, the MOT is
switched on again and most of the atoms are recaptured.
The complete cycle is thus short enough to allow the sig-
nal integration over a large number of cycles, typically
∼ 500000 (complete acquisition time ∼ 14h per run).
The scattering of the probe beam is collected by a lens
with a solid angle of ∼ 5 × 10−2 sr at θ ≈ 35◦ from the
incident direction of the laser beam (Fig. 1). We use a
hybrid photomultiplier (Hamamatsu HPM R10467U-50)
in the photon-counting regime, without any measurable
amount of afterpulsing, which would considerably mask
signatures of subradiance. The signal is then recorded on
a multichannel scaler (MCS6A by FAST ComTec) with
a time bin of 1.6 ns, averaging over the cycles. The co-
operativity parameter b0 corresponding to each pulse is
calibrated by an independent measurement of the atom
number, cloud size and temperature using absorption
imaging [22].
Typical data are shown in Fig. 2. The signal is normal-

ized to the steady-state fluorescence level and we focus
on the switch-off period to highlight the slow fluorescence
decay. In Fig. 2a, the detuning δ of the probe beam is
kept constant and the different decay curves correspond
to different values of b0, obtained in a single run. On
the contrary, Fig. 2b shows data taken with different de-

tunings but for the same b0. In both cases, most of the
fluorescence decays fast (note the logarithmic scale of the
vertical axis), but a slow decay is clearly seen well above
the noise floor (slightly below 10−4). We stress that flu-
orescence can be detected at very large delays, as can be
seen from the time axis, in units of τat = Γ−1 = 26 ns.
We attribute this slow decay to subradiance in the single-
photon (or weak excitation) regime, as predicted in [7].
A qualitative analysis of the two figures clearly show

different behaviours. As b0 is varied, the slow decay rate
changes, whereas its relative amplitude stays approxi-
mately the same. The exact opposite happens when we
change the detuning, keeping b0 fixed. For a quantita-
tive analysis, we fit the slow tail at long delays by an
exponential decay with two free parameters: the time
constant τsub and its relative amplitude Asub [22]. We
systematically studied how these parameters depend on
b0 and δ. The result of this analysis is presented in Fig. 3.
In Fig. 3a we plot the subradiant time constant as a
function of b0 for different detunings. The collapse of all
points on a same curve clearly indicates that the slow
decay rate does not depend on the detuning (see also
Fig. 3b). This demonstrates that this slow decay is not
a multiple-scattering effect, such as radiation trapping
previously observed [13], which depends on the optical
depth at the laser frequency b(δ) ∝ b0/(1 + 4δ2), with
a strong dependance on δ. We note that in contrast to
initial expectation, signatures of radiation trapping for
small detunings, where b(δ) ≫ 1, do not appear in this
analysis. We attribute this absence to the fact that the
subradiance decay dominates the fit of the slowest mea-
surable time constant.The second feature in Fig. 3a is the
linear increase of τsub with b0, up to time constants as
long as τsub ∼ 100τat. This is perfectly consistent with
the predictions of the coupled-dipole model for subra-
diance [22]. We note that for large negative detunings,
one has to take into account the variation of b0 during
the pulse series induced by both the cloud expansion to-
gether with a significant contribution of atom losses by
off-resonant hyperfine pumping. This allowed us to test
different combinations of N and R as scaling parame-
ters (see Fig. 2 of the Supplemental Material [22]). The
comparison showed that the best collapse has been ob-
tained with N/R2 ∝ b0 as the scaling parameter, which
demonstrates that b0 is indeed the relevant cooperativity
parameter in the regime of dilute and extended sample.
Finally, we show in Fig. 3c the slow decay relative ampli-
tude Asub. As already seen in Fig. 2b, this amplitude is
much larger near resonance, and seems to reach a plateau
for large detunings. This is also in line with the coupled-
dipole model, in which the weight of the long-lived modes
are enhanced near resonance and the weight of all col-
lective modes becomes independent of the detuning at
large detuning.
We have also studied the effect of the probe intensity

and checked that, at low saturation parameter, the ob-
served subradiance is independent of the intensity (Fig.
3 of the Supplemental Material [22]), which validates the

2



t/τat t/τat

P
/P

(0
)

P
/P

(0
)

0 50 100 150 200 250 300 350 400 450 500
10

-5

10
-4

10
-3

10
-2

10
-1

10
0

δ=0

δ=-1

δ=-3

δ=-5

(a) (b)

0 50 100 150 200 250 300 350
10

-5

10
-4

10
-3

10
-2

10
-1

10
0

b0=101

b0=57

b0=33

b0=19

Fig. 2. (color online). Slow decay of the fluorescence after switching off the probe laser. The vertical scale is normalized
by the steady-state detected power P (0) and the time scale is normalized by the atomic lifetime of the excited state
τat. Without any collective effect (single-atom physics), the decay would be given by P (t) = P (0) exp(−t/τat) (black
dotted line). (a) Several data are shown for different on-resonance optical depths b0 and the same detuning δ = −6
(in units of Γ). The time constant increases with b0. (b) Several data are shown for different detunings and the same
b0 = 108± 5. The time constant remains unchanged but the relative amplitude of the subradiant decay decreases as
the detuning increases.

use of the coupled-dipole model in the weak-excitation
limit. We finally also excluded the possibility that resid-
ual near-resonant light might always be present and in-
duce a slow decay due to radiation trapping, thus mim-
icking off-resonant subradiance [22].
To summarize, we have presented the first direct sig-

natures of subradiance in a large system of resonant
scatterers. We have shown that in the regime of dilute
and extended samples, the subradiant decay rate is gov-
erned by a cooperativity parameter defined as the ratio
of the number of scatterers and the sample size squared,
which conveniently corresponds to the on-resonance op-
tical depth. This observation of subradiance opens in-
teresting questions, including the robustness of subradi-
ance against decoherence mechanisms or the possibility
to control the population of the subradiant modes by
an appropriate temporal or spatial shaping of the driv-
ing laser or of the atomic levels. If the subradiant states
can be manipulated with sufficient control [24], their iso-
lation from the environment might be exploited as a
resource for quantum information or quantum metrol-
ogy [25]. As subradiance goes hand in hand with super-
radiance, simultaneous recording of fast and slow decays
would be a beautiful illustration of cooperative scatte-
ring as envisioned by Dicke. By using a stronger laser
drive, it would also be possible to access a larger sub-
space of the full Hilbert space, addressing the possibility
of a photon-blockade effect [26].
Beside quantum optics, our observation is also relevant

to mesoscopic physics [27,28], a community less familiar
with Dicke physics. One major challenge in this field is
the observation of strong localization of light, the anal-
ogy for classical waves of Anderson localization of elec-
trons [29]. Previous experimental observations of light
lifetimes longer than predicted by the diffusion equation

have been claimed to be signatures of Anderson localiza-
tion [30], but this interpretation is still debated [31]. Sim-
ilarly, recent numerical simulations considering point-like
dipole scatterers (atoms) study the collective modes of
the system effective Hamiltonian and in particular their
lifetimes [11, 12, 32, 35]. Our work show that Dicke sub-
radiance can also be at the origin of very long lifetimes
and careful analysis is required to distinguish subradiant
from localized modes. Finally, the combination of sub-
radiance with disorder acting on the atomic transitions
might provide an alternative route to strong localization
of light, as recently suggested [36].
We acknowledge fruitful discussions with Nicola Pi-

ovella, Tom Bienaimé, Romain Bachelard, Guillaume
Labeyrie, Dominique Delande and technical help from
Louis Bellando, Ivor Kresic, Löıc Lavenu, Antoine Dus-
saux and thank Alain Aspect for his constructive com-
ments on the manuscript. We also acknowledge finan-
cial support from the French Agence National pour
la Recherche (project LOVE, No. ANR-14-CE26-0032),
the Brazilian Coordenação de Aperfeiçoamento de Pes-
soal de Nı́vel Superior (CAPES), the Brazilian Conselho
Nacional de Desenvolvimento Cient́ıfico e Tecnológico
(project PVE No. 303426/2014-4), and the European
Research Executive Agency (program COSCALI, No.
PIRSES-GA-2010-268717).
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16. R. Röhlsberger, K. Schlage, B. Sahoo, S. Couet, and R.
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Supplemental Material

1. Experimental details

A. Calibration of b0.

As we cannot measure b0 simultaneously to the data
acquisition, the calibration is done in a separate time
sequence, using absorption imaging, requiring a longer
cycle without recapture of the atoms. We therefore in-
crease the loading time of the MOT such that the fluo-
rescence of the probe beam measured at large detuning
is the same as in the measurement cycle, all other pa-
rameters being unchanged. The absorption images then
provide the transverse profile of the probe transmission
T , which is related to the optical depth by T (x, y) =
exp[−b′(x, y)], where

b′(δ) = C
b0

1 + 4δ2
, (1)

with δ the probe detuning and C = 7/15 is the average
Clebsch-Gordan coefficient of the transition for a statisti-
cal mixture of the Zeeman substates. We use a Gaussian
fit for b′(x, y) and extract the r.m.s. size R directly from
the fit, as well as b0 from the amplitude of the Gaus-
sian fit and the atom number N from its integral. This
is done for different values for the time of flight of ballis-
tic expansion, from which we extract the temperature,
allowing us to know the sizes of the atomic cloud for the
different pulses as well as the initial atom number.
During the pulse series, we need to take into account

possible optical pumping by the probe beam into the
other hyperfine ground state F = 1. This effect is almost
negligible near resonance but becomes significant for the
largest negative detunings used in this work. We there-
fore have precisely measured the pumping rate, from
the fluorescence decay, at very large negative detuning
(δ = −9), and used this rate to calibrate the probe in-
tensity, which is measured simultaneously to the data
on a separate photodetector. Then we use this intensity
to compute the atom losses induced by optical pumping
and correct the atom number for each pulse.
Note that the uncertainty on the precise value C cor-

responding to the experimental conditions introduces a
systematic uncertainty on N and b0, which is thus also
affecting the precise value of the slope extracted from
the data of Fig. 3. Statistical uncertainties, estimated by
the shot-to-shot fluctuations of b0, are of the order of 8%
(standard deviation).

B. Analysis of the fluorescence decay.

The raw data are histograms of number of photons de-
tected with a time bin of 1.6 ns. Our detection in the
photon counting regime yields about 107 counts per sec-
ond (cps) during the pulses, while between pulses, after
the end of the subradiant decay, the ‘dark’ level is about

4000 cps, mainly due to stray light. For each pulse we
subtract this dark level and normalize the signal to the
steady state amplitude. Then we further bin the data
to improve the signal to noise ratio. We use a variable
binning, i.e., a larger bin size for later time, when the
signal varies slowly, than for short times. We also imple-
mented a systematic procedure to choose the range of
data to be fitted by selecting data one decade above the
noise floor. This allows us to fit the last measurable time
constant. We found this procedure to give the most reli-
able and relevant fit. Finally, we compute the statistical
coefficient of determination of the fit, which quantifies
its relevance, and we keep only the points for which this
coefficient is above 0.97 in Fig. 3.

2. Predictions of the coupled-dipole model

We recall here the main ingredients of the coupled-dipole
model, which has been widely used in the last years in the
context of single-photon superradiance [1–10]. We con-
sider N two-level atoms (positions ri, transition wave-
length λ = 2π/k0, excited state lifetime Γ−1) driven
by an incident laser (Rabi frequency Ω, detuning ∆,
plane wave of wavevector k0). Restricting the Hilbert
space to the subspace spanned by the ground state of
the atoms |G〉 = |g · · · g〉 and the singly-excited states
|i〉 = |g · · · ei · · · g〉 and tracing over the photon degrees
of freedom, one obtains an effective Hamiltonian describ-
ing the time evolution of the atomic wave function |ψ(t)〉,

|ψ(t)〉 = α(t)|G〉 +

N
∑

i=1

βi(t)|i〉 . (2)

Using standard approximations, the effective Hamilto-
nian can be written as

Heff =
h̄Ω

2

∑

i

[

ei∆t−ik0·riSi
− + e−i∆t+ik0·riSi

+

]

−
ih̄Γ

2

∑

i

Si
+S

i
− −

h̄Γ

2

∑

i

∑

j 6=i

VijS
i
+S

j
− ,

(3)

where Si
± and Si

z are the usual pseudospin operators for
the kets gi and ei, respectively. The first term of Heff

describes the coupling to the laser field, the second ac-
counts for the finite lifetime of the excited states and the
third one describes the dipole-dipole interactions, with

Vij =
eikrij

krij
, rij = |ri − rj | . (4)

Here, we have considered a scalar model for light, which
neglects polarization effects and near-field terms in the
dipole-dipole interaction. It is known to be a good ap-
proximation for dilute clouds [11,12], i.e., when the typi-
cal distance between atoms is much larger than the wave-
length, which is the case in the experiment.
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Considering the low intensity limit, when atoms are
mainly in their ground states, i.e., α ≃ 1, the problem
amounts to determine the amplitudes βi, which are then
given by the linear system of coupled equations

β̇i =

(

i∆−
Γ

2

)

βi −
iΩ

2
eik0·ri +

iΓ

2

∑

i6=j

Vijβj . (5)

These equations are the same as those describing N clas-
sical dipoles driven by an oscillating electric field [5], jus-
tifying the term “coupled-dipole model”. The first term
corresponds to the natural evolution of the dipoles (os-
cillation and damping), the second one to the driving
by the external laser, the last term corresponds to the
dipole-dipole interaction and is responsible for all collec-
tive effects, including dephasing and attenuation of the
driving laser beam, as well as more subtle multiple scat-
tering and cooperative effects (super- and sub-radiance).
Note that even if the detuning does not appear explicitly
in the dipole-dipole interaction term, it still strongly in-
fluences the collective behaviour of the system through
the population of the eigenmodes that contribute to the
system response to the driving field. At large detuning
for instance, multiple scattering vanishes.
From the computed values of βi, we can derive the

intensity of the light radiated by the cloud as a function
of time and of the angle [6]. The time dependence of the
total radiated power P after switching off the laser is
proportional to the derivative of the total excited state
population,

P ∝ −
d

dt

N
∑

j=1

|βi(t)|
2
. (6)

We have used this model to study superradiance and
subradiance decay in more detail than in the previous
work [7]. The complete study will be published else-
where. Here, we only show the most important result for
the subradiance experiment, which is the linear scaling
of the decay time with the parameter b0 = 3N/(k0R)

2,
which also corresponds to the on-resonance optical depth
through the center of the cloud. Here N is the atom
number and R the r.m.s. radius of the atomic Gaussian
density distribution, which are the two parameters of the
simulation. However, in order to determine if b0 is the
scaling parameters, and not, e.g., the atomic density, we
need to change b0 while keeping the density ρ ∝ N/R3

constant, by changing simultaneously N and R. Since
the atom number N is limited to a few thousands in our
numerical simulations, quite large densities are required
to reach large b0. It is then important to use an exclusion
volume when drawing the random positions of the atoms
in order to exclude close pairs of atoms [12]. We set our
exclusion volume as k0rij > 3.
In Fig. 4 we show the results of such simulations,

for which we varied b0 at constant density, for differ-
ent values of ρ0λ

3 = N/(k0R)
3, where ρ0 is the peak

density (at the center of the Gaussian cloud). We clearly
see that the different curves collapse on the same line,
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Fig. 4. Scaling of the the subradiant decay time con-
stant as a function of b0 in the coupled dipole model.
We used different densities ρ0λ

3 = {0.5, 1, 3, 5, 7, 9}. The
time constant is extracted from the exponential fit of the
end of the decay of the total emitted power computed
from Eqs. (5-6). The fit window is chosen for P (normal-
ized to 1 at t = 0) to be between 10−4 and 10−6.

showing that the on-resonance optical depth is indeed
the parameter that controls the subradiant decay. The
slope of the line is 0.36. Note that we do not a priori ex-
pect this number to be in quantitative agreement with
the experimental results, as polarization effects and the
complex Zeeman structure of the rubidium atoms used
in our experiment are neglected in the model.

3. Test of different scaling parameters

During the series of pulses, two effects contribute to a
change of b0. The most important one is the expansion
of the cloud due to its thermal velocity distribution. Its
r.m.s. size typically varies from 0.5 to 1.2 mm between
the first and the last pulse. This variation is independent
of the probe laser detuning. Another contribution to the
change of b0 between subsequent pulses is the loss of
atoms due to optical pumping into the F = 1 ground
state. Since we kept the same saturation parameter for
all detuning, the number of scattered photons is always
the same, about 25 per atom and per pulse. However, the
probability that a scattering event transfers the atom
to the F = 1 state depends strongly on the detuning
from the F = 2 → F ′ = 2 transition, and thus it is
much larger for large red detuning δ (defined from the
F = 2 → F ′ = 3 transition). For example, at δ = −6, the
number of atoms in the F = 2 ground state has decreased
by 70% between the first and the last pulse, whereas on
resonance it is almost constant for all pulses. Thus, for
the different detunings the relative contributions of the
variation of N and R are different.
We have exploited this fact to test which combina-

tion of N and R allows the different curves acquired
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Fig. 5. Test of different scaling parameters. The subradiant decay time constant is plotted as a function of different
combinations of N and R. The collapsing of all points on a single curve is best with b0 as the scaling parameter.

with different detunings to collapse on a single curve.
This is shown in Fig. 5, where it clearly appears that
the combination N/(k0R)

2 provides the best scaling pa-
rameter. This experimentally confirms that b0 is in-
deed the parameter governing subradiance in dilute and
extended samples, as predicted by the coupled-dipole
model (Fig. 4).

4. Subradiance as a function of the probe inten-

sity

In order to validate the weak excitation assumption, we
have also studied the subradiance decay as a function
of the probe intensity. In the linear optics regime, the
probe intensity should not impact on the measured de-
cay rates or normalized amplitudes. We have thus fixed
the detuning δ and the optical depth and varied the in-
tensity I. On Fig. 6 we plot the results for the subradiant
time constant and relative amplitude as a function of the
saturation parameter

s(δ) =
I/Isat
1 + 4δ2

, (7)

where Isat is the saturation intensity of the transition.
No significant dependence on the saturation parameter

in the explored range (10−2 < s(δ) < 10−1) is observed,
confirming that the other experimental data, for which
s(δ) ≃ 0.05, have been taken in the linear regime.

5. Possible role of radiation trapping of near-

resonant light

The very slow decays observed at large detuning cannot
be simply interpreted as radiation trapping, as in the
experiments by Labeyrie et al. [13, 14], since radiation
trapping does not depend on b0 only but depends on
the optical depth ‘seen’ by the laser beam, i.e., b′(δ) ∝
b0/(1 + 4δ2), which is very small at large detuning.
However, since the amplitude of the subradiance de-

cay is very small, we have to insure that it cannot be
explained by radiation trapping of a small amount of
light that would always be on resonance.
We have investigated two possible nonnegligible

sources of near-resonant light: inelastic scattering due
to the atomic saturation and the wings of the laser spec-
trum.

A. Inelastic scattering

The scattering rate Γsc of an atom driven by a laser is the
sum of two contributions, elastic and inelastic scattering,
given by [15]

Γsc = Γel+Γinel =
Γ

2

(

s

(1 + s)2
+

s2

(1 + s)2

)

=
Γ

2

s

1 + s
,

(8)
where s is the saturation parameter defined above
[Eq. (7)]. Usually, inelastic scattering is neglected when
s ≪ 1, which is the case in the experiment. However
since subradiance is a small signal, special care is re-
quired. The proportion of inelastic scattering is equal to
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s (for s ≪ 1) and the spectrum of inelastic scattering
is the well-known Mollow triplet [16], which is, in fact,
a triplet only at large s. At large detuning and low in-
tensity, it is a doublet of equal weights, one of which is
precisely on the atomic resonance. Thus, we expect that
after the first scattering event, a proportion s/2 of the
light is on resonance. Multiple scattering could then trap
this light in the sample. In this scenario, the relative am-
plitude of the slow decay due to radiation trapping would
be weighted by a factor s/2 when the detuning is large
compared to when the laser is on resonance.
When the laser is tuned on resonance, the relative am-

plitude of the slow decay is Asub ≃ 2×10−2 for b0 = 110
(Fig. 3c). Note that in this experiment, a laser beam
larger than the atomic cloud has been used, leading to
a significant proportion of single and low-order scatte-
ring events on the edges of the cloud, even on resonance,
contrary to the previous experiments on radiation trap-
ping [13, 14], where a small beam at the center of the
atomic cloud was used. In this scenario, we would thus
expect Asub ≃ s×10−2 ≪ 10−2. On the contrary, we see
on Fig. 6 (also with b0 = 110) that Asub is significantly
larger and in any case not proportional to s. These data
allow us to conclude that spurious resonant radiation
trapping of one Mollow sideband is much smaller than
the subradiance we observe.

B. Spectrum of the probe laser

In our experiment, we used a distributed-feedback
(DFB) laser diode as probe. This laser is expected to
have a spectral linewidth on the order of ∼ 3 MHz [17]
corresponding to 0.5Γ, which should not have any in-
fluence at large detuning. However, if the spectrum has
slow-decaying wings (e.g., Lorentzian), the amount of
light a few Γ’s from the central frequency might be not
negligible in the experiment.
To characterize the spectrum of our probe laser, we

performed a beat-note experiment with a commercial
extended-cavity laser diode (Toptica DL pro), with a

much narrower spectral width. It is thus a good (but
slightly conservative) approximation to consider the
power spectrum density of the beat-note signal, recorded
with an electronic spectrum analyzer, as the optical spec-
trum of our probe laser. Such a measurement is shown
in Fig. 7. The spectrum is composed of a central part,
which can be well fitted by a Gaussian, superimposed
on a small component with large wings, which is well
fitted by a Lorentzian. The r.m.s. width of the Gaussian
is 2.6 MHz (corresponding to a full width at half max-
imum of 1Γ, larger than expected) and the Lorentzian
wings have a relative amplitude of 5.8× 10−3 and a full
width at half maximum γ ≈ 13.2 MHz corresponding to

-150 -100 -50 0 50 100 150
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10-2

10-1

100

f (MHz)

P
S

D

Fig. 7. Spectrum of the probe laser. The power spectrum
density (PSD) of a beat-note signal with a reference laser
has been averaged 100 times (scanning time ∼ 1 s) and
the central frequency (∼ 1 GHz) has been shifted to zero
(black dots). The result can be fitted by a Gaussian in
the central part (red) and by a Lorentzian in the wings
(blue).
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2.2Γ.
From the measured spectrum, we can numerically

compute the amount of light near resonance (in a width
Γ) given the detuning of the central frequency. For ex-
ample, for δ = −6Γ, corresponding to the largest detun-
ing used in the measurements, this relative amount is
≈ 1.5 × 10−4. We recall that even when the laser is set
on resonance, the relative amplitude of the slow decay is
only Asub ≃ 2×10−2 so that the two numbers should be
multiplied to predict the relative amplitude of the slow
decay induced by the small part of resonant light. This
is thus much too small to be visible in the experiment.

C. Random walk model with frequency redistribution

One further spurious effect is frequency redistribution
induced by the Doppler effect during the multiple scatte-
ring process, which is known to play an important role in
radiation trapping experiments in cold atoms [13,14,18].
First, for light initially on-resonance, the light spectrum
gets broader during the multiple scattering and the ef-
fective optical thickness decreases, breaking the τ ∝ b2

scaling for high enough temperature. Second, light ini-
tially slightly detuned has a tendency to drift towards
resonance (in addition to the broadening). It means that
the previous evaluation considering a window of width
Γ to define the resonant light may be not appropriate
because frequency redistribution induces a broader ‘cap-
ture range’ of frequency.
To evaluate these effects, we performed numerical sim-

ulations considering the random walk of photons in a ho-
mogeneous spherical cloud of atoms, taking into account
the Doppler effect and its associated frequency redistri-
bution, as well as the measured spectrum of the incident
laser. The details of the simulation will be published else-
where. Here we show two results.
In Fig. 8(a), we show the fluorescence decay for a laser

detuning centered at δ = −6, a cloud with a temperature
T = 50 µK and an optical thickness b′(0) = 53, corre-
sponding to b0 ≃ 110 [Eq. (1)], for comparison with the
data of Figs. 2-3. We see indeed that the small amount
of light that is on resonance induces a slow decay, whose
relative amplitude is ∼ 10−4. As anticipated, this is
larger than expected from the previous simple evalua-
tion, but it is still more than one order of magnitude
smaller than the subradiance decay observed in the ex-
periment. Moreover, the use of a homogeneous sphere
instead of a Gaussian density distribution overestimates
substantially this amplitude because for a given peak-
optical thickness (as measured by the transmission of a
small beam at the center of the cloud), the average op-
tical thickness ‘seen’ by a large beam is larger with a
homogeneous sphere than with a Gaussian cloud.
Finally, we show in Fig. 8(b) how the time constant

associated with this small, slow decay, which can be fit-
ted by a decaying exponential, evolves with the optical
depth of the cloud. We can see that the quadratic depen-
dence with the optical depth is still visible in this regime
of low temperature. This provides another, qualitative
difference between our subradiance data and what could
be expected from spurious radiation trapping of near-
resonant light.
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