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Non-Newtonian open channel flow over inclined porous bed
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INTRODUCTION

As far as it is known, gravity-driven mass movement are yet to be completely understood by science community.

The knowledge of such kind of flow is clearly necessary to enhance prevention tools for Engineering when applied to modeling natural events such as mudflows, mud floods and debris flow. However, the complexity of the problem lays basically on the proper modeling of fluid response to stress, which depends on its matrix, and even the prediction of instabilities propagation, which may render the whole scenario even more difficult to predict and control. In a simplified view, those flows can be seen as non-Newtonian fluids over natural inclined [START_REF] Zanuttigh | Instability and surge development in debris flows[END_REF], neglecting cross-sectional variable (2D flow) and considering a longitudinal length L0 much greater than the vertical one h0, equations can be summarize in the following system ∂u ∂x + ∂w ∂z = 0;

(1)

∂u ∂t + u ∂u ∂x + w ∂u ∂z = - 1 ρ ∂p ∂x + g sin θ + 1 ρ ∂τ b ∂z ;
(2)

0 = - 1 ρ ∂p ∂z -g cos θ;
(3) where (x, z) are variables of coordinate system; t is time variable; (u, w) are components of velocity vector; θ is channel bed slope; p is fluid pressure; τ b is bottom shear stress on the interface between fluid and bed; g is gravity and ρ is fluid density. For the steady and permanent case, neither velocity nor free surface height are changed and both assume constant values u0 and h0, respectively, as shows figure 1. (u -up).
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The shearing conditions exhibit by equation 5 can be assumed as the non-Newtonian effect from yield stress is comprised by means of longitudinal Darcian velocity up. The other boundary condition is related to the normal velocity in the porous medium which, on the interface, should not vary once it is inside the boundary layer so wp = w for z = 0.

Recalling the recent work from [START_REF] Chevalier | Darcy's law for yield stress fluid flowing through a porous medium[END_REF] where pp represent total pressure in the porous medium and pp = p for z = 0. Hydrostatic pressure is assumed following initial equations of flow to estimate scales between flow over and inside the bed. Then, pressure gradient inside porous medium is the same as in the flow thus leading to the pressure scale

P ∼ Kn u0 h0 n L0 h0 (10) 
From equation 8, we reach a scale to the longitudinal velocity in the porous medium to be:

Up ∼ kK u n 0 h n+1 0 -Ω f 1 n (11)
where

Ω f = k K k I τc
Kn is the ratio between an inertial threshold and a kinematic resistance. Rescaling, then, the boundary conditions for porous medium (on the interface between fluid flow and porous bed) assuming such scales, they are simplified into

∂u ∂z z=0 = χ k 1 n+1 K u; w| z=0 = 0. ( 12 
)
2.2 The velocity profile u(z)

For hydrostatic pressure distribution, one can reach that shear rate is given as shows equation 13.

∂u ∂z = ρg(h0 -z) sin θ -τc Kn 1 n . (13) 
Then, solving equation 13 for u and using the parameter γ = k 1 1+n K /χz0, the velocity is finally written as:

u(z) = n n + 1 ρg sin θ Kn z n+1 0 1 n 1 -1 - z z0 n+1 n + n + 1 n γ . ( 14 
)
On the plug region (z0 < z < h0), the velocity is constant equal to u(z0) (equation 15).

u(z0) = n n + 1 ρg sin θ Kn z n+1 0 1 n 1 + n + 1 n γ , ( 15 
)
where z0 = h0 -τc/(ρg sin θ).

RESULTS AND DISCUSSIONS

The velocity profile u(z) is studied to respect the plug velocity u(z0) which corresponds to the freestream velocity (free surface velocity), and the vertical coordinate z to respect z0 thus scaling the problem, as shows equation 16.

U (Z) = u(z) u(z0) = 1 - (1 -Z) n+1 n 1 + γ n+1 n , ( 16 
)
where Z = z/z0. It's also valuable to define the free surface height which should be equal to H0 = h0/z0 = 1/(1 -C * ) where C * = τc/(ρgh0 sin θ). Mean flow velocity Um is then calculated as

Um = 1 0 U (Z)DZ + H 0 1 DZ. ( 17 
)
The effect of the porous bed over the velocity can be summarized as the promotion of a slip velocity on the interface between the bed and the flow. Figure 2(a) shows that for a solid bed (γ = 0), interface velocity U |Z=0 = 0. However, the smallest increase in bed porosity leads to a non-zero velocity at the interface. For shear thinning fluids (n < 1), the interface velocity increases more rapidly with porosity. When in presence of a yield stress, the same behavior is noticed. This effect lead to a mean flow velocity Um which is closer to freestream velocity the higher yield stress parameter C * , as shows figure 2(b). This observation is in agreement with the plug zone which is greater as the yield stress increases, thus leading to a quasi-constant velocity distribution over the vertical coordinate. Numerical and, most importantly, experimental validation of the velocity profile should be employed to assure hypothesis adopted in this work. When dealing with fluid composed by sediment particles, percolation effect can hardly be avoided, thus obstructing the proper use of such mathematical development.

However, for homogeneous fluids such as emulsions and gels, these assumptions should be reasonable and could be easily verified.
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 1 Figure 1. Schematic representation of flow. Drawing not scaled.
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 2 Figure 2. Analysis of rheological properties and porous medium on flow velocity. (a): Velocity at the interface U | Z=0 as function n and γ, for C * = 0; (b): Mean flow velocity U m as function C * and γ for different values of n.
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