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Coupling of elasticity to capillarity in soft aerated
materials

Lucie Ducloué,* Olivier Pitois, Julie Goyon, Xavier Chateau and Guillaume Ovarlez

We study the elastic properties of soft solids containing air bubbles. Contrary to standard porous materials,

the softness of thematrix allows for a coupling of thematrix elasticity to surface tension forces acting on the

bubble surface. Thanks to appropriate experiments on model systems, we demonstrate how the elastic

response of the soft porous solid is governed by two dimensionless parameters: the gas volume fraction

and a capillary number comparing the elasticity of the matrix with the stiffness of the bubbles.

Furthermore, we show that our experimental results are accurately predicted by computations of the

shear modulus through a micro-mechanical approach.
1 Introduction

Complex systems of a dispersed phase in a solid matrix can
behave very differently from one of their components taken
alone. Their broad range of properties explains that examples of
dispersions such as composites1 or porous media2 are wide-
spread in the industry. In all dispersions, interfacial forces can
appear at the boundary between the dispersed phase and the
continuous matrix. A coupling of surface tension forces to the
bulk elasticity of a solid has been evidenced in so systems like
biological tissues,3 or through the deformation of so
substrates like polymers at the contact line with a drop resting
on the solid,4 which has been modeled by recent theoretical and
numerical work on elasto-capillary phenomena.5 Under-
standing the coupling of bubble mechanics to the matrix elas-
ticity is also essential for cavitation rheology techniques6,7 and
for the stability of bubbles in complex uids.8,9 Capillary forces
also affect the overall mechanical properties of nanoporous
media.10 For larger pores, because of the hardness of the matrix
in usual porous media, the inuence of interfacial effects on the
overall properties of the saturated material is negligible.11

Dispersions in soer materials could allow for observable
coupling of interfacial forces to the bulk elasticity of the solid at
larger scales than the nanometer. Many dense suspensions12 of
geological interest, like muds, or with industrial applications,
like fresh concrete or emulsions, behave as so elastic solids
below a critical level of stress.13 To study the role of surface
tension forces in so elastic materials, we investigate the elastic
behaviour of dispersions of bubbles in concentrated emulsions.
Those aerated emulsions, which have applications in the food14

and cosmetic15 industries, have been the subject of rheological
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and stability studies.16–18 However, their overall elastic proper-
ties have not yet been studied in detail.

In dispersions of bubbles in a somaterial, coupling between
the elasticity of the matrix and capillary effects is expected to
occur through bubble deformation. The elastic deformation of
thematrix tends todeformthebubbles andsurface tension forces
will thus act tominimize the area of the bubble bymaintaining a
spherical shape. The limit case of negligible surface tension
forces is a so porous medium. Theoretical work shows that
adding holes in a solid soens it.11 In the limit case of predomi-
nant surface tension forces compared to the matrix elasticity, a
bubble should no longer be deformable and should behave as a
rigid inclusion with no shear stiffness. Experimental and theo-
retical studies have shown that rigid beads in a so solid
strengthen the solid.19 The case of rigid bubbles is similar except
for the boundary conditions, changed from no-slip for beads to
full-slip forbubbles.Theoreticalmodels in thedilute limitpredict
a strengthening of the dispersion when adding rigid bubbles.11

Between those two limit cases,morework is needed to investigate
the elastic response of the so aerated solid. In this work, we
restrain to the range of gas volume fractionf < 50%, so thatwe do
not consider foams of those materials, in which the bubbles are
deformed by geometrical constraints. We design model systems
and appropriate experimental methods that allow us to measure
the shear modulus of dispersions of monodisperse bubbles
embedded in a medium of chosen elasticity. We then extract the
key parameters governing the overall elastic response of the
systems, and compare our experimental results to estimates of
the elastic modulus through a micro-mechanical approach.
2 Experimental aspects

The dispersion matrices we choose are concentrated oil in water
emulsions of shear moduli ranging from 100 to 1000 Pa.
Concentrated emulsions behave as so elastic solids for
Soft Matter, 2014, 10, 5093–5098 | 5093



Fig. 1 Schematic of the experimental protocol (bubbles not to scale).
A concentrated emulsion is mixedwith amonodisperse foam to obtain
a dispersion of monodisperse bubbles in a yield stress fluid. The elastic
modulus of the dispersion is then measured by applying small ampli-
tude oscillations.

Fig. 2 Microphotograph of a dispersion of monodisperse bubbles
(R¼ 200 mm) in emulsion (2). The image is taken in the bulk of a sample
of the material deposited on a glass slide. The emulsion is transparent,
allowing for the visualisation of in-depth bubbles that thus do not have
the same apparent radius. Inset: close-up of droplets of emulsion (2) at
the interface with a bubble on the surface of the glass.
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stresses well below their yield stress.20 The emulsions were
produced with a patented Couette emulsier.21,22 Unless other-
wise indicated, the radius of the droplets measured by laser
granulometry is around 1 to 2 mm (the polydispersity is around
20%), which, at the considered gas volume fractions, should
ensure that there is scale separation between the drops and the
Table 1 Synthetic description of all the emulsions used as matrices in th
phase, composition of the aqueous continuous phase (including the su
capillary number: elastic modulus of the matrix, and surface tension betw
the matrices actually embedding the bubbles

Oil – vol fraction Continuous ph

Emulsion (1a) Silicon (V20, Chimie Plus) – 75% Forafac® (Dup
Emulsion (1b) Silicon (V20, Chimie Plus) – 73% Forafac® (Dup
Emulsion (2) Silicon (V350, Chimie Plus) – 79% TTAB (Alpha–A
Emulsion (3) Dodecane (Acros organics) – 73% SDS (Sigma) 2.
Emulsion (4) Silicon (V350, Chimie Plus) – 70% TTAB (Alpha–A
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bubbles, and consequently validate the use of the emulsion as
an elastic continuous medium embedding the bubbles.23 In all
the systems, the yield stress of the emulsion is high enough to
ensure that no bubble rise occurs at rest or during measure-
ments.24 Most dispersions are prepared by gently mixing the
emulsion with a separately produced monodisperse foam. A
schematic of the experimental protocol is presented in Fig. 1.
The foams are obtained by blowing nitrogen plus a small
amount of peruorohexane (C6F14) through a porous glass frit
or through needles; we are able to produce nearly monodisperse
foams with average bubble radii Rb ranging from 40 mm to
800 mm. The bubble size is measured by image analysis on a
foam sample squeezed between two glass slides separated by
spacers of known thickness. Coarsening is strongly reduced by
the presence of C6F14,25 meaning that the bubble size is stable
during measurements. The continuous phase of the foam is the
same as the one in the emulsion, ensuring that mixing is easy
and does not induce any chemical effect on the dispersions. The
mixing with the foam adds a small amount of continuous phase
to the emulsion. To ensure that, for a series of experiments at
different gas volume fractions in a given emulsion, the elastic
modulus of the matrix in the dispersions remains the same, we
added controlled amounts of pure continuous phase in order to
reach the same oil volume fraction in the emulsion.17,18 An
example of a dispersion of bubbles in an emulsion is shown in
Fig. 2. The composition of all the tested emulsions is indicated
in Table 1, and illustrates the variety of chemical compositions,
surface tensions and elastic properties of the matrix that were
used to perform the study. Surface tension measurements have
been performed with a Teclis Tracker tensiometer, using either
a pendant drop or a rising bubble method. All the experiments
are performed at 25 �C.

The shear modulus of the dispersions is measured using a
control stress rheometer by imposing small amplitude oscilla-
tions at a frequency of typically 1 Hz. The oscillatory stress is
chosen to be well below the yield stress of the systems, so that
the oscillations are performed in the linear elastic regime of
each material. At this frequency, the loss modulus of the
systems is negligible. The geometry used to perform the rheo-
metrical measurements is chosen according to the bubble size:
for Rb # 50 mm, the material is sheared between parallel plates
(radius R ¼ 25 mm; gap h ¼ 2.5 mm). The planes are serrated to
prevent slippage of the dispersion.12 Dispersions containing
bigger bubbles require a larger thickness of the sheared
e bubble dispersions: nature and volume fraction of the oil dispersed
rfactant) and relevant physical constants for the determination of the
een air and the continuous phase. The composition given is the one of

ase G0(0) (Pa) g (mN m�1)

ont™) 4 wt% in water 230 15.5 � 0.1
ont™) 4 wt% in water 163 15.5 � 0.1
esar) 3 wt% in water/glycerol 50/50 w/w 650 35.5 � 0.1
7 wt% in water 285 36 � 1
esar) 3 wt% in water/glycerol 36/64 w/w 799 35 � 1

This journal is © The Royal Society of Chemistry 2014
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material and are studied in Couette-like devices: for 50 mm < Rb

< 800 mm, we use a vane in cup (exceptionally a serrated bob in
cup) geometry (inner radius Ri ¼ 12.5 mm; outer radius Ro ¼ 18
mm), and for Rb $ 800 mm, we use vane in cup geometries
(either Ri ¼ 12.5 mm and Ro ¼ 25 mm or Ri ¼ 22.5 mm and
Ro ¼ 45 mm).
3 Results
3.1 Control parameters

We rst investigate the inuence of the experimental parame-
ters that can easily be tuned in our systems.We start by studying
the dependence of the elasticity on the bubble radius Rb by
preparing dispersions of various bubble radii in the same
emulsion. In a rst series of experiments, we add bubbles of Rb

¼ (50 � 10) mm (10 mm being the width of the volume-weighed
bubble radius distribution) at various gas volume fractions f in
emulsion (3) (see Table 1 for details). Those bubbles are slightly
more polydisperse than is generally used for this study, because
of the foam production technique. The shear modulus G0(f) of
the dispersions is measured to be slightly decreasing with f.
This result is reported in dimensionless quantities Ĝ(f)¼ G0(f)/
G0(0) as a function of f as shown in Fig. 3. We then prepare
dispersions of larger bubbles in emulsion (3): a series with Rb ¼
(143 � 17) mm and another one with Rb ¼ (800 � 40) mm. The
results for Ĝ(f) are also shown in Fig. 3. The measurements
show that the larger the bubbles, the soer the dispersion. This
result can be understood as a manifestation of a simple physical
effect, as has already been evidenced in ref. 18 (see also ref. 26
and 27 for the effect of bubble deformation on the viscosity of
bubbly Newtonian uids), that the interfacial energy to volume
ratio is lower in larger bubbles, resulting in least bubble resis-
tance to deformation.
Fig. 3 Dimensionless elastic modulus Ĝ as a function of the gas
volume fraction f for dispersions with three different bubble radii Rb in
emulsion (3) [see legend]. The full lines are the computed Ĝhomog(f) for
Ca ¼ 0.23 (dark blue), Ca ¼ 0.57 (green) and Ca ¼ 3.2 (pink); experi-
mentally measured Ca: 0.23 � 0.05, 0.57 � 0.08, 3.2 � 0.4. Inset: Ĝ as
a function of f for dispersions of Rb z 150 mm in emulsion (3) and
emulsion (4). The full lines are the computed Ĝhomog(f) for Ca ¼ 0.57
(green) and Ca ¼ 1.65 (orange); experimentally measured Ca: 0.57 �
0.08 and 1.65 � 0.15.
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We keep the bubble size constant, and vary the elastic
modulus of the matrix; we prepare dispersions of Rb ¼ 143 mm
bubbles in emulsion (3) and of Rb ¼ (150 � 10) mm bubbles in
emulsion (4) (see Table 1). In the two series of experiments, the
bubble sizes are close and the surface tension is similar, but
G0(0) is almost three times higher in emulsion (4). Ĝ(f) is
plotted for both systems in the inset shown in Fig. 3. As
observed on the previous suspensions, Ĝ(f) is a decreasing
function of f, and this decrease is all the stronger as G0(0) is
high. To quantify the competition between the matrix elasticity
and the bubble resistance to deformation, we introduced a
capillary number,

Ca ¼ G0ð0Þ
2g=Rb

(1)

which compares the shear modulus of the dispersion medium
and the interfacial stress scale which is the capillary pressure in
the bubbles. This dimensionless number scales as the recip-
rocal of the elasto-capillary number and has been dened for
instance in ref. 5 for a similar geometry and derived from an
energetic argument.

The use of our model experimental systems allows us to vary
independently the three physical parameters that inuence Ca.
To quantify the relevance of Ca on the overall elastic response of
the dispersion at a given f, we can thus perform two series of
experiments with close Rb, but with a very different capillary
pressure because of a very different surface tension, and we
adjust the elastic modulus in one of the emulsions so that Ca is
similar in both systems. The two experimental systems are as
follow: the rst one is dispersions of Rb ¼ 143 mm of radius
bubbles in emulsion (3), which leads to Ca ¼ 0.57 � 0.08, and
the second one is dispersions of (129 � 10) mm of radius
bubbles in emulsion (1b) for which Ca ¼ 0.70 � 0.08. We
Fig. 4 Effect of a change in the surface tension: dimensionless elastic
modulus Ĝ as a function of f for dispersions of Rb ¼ 143 mm bubbles
in emulsion (3) and Rb ¼ 129 mm bubbles in emulsion (1b). The
surface tension is much lower in emulsion (1b), but G0(0) has been
chosen to get close values for Ca in both systems. The experimentally
measured Ca are 0.57 � 0.08 and 0.70 � 0.08. The full line is the
computed Ĝhomog(f, Ca) at Ca ¼ 0.63, which is compatible with both
systems, given the experimental precision on the value of Ca.

Soft Matter, 2014, 10, 5093–5098 | 5095
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observed that the measured values of Ĝ(f, Ca) are very close, as
can be seen in Fig. 4. The value of Ca unequivocally determines
the elastic behaviour of the dispersion at a given f.
3.2 Limit cases for Ca

We now investigate the limit value of Ca / N, for which
surface tension forces are negligible and the bubbles can be
assimilated to voids in the matrix. This is the case in usual
porous materials. We design a system in which surface tension
effects are bound to be poor; we indeed include the biggest
bubbles of this study, of radius (1 � 0.1) mm, in emulsion (2),
which has a high elastic modulus (see Table 1). Note that for
this system the bubbles are injected directly in the emulsion in
a tee-junction in a milli-uidic device. As before, we measure
the elastic modulus of the dispersion at various f. The experi-
mental data points for the dimensionless modulus Ĝ(f) are
shown in Fig. 5, and compared to the dilute limit for disper-
sions of holes in an elastic medium, which can be analytically

computed:11 Ĝðf;Ca/NÞ ¼ 1� 5
3
f. We observe that Ĝ is a

decreasing function of f, and that for a low gas volume fraction
the measured Ĝ is close to the dilute limit. The exact value of Ca
in this system is 9.0 � 1.2 and this result shows that the theo-
retical dilute limit for spherical holes in an elastic medium is
already a good estimate of Ĝ(f / 0, Ca) at Ca � 10.

The limit case of Ca / 0 also leads to simplication: the
bubbles are stiff compared to the matrix and the dispersion is
made of rigid spheres with a full slip boundary condition in an
elastic medium. The theoretical dilute limit can be computed11

as Ĝ(f, Ca ¼ 0) ¼ 1 + f and is shown in Fig. 5. An experimental
validation of this limit with our systems may be biased, because
Fig. 5 Remarkable values of Ca: Ca/N: Ĝ(f) for dispersions of Rb

¼ 1 mm bubbles in emulsion (2). The full line is the computed
Ĝhomog(f,Ca) atCa¼ 9.0 (light blue); experimentally measuredCa: 9.0
� 1.2. Caz 0.25: dimensionless elastic modulus Ĝ for dispersions of
Rb ¼ 50 mm bubbles in emulsion (3) and Rb ¼ 41 mm in emulsion (1a).
The full lines are the computed Ĝhomog(f, Ca) at Ca ¼ 0.23 (dark blue)
and Ca ¼ 0.30 (grey); experimentally measured Ca: 0.23 � 0.05, 0.30
� 0.05. The dashed lines are the dilute limits for rigid (top) and fully
deformable (bottom) spheres, with a full slip boundary condition.
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increasing the capillary pressure would mean reducing Rb, and
we might no longer assume scale separation between the
bubbles and the oil droplets. As our experimental systems are
not suited to perform experiments at small capillary numbers,
more work would be needed to design suitable model materials
to investigate this limit.

FromCa/ 0 toCa/N, Ĝ(f,Ca) turns froman increasing to
a decreasing function of f. Between these two extreme values, we
have observed on the dispersion of the smallest bubbles in
emulsion (3), as has already been shown in Fig. 3, that G0(f) has
little variation with f and is comparable to G0(0). The capillary
number in this system is Ca ¼ 0.23 � 0.05. To further check the
peculiarity of this value of Ca, we prepare another dispersion of
small bubbles Rb ¼ (41 � 5) mm in emulsion (1a) (see Table 1),
with a close capillary number:Ca¼ 0.30� 0.05. Ĝ(f,Ca) for both
dispersions of small bubbles is shown in Fig. 5. We observe that
in both systems, Ĝ(f, Ca) exhibits little dependence on the gas
volume fraction, and is of order 1. The non-perturbative effect of
bubble addition in the matrix can be seen as an experimental
validation of previous micro-mechanical calculations28,29 which
have shown that a spherical bubble of radius Rb and surface
tensiong in an elasticmediumcanbe described as an equivalent
elastic sphere of radius Rb and no surface tension. This has been
shown to result mostly from the work of the capillary pressure
when the bubble is deformed under a strain 3 (ref. 28), leading to
an increase of energy that scales as g32, which is analogous to an
elastic energy. If the equivalent elasticity of the sphere is equal to
that of thematrix, the bubbles are non-perturbative and Ĝ(f)¼ 1.
3.3 Micro-mechanical approach

The equivalence of a bubble in an elastic medium and an elastic
sphere in that medium can be quantied through a micro-
mechanical approach; the equivalent elasticity of a bubble in a
matrix G0(0) can be written as a function of G0(0) and Ca:28,29

Geq ¼ G0ð0Þ 8

3þ 20Ca
(2)

with Ca dened in eqn (1). The expression of Geq shows that Ca
introduced above does not actually compare the equivalent
elasticity of the bubble with that of thematrix. This explains why
the overall elasticity of the dispersion is unperturbed by the
presence of the bubbles for a somewhat unnatural value of Ca
around 0.2 to 0.3, which can be understood due to the compu-
tation of Geq: Geq ¼ G0(0) for Ca ¼ 1/4. Relying on the equivalent
elastic spheremodel for a bubble, a micro-mechanical approach
allows us to compute the overall elastic properties of the
dispersions at nite Ca. The overall elasticity of a composite
material made of elastic spheres in a matrix of another elastic
material in the semi-dilute limit can be computed as a function
of Ca and f, in the framework of the Mori–Tanaka scheme:28,29

Ĝhomogðf;CaÞ ¼ 1� fð4Ca� 1Þ
1þ 12

5
Ca� 2

5
fð1� 4CaÞ

(3)

Note that this expression is compatible with the previously
discussed limits of Ca / N, Ca / 0 and Ca ¼ 1/4. Predictions
This journal is © The Royal Society of Chemistry 2014
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of the model for Ĝ(f, Ca) at the experimentally measured Ca are
plotted as full coloured lines shown in Fig. 3–5. A comparison of
Ĝhomog(f, Ca) with Ĝ(f, Ca) for all the systems we used, at all
tested gas volume fractions is presented in Fig. 6. Experimental
measurements and computations are generally in good agree-
ment all over the range of systems we investigated.

As we have seen that the two dimensionless parameters Ca
and f are enough to understand and predict the elasticity of the
dispersions, we now plot Ĝ(f, Ca) as a function of Ca, for 4
values of f, as shown in Fig. 7. As can be noticed from the
graphs 3 to 5, the achieved values of f are different for all tested
systems. To be able to plot Ĝ(f, Ca) at a given f, we interpolate
the experimental data at the exact values of f used for plotting
as shown in Fig. 7. The full lines are computations of Ĝhomog(f,
Ca). As expected, Ĝ(f, Ca) is a decreasing function of Ca; higher
values of Ca correspond to more deformable bubbles that lower
the overall elastic modulus of the dispersions. The non-per-
turbative effect of the bubbles for Ca ¼ 1/4 is evidenced by the
crossing of Ĝhomog(f, Ca) at 1 for Ca ¼ 0.25, whatever the gas
Fig. 6 Consistency between G0 and G 0
homog for all tested systems. +:

emulsion (1), ;: emulsion (2), �: emulsion (3), A: emulsion (4).

Fig. 7 Dimensionless elastic modulus Ĝ as a function of Ca for four
different values of the gas volume fraction. The dots are interpolated
experimental data points, the full lines are Ĝhomog(f, Ca).
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volume fraction. Below this value, the increase of Ĝhomog(f, Ca)
is consistent with previously discussed theoretical limits, but
could not be investigated with our experimental systems. The
series of data points at Ca ¼ 0.23 � 0.05 does not t in the
increasing Ĝhomog(f, Ca) regime, perhaps because of broader
polydispersity; indeed, the uncertainty on the value of Ca
mainly arises from the width of the bubble radius distribution
and the value of Ca for the largest bubbles in this system is for
instance higher than 0.25. A model computing Ĝhomog(f, Ca) as
a function of the whole measured distribution of radii may
better represent the experimental data and remains to be
developed.

4 Conclusions

This experimental study on model materials shows that the
overall elasticity of dispersions of monodisperse bubbles in a
so elastic medium is governed by only two parameters: the gas
volume fraction and a capillary number which compares the
matrix elasticity with the bubble capillary stress. The generality
of this result is experimentally demonstrated by the consistency
of data on various systems, and is enhanced by the good
agreement of the experimental data with micro-mechanical
estimates of the shear modulus, even if the case Ca < 1/4 is still
to be studied. A new model system remains to be designed to
achieve this goal. Because the physical mechanisms evidenced
by our work are not material-specic, the dependence of Ĝ on f

and Ca determined for macroscopic bubbles in model systems
should still hold for a broader class of elastic materials con-
taining air bubbles, for instance nanoporous media. Besides,
the quantitative agreement between micro-mechanical esti-
mates and measurements allows us to make predictions for the
elastic modulus of a bubbly solid, and bubble addition could
thus be a means of nely tuning material elasticity without
modifying the composition of the matrix.

Understanding the coupling of many bubbles in an elastic
medium could also give insights into the mechanical behaviour
of so solids like polymers undergoing multiple cavitation.
Further renements in the micro-mechanical computations,
especially taking polydispersity into account, could allow for
better representation of some of the data we presented, but also
prove useful for the long time evolution of our systems; at
longer time scales than investigated for the present study,
bubble ripening is indeed expected to occur. This will probably
affect the evolution of the shear modulus with time, and this
evolution could perhaps be followed to derive the kinetics of
bubble ripening.
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