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CONVERGENCE OF THE MAC SCHEME FOR THE INCOMPRESSIBLE
NAVIER-STOKES EQUATIONS

T. GALLOUET!, R. HERBIN?, J.-C. LATCHE? AND K. MALLEM*

Abstract. We prove in this paper the convergence of the Marker and cell (MAC) scheme for the dis-
cretization of the steady-state and unsteady-state incompressible Navier-Stokes equations in primitive
variables on non-uniform Cartesian grids, without any regularity assumption on the solution. A priori
estimates on solutions to the scheme are proven ; they yield the existence of discrete solutions and the
compactness of sequences of solutions obtained with family of meshes the space step of which tends to
zero. We then establish that the limit is a weak solution to the continuous problem.

2010 AMS Subject Classification. Primary 656M08, 76N15 ; Secondary 65M12, 76N19.

September 7, 2015.

1. INTRODUCTION

Let Q be an open bounded domain of R? with d = 2 or d = 3. We consider the steady-state incompressible
Navier-Stokes equations, which read:

diva = 0, in Q, (1a)
—Au+(u-V)a+Vp=f, in Q, (1b)
u =0, on Of). (1c)
where 4 stands for the (vector-valued) velocity of the flow, p for the pressure and f is a given field of L2(2)4,
and where for two given vector fields v = (v1,...,v4) and w = (wy,...,wq), the quantity (v - V)w is a vector
field whose components are ((v-V)w); = ZZ:l veOpw;, t =1,...,d. A weak formulation of Problem (1) reads:

Find (@, p) € H}(Q)? x LE(Q) such that, Y(v,q) € H}(Q)? x LE(Q),
/Vﬁ:V'u dw+/((ﬁ-V)u)~v dm—/;ﬁdivv dcc:/f-’u dx, (2a)
Q Q Q Q

/ g diva dz =0, (2b)
Q
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where L3(£2) stands for the subspace of L?(2) of zero mean-valued functions.
We shall consider the transient Navier-Stokes equations:

diva = 0 in Q x (0,7), (3a)
du—Au+ (a-V)ya+Vp=f in Qx(0,7), (3b)
u=0 on 00 x (0,7), (3¢c)
u(x,0) = uo. in Q. (3d)

This problem is posed for (x,¢) in Q x (0,7T") where T' € R* and Q is an open bounded domain of R?:d =2 or 3,
4 stands for the (vector-valued) velocity of the flow, p for the pressure, f is a given vector field of L2(€2x (0,T))¢
and ug € L?(Q2). Denoting by E(Q) = {u € H(Q)?; div u = 0, a.e. in Q} the set of divergence free functions,
we consider the following weak formulation of the transient problem (3) (see e.g. [3]).

Find uw € L%(0,T; E(Q)) N L>(0,T; L*(Q)?) ; such that, Vv € L*(0,T; E(2)) N C=( x [0,T))

g T
_/ / u(x,t) - Ov(x,t) dee dt — / ug(x) - v(x,0) de +/ / Va(z,t) : Vo(z,t) de dt (4)
0 Q T Q 0 ; 0
+/0 /Q((u.v)u)(:zc,t) -v(x,t) de dt :/0 Qf(w’t) vo(w,t) da dt.

The aim of this paper is to show, under minimal regularity assumptions on the solution, that sequences of

approximate solutions obtained by the discretization of problem (1)(resp. (3)) by the Marker-And-cell (MAC)
scheme converge to a solution of (2)(resp. (4)) as the mesh size tends to 0.
The Marker-And-Cell (MAC) scheme, introduced in the middle of the sixties [20], is one of the most popular
methods [25,29] for the approximation of the Navier-Stokes equations in the engineering framework, because
of its simplicity, its efficiency and its remarkable mathematical properties. The first error analysis seems to be
that of [26] in the case of the time-dependent Stokes equations on uniform square grids. The mathematical
analysis of the scheme was performed for the steady-state Stokes equations in [24] for uniform rectangular
meshes with H? regularity assumption on the pressure. Error estimates for the MAC scheme applied to the
Stokes equations have been obtained by viewing the MAC scheme as a mixed finite element method [18,19]
or a divergence conforming DG method [21]. Error estimates for rectangular meshes were also obtained for
the related covolume method, see [6] and references therein. Using the tools that were developed for the finite
volume theory [10,11], an order 1 error estimate for non-uniform meshes was obtained in [1], with order 2
convergence for uniform meshes, under the usual regularity assumptions (H? for the velocities, H! for the
pressure). It was recently shown in [22] that under higher regularity assumptions (C* for the velocities and
C3 for the pressure) and an additional convergence assumption on the pressure, superconvergence is obtained
for non uniform meshes. Note also that the convergence of the MAC scheme for the Stokes equations with a
right-hand-side in H~1(Q) was proven in [2].

Mathematical studies of the MAC scheme for the non linear Navier-Stokes equations are scarcer. A pioneering
work was that of [24] for the steady-state Navier-Stokes equations and for uniform rectangular grids. More
recently, a variant of the MAC scheme was defined on locally refined grids and the convergence proof was
performed for both the steady-state and time dependent cases in two or three space dimensions [4]. For the
Stokes equations on uniform grids, this latter scheme coincides with the usual MAC scheme that is classically
used in CFD codes. However, for the Navier-Stokes equations, the nonlinear convection term is discretised
in a manner which is similar to the finite element framework (see e.g. [28]), which no longer coincides with
the usual MAC scheme, even on uniform grids. This discretization entails in a larger stencil, and numerical
experiments [5] tend to show that is not as efficient as the classical MAC scheme. Our purpose here is to analyse
the classical MAC scheme for the Navier-Stokes equations in primitive variables on a non-uniform rectangular
mesh in two or three dimensions, and, as in [4], without regularity assumptions on the solutions.

In section 2 we introduce the MAC space grid and the discrete operators. In particular, the velocity convection
operator is approximated so as to be compatible with a discrete continuity equation on the duals cells ; this
discretization coincides with the usual discretization on uniform meshes [25], contrary to the scheme of [4].



We introduce the MAC scheme for the steady state Navier-Stokes equations in Section 3. We give a weak
formulation of the scheme. Velocity and pressure estimates are thus obtained, which lead to the compactness
of sequences of approximate solutions. We then show that any prospective limit is a weak solution of the
Navier-Stokes equations.

In Section 4, we turn to the unsteady Navier-Stokes equations. An essential feature of the studied scheme
is that the (discrete) kinetic energy remains controlled. We show the compactness of approximate sequences
of solutions thanks to a discrete Aubin-Simon argument, and again conclude that any prospective limit of the
approximate velocities is a weak solution of the Navier-Stokes equations thanks to a passage to the limit in the
scheme. In the case of the unsteady Stokes equations, we are able to obtain some estimates which yield the
compactness of sequences of approximate pressures; we are then able to conclude that the approximate pressure
converges to a weak solution of the Stokes equations as the mesh size and time steps tend to 0.

2. SPACE DISCRETIZATION

We assume that the domain 2 is a union of rectangles (d = 2) or orthogonal parallelepipeds (d = 3),
and, without loss of generality, we assume that the edges (or faces) of these rectangles (or parallelepipeds) are
orthogonal to the canonical basis vectors, denoted by (eq,...,eq).

Definition 2.1 (MAC grid). A discretization of Q with MAC grid, denoted by D, is given by D = (M, &),
where:
- the pressure (or primal) grid denoted by M, which consists of a union of possibly non uniform rectangles;
a generic cell of this grid is denoted by K, and its mass center xx. A generic face (or edge in the
two-dimensional case) of such a cell is denoted by o € £(K), and its mass center x,, where E(K) denotes
the set of all faces of K. The set of all faces of the mesh is denoted by &; we have & = €,y U Eext, where
Eint (resp. Eext) are the edges of € that lie in the interior (resp. on the boundary) of the domain. The
set of faces that are orthogonal to the i*" unit vector e; of the canonical basis of R? is denoted by &,
for i = 1,...,d. We then have £(*) = El(;)t U 8&),“ where 81(3 (resp. 8&2) are the edges of €*) that lie in
the interior (resp. on the boundary) of the domain.
- For each o € &, we write that 0 = K|L if 0 = 0K N JL and we write that 0 = m if, furthermore,
o e & and m -e; > 0 for some i € [1,d]. A dual cell D, associated to a face o € € is defined as
follows:
xif o = K|L € &y then D, = Dk, U Dy, where Dg , (resp. Dp ) is the half-part of K (resp.
L) adjacent to o (see Fig. 1 for the two-dimensional case) ;
* if 0 € Ecxy is adjacent to the cell K, then D, = Dk ;.

— .
A primal cell K will be denoted K = [00'] if 0,0’ € £€¥) N E(K) for some i = 1,...,d are such that
(xor — ) e; > 0. A dual face separating two duals cells D,, andgal is denoted by € = |0’ or € = dlo”
when specifying its orientation: more precisely we write that € = ojo” if Tz, - €; > 0 for some j € [1,d].

To any dual face €, we associate a distance d, as sketched on Figure 1. For a dual face e C 9D, € &),
i € [1,d], the distance d. is defined by:

] (i) - int>’ (5)
d(xy,€) ifee ey NE(D,)

X

— ~

. {d(wg,wal) if e = oo’ € £

where d(-,-) denotes the Euclidean distance in R, and the set €M of the faces of the i-th dual mesh
(associated to the ith velocity component) is decomposed into the internal and boundary edges: el =

£ UEY

int ext*

We define the regularity of the mesh M by:

e = max{|0/||, cetW o' e i jel,d,i ;éj}, (6)

lo
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FIGURE 1. Notations for control volumes and dual cells (for the second component of the velocity).

where | - | stands for the (d — 1)-dimensional measure of a subset of R?~! (in the sequel, it is also be used to
denote or d-dimensional measure of a subset R?). We also define the size of the mesh by

hayt = max{diam(K), K € M}.

The discrete velocity unknowns are associated to the velocity cells and are denoted by (us)yee, @ =1,...,d,
while the discrete pressure unknowns are associated to the primal cells and are are denoted by (px)xenm-

Definition 2.2 (Discrete spaces). Let D = (M, ) be a MAC grid in the sense of Definition 2.1. The discrete

pressure space Ly¢ is defined as the set of piecewise constant functions over each of the grid cells K of M,
and the discrete ¢ — th velocity space H g) as the set of piecewise constant functions over each of the grid cells
D, ,o € &Y. We shall denote by Ly, the functions of Ly¢ with zero mean value. As in the continuous case,
the Dirichlet boundary conditions are (partly) incorporated in the definition of the velocity spaces, and, to this

purpose, we introduce H g)o CH g),i =1,...,d, defined as follows:
4% —{ueH(“ wz) =0Va € Dy, o i=1 d}
E,0 — & - (<] exty VT Ly .

We then set Hg o = Hle H g,)o- Since we are dealing with piecewise constant functions, it is useful to introduce
the characteristic functions xx, K € M and xp,_,o € € of the pressure and velocity cells, defined by

lifx € K, lifx € Dy,
Xk (x) = xp, (x) =

Oifx € K, Oif x & D,.
We can then write a function u € Hg ¢ as u = (uy, ..., uq) with u; = Z Us XD, ¢ € [1,d] and a function
oe&()

pELpasp= Y PrXk-
KeM

Let us now introduce the discrete operators which are used to write the numerical scheme.



Discrete divergence and gradient operators The discrete divergence operator divy is defined by:

divye : H370 — LM
. _ 1 (7
u+— divyyu = Z 7 Z |U|UK,U XK,
KeM | ‘ o€ (K)
with ug o = Usnr o - €; for o € EVNE(K),i=1,...,d. (8)

where nx , denotes the unit normal vector to o outward K. Note that we have the usual finite volume property
of local conservativity of the flux through an interface o = K|L between the cells K, L € M, i.e.

UK,c = —UL,0, Vo = KlL € 81nt~ (9)
We can now define the discrete divergence free velocity space E¢(Q2) = {u € He o ; divyy u = 0}.
The discrete divergence of u = (uy,...,uq) € He ¢ may also be written as
d
divac(w) = > (Bsu) k Xk (10)
i=1

where the discrete derivative (0;u;)x of u; on K is defined by

lo|

— .
= |K|(u(,/ — up) with K = [00”],0,0" € £V, (11)

(Oiui) K

The discrete derivatives and divergence are consistent in the following sense:

Lemma 2.3 (Discrete derivative and divergence consistency). Let D = (M, E) be a MAC grid, and let g be
an interpolator from C2°()? to He o such that, for any ¢ = (¢1,-++ ,a)t € (C2(Q))%, there exists Cyp > 0
depending only on ¢ such that

Mpop — (HS)%'“ ,Hé%d) e H) x - x HY) where 12)
I s (@) — s (,)| < Cph2 VY € Dy, Yo € €D, Vi=1,--. d,

Then there exists Cy, > 0, where 0 is the reqularity of the mesh defined by (6), such that; |51Hg)cpi(w) —
81§01(.’13)| < C¢mhjv[ for a.e. x € ().

As a consequence, if (Dp)neny = (Mn, En)nen s a sequence of MAC grids such that n, < n for all n and
hat, — 0 as n — +o0, then divy, (Ilg, ) — dive uniformly as n — +oc.

The gradient in the discrete momentum balance equation is built as the dual operator of the discrete diver-
gence, and reads:
Ve : Ly — HS,O

p+— Vep (13)
Vep(x) = (O1p(z),. .., dap())",
where 0;,p € H g)o is the discrete derivative of p in the i-th direction, defined by:
o]

Oip(x) = (pr —prx) VYxeD forU:K—|I>/€8-(i) i=1 d (14)
i |Dg'| L K ek} int? g e eey W

Note that in fact, the discrete gradient of a function of Ly should only be defined on the internal faces, and
does not need to be defined on the external faces; we set it here in Hg ¢ (that is zero on the external faces)
for the sake of simplicity. Again, the definition of the discrete derivatives of the pressure on the MAC grid is
evidently consistent in the following sense:
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Lemma 2.4 (Discrete gradient consistency). Let Iy be an interpolator from C°(Y) to Lyt such that, for any
Y € CX(Q), there exists Cy > 0 depending only on v such that

v (x) — Y(zr)| < Cyphig, Vo € K, VK € M. (15)
then there exists Cy > 0 depending only on ¢ and n such that
9, TIvep () — 99 (x)] < Cyphove, Vo € ED ) Vi=1,...,d.

Let us then verify that the discrete gradient and divergence are dual.

Lemma 2.5 (Discrete div — V duality). Let ¢ € Ly and v € He o then we have:

/ q divqv dx + [ Veg-v dx =0. (16)
Q Q

Proof. Let q € Ly and v € He . By the definition (7) of the discrete divergence operator, we have:

/Qq divyqv de = Z qK Z lo|vE .o

KeM c€EE(K)

with vk, = VoK, - € for o € EDNE(K),i = 1,...,d. Thanks to the conservativity (9) of the flux we get
that:

/ q diviyv de = Z (axlolvk,e +qrlolvr,q)
Q 0€&in;,0=K|L

= Y. Jollax —q)vk .-

0€&int,0=K|L

Therefore, by the definition (14) of the discrete derivative of ¢, we get:

d
/ q divyv de = ,Z Z |Dy|vs0:q = */ Veq - v de,
Q Q

=1 oe&() o=K|L

which concludes the proof. O

Discrete Laplace operator - Fori = 1...,d, we classically define the i*"* component of the discrete Laplace
operator by:

(@) . (1) (7)
A’ H&0 — H‘g’0

1
wi —Beui == Y (Auwoxn,, with —(Auw)y = 0 Y goew) (17
ceg() Do ec&(D,)

&(D,) denotes the faces of D, and

° . — o~
Do e(ui) = {I‘ie(u" —up), if e=olo’ € &L,

Lly,, ifec €9 NED,)

de ext

where d. is defined by (5). Note that we have the usual finite volume property of local conservativity of the

. —
flux through an interface e = o |o”:

0
bo,c(Ui) = —¢or c(ui), Ve=olo" €

int*

(18)



Then the discrete Laplace operator of the full velocity vector is defined by

—Ag : H370 — H(C”O

ur —Agu = (—A (19)

g)ul, cee —Afgd)ud)t.

Discrete convection operator - Let us consider the momentum equation (1b) for the i** component
of the velocity, and integrate it on a cell Dy, 0 € €. By the Stokes formula we then need to discretise
ZeC@DU fe U - Ny e dy(x), where n, . denotes the unit normal vector to € outward D, and dy(x) denotes
the integration with respect to the d — 1-dimensional Lebesgue measure. For € = o|o’, the convection flux
fe uu - Ny dy(z) is approximated by |€|uq cu., where

e = (Ug + Ugr) /2, (20)

and |€|u, . is the numerical mass flux through e outward D,; this flux must be chosen carefully to obtain the
L? stability of the scheme. More precisely, we need that a discrete counterpart of the free divergence of u be
satisfied also on the dual cells. We distinguish two cases:
- First case — The vector e; is normal to ¢, and € is included in a primal cell K, with €9 (K) = {0, 0'}.
Then the mass flux through e = o|o’ is given by:

(—lofur.o +lo'|ur o). (21)

N | =

€l =

- Second case — The vector e; is tangent to €, and € is the union of the halves of two primal faces 7 and 7’
such that ¢ = K|L with 7 € &(K) and 7' € &(L). The mass flux through ¢ is then given by:

1

lelto,c = 5 (ITluker + 7' lur). (22)

Note that with this deglition, we again have the usual finite volume property of local conservativity of the flux
through an interface olo’, i.e.
|etig,e = —le[uc e (23)

together with the following discrete free divergence condition on the dual cells:

Z |e|uo7E=% Z \a|uK,U+% Z lo|ur, = 0. (24)

e€c&(Dy) o€ (K) o€e&(L)

Note that we have also u, . = 0 if € C 99, which is consistent with the boundary conditions (1c).

We now define the i-th component C'g) (u) of the non linear convection operator by:

o | ug s nf,
(2) o 1 Vo + Vo (25)
vi— O’ (u)v = Z Dyl Z |6|ug’ET XD, s
oceld) ec€(Ds)
e=o|o’

and the full discrete convection operator C¢(u), He o — He o by

Cs(u)v = (C (wvy, ..., OV (w)vg)".



3. THE STEADY CASE

With the notations introduced in the previous sections, the MAC scheme for the discretisation of Problem
(1) on a MAC grid D = (M, &) reads:

u € He o, p € Lo, (26a)
—Agu+ Ce(u)u + Vep = Pe f, (26b)
divjyiu = 0, (26¢)

where Lyio = {q € L fQ g dx = 0} and P¢ is the cell mean-value operator defined by

Pev = (i])(gl)vl,~~~ ,?(Sd)vd) c Hél()) X - X Hé‘?), where for i = 1,...d,
P LNQ) — HY),
(% P—>ngUi; 1=1,--- ,d,
1

’Pg)vi: Z <|DU/D v;(x) dw) XD, -

0€Eint

(27)

3.1. Weak form of the scheme

We first recall the definition of the discrete H} inner product [10]; it is obtained by multiplying the discrete
Laplace operator scalarly by a test function v € Hg o and integrating over the computational domain. A simple
reordering of the sums (which may be seen as a discrete integration by parts) yields, thanks to the conservativity
of the diffusion flux (18):

d
V(u,v) € He o, / —Agu-v de =[u,v]1e0= Y [ui,vile0 0,
Q

i=1
. € € 28
with [ui, vily g o = Z % (Ug — ugr) (Vo — Vo) + Z % Uy Vg (28)
el et "
e=olo’ €eCI(Ds)
H(i XH(i)—>R H: o xHegg— R )
The bilinear forms €,0 €,0 and ' ' are inner products on H g)o and He g
(u,v) = [uivvi]lﬁ(i),o (u,v) = [u,v]160 ’
respectively, which induce the following discrete Hi norms:
le| l€] .
Hui||i€<i)70 = [ui, Uil e 0 = Z T (g — ugr)? + Z T u? fori=1,...,d, (29a)
el et "
e:a‘l—o} eC(?(D;)
d
lf 0 = [wulieo =Y lluillf g o (29b)
i=1

Since we are working on Cartesian grids, this inner product may be formulated as the L? inner product of
discrete gradients. Indeed, consider the following discrete gradient of each velocity component u;.

ngui = (51ui, .. .,6dui) with 5jui = Z (@ui)De XD, (30)

eeg(i)
GJ_ej



D,

F1GURE 2. Full grid for definition of the derivative of the velocity.

Uy — Ug

—
where (0,u;)p, = with € = olo’, and D, = € X x,x, (see Figure 2). This definition is compatible

€
with the definition of the discrete derivative (0;u;)x given by (11), since, if ¢ C K then D, = K. With this
definition, it is easily seen that

/ Vewu- - Vewv doe = [u,v}178<i)70,Vu,v IS Hg)O,Vi =1,...,d. (31)
o ,

where [u,v]; g o is the discrete Hg inner product defined by (28). We may then define
Vg’ll, = (Vgu)ul, ceey V5<d)ud),
so that
/ Veu: Vev do = [u,v]1.6 0.
Q

With this formulation, the MAC scheme for the linear Stokes problem as a gradient scheme in the sense
introduced in [12], see [14] and [8] for more details on the generalization of this formulation to other schemes.
In the stationary case, we can show the (strong) convergence of this discrete gradient to the gradient of the
exact velocity, and thus also show the strong convergence of the pressure, see section 4.4.

The weak form bg of the nonlinear convection operator is defined by:

d
Y(u,v,w) € He o, be (u,v,w) = Zbg) (w, vi, w;),
i=1 (32)

where for i =1,....d, b(g) (w, v, w;) = C’g)(u)vi w; da.
Q

We are now in position to introduce a weak formulation of the scheme, which reads:
Find (’U,,p) S HS,O X LM,O and, V(’v,q) S Hg,o X Ly,
/ Veu: Vev da + be (u, u,v) — / pdivy(v) de = / Pef v dex, (33a)
Q Q Q

divyeu g de =0, (33b)
Q

and which is equivalent to the MAC scheme (26).

3.2. Existence and stability

Lemma 3.1 (Estimate on bg). Let D = (M, &) be a MAC grid and let be be defined by (32). There exists
Cpye > 0, depending only on the reqularity ny of the mesh defined by (6) such that:

v

V(u,v,w) € Ee x H8,02’ |b5(u’v’w)| < CUM ||u||L4(Q)d||v II,S,O ||w||L4(Q)d (34)
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and
V(u,v,w) € Bg x Heo?,  |be(u,v,w)| < Cyy ullieo [[0]l1,e0lwle o, (35)
Proof. We closely follow the proof of the estimate in the continuous case, where the nonlinear term b(u, v, w)

= fQ -w dx is estimated thanks to the Holder inequality and the Sobolev embedding: there exist
Ci>0 and C’g > 0 depending only on 2 such that

b(w, v, w)| < Chl|lullp @)l Vol L2(@)axa||w]| L2 @)a

< CQHVUHLQ(Q)dXd||V’UHL2(Q)d><d||VUJ||L2(Q)d><d.

Let (u,v,w) € Eg x He o*. Thanks to (24), we have:

b( (w, u;, v;) E We g €] (Ve — Vo )Uoe-

cell®) ec&(D,)

From the definition (20) of u. and with a discrete integration by parts, we get that:

i 1
bé)(u,ui,vi) =-3 Z (Vo — Vo) €|t e (Wor + W)
—
emofol €E()

int

From the definition (21)-(22) of u, e we have for € = da € Emt

|ua,e| < {

where 7 and 7/ are the faces of £),j # i such that e C 7U 7',

(ol + luor]) i€ Les,
(Jlur|+ |ur]) ife e, andeCTUT,

N[ D=

bg)(u,ui,vi) = Z lel(Jta | + [uo|) Ve = vor||lwo + wor| + Z lel(Jur| + |ur)ve — vor[[we + wer|.

. — .
e:da’Engi e:aﬁa’EE.(‘)

int

ele; efe;,eCTUT

Using Hélder’s inequality, we get:

15 vad 1.4
Z lel|uo||ve — vor [|we | Z le] 3 dé [ug| [V — Vor|[€]3 dé [we |

e=dlo’ €ED) e=dlo’ €E() N
int int
ele; ele;
1 el 1 1
<Y )Y PO Y )
€
e=olo’ GSf;)t e=olo’ 681(:11 e=olo’ 685:&
ele; cle; ele;

< willayllvilly e ollwill Lagay-

Therefore, with similar computations for the terms involving s/, U, U, Uy and w,, we get:

b8 (w, i, vi) < One[lluillsllvill e ollwill sy + Y Mugllzs@llvill e ollwillay], Vi € [1,d,
Jell,d]
i
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where C¢ only depends on ny¢ (6). We then deduce (34). By the discrete Sobolev inequality [10, Lemma 3.5],
we also have

bg) (U,Ui,Ui) < CUM [ he LVZ. < ‘[1’d}|’
Jj€lLd
J#i
from which we get (35).
O
Lemma 3.2 (bg is skew-symmetric). Let (u,v,w) € Eg x He o x Hg o then ;
be (u,v,w) = 7b5 (u’awav)7 (36)
and therefore
Yu € Eg, be (u, u,u) = 0. (37)

Proof. The proof follows that of the continuous case, which is based on a integration by parts. Indeed

b(u,’u,w):/Q(u~V)v'wda::f/Q(u~V)'w~vdm:fb(u,'w,v).

Let (u,v,w) € Eg x Hg g x He o. By (24) we have:

b( (w, v, w;) Z We Z €] (ve — V5 )Ug,e, for any i € [1,d]].
se€®  cE(D,)

From the definition (20) of u. and with a discrete integration by parts, we get by conservativity of the flux (23)
that:

bfgl) (’LL, Ug, Ui)

1
2 Z l€[(vo = Vo' )to e (Wor + wo)
—010 el

lnt

1
=3 E l€] (Vo + Vo' Yot e (Wor — Wi ).
=
_ 0
e=o'lo€& y

which yields (36) thanks to another discrete integration by parts. O

In order to obtain an a priori estimate on the pressure, we introduce a so-called Fortin interpolation operator,
which preserves the divergence. The following lemma is given in [17, Theorem 1, case ¢ = 2], and we re-state
here with our notations for the sake of clarity.

Lemma 3.3 (Fortin interpolation operator). Let D = (M, &) be a MAC grid of Q. For v € He,, we define
':Pg’l) by
ﬁgv = (53581)1;17 e ,53(81)1;0 € He, where fori=1,...d,
5O i) — )
’Ui’—>ﬂ>5’l/'i;7;:1,"',d, (38)
~; 1 4
(Pfg)vi(w) =T / vi(z) dy(z), Yz € D,, o € £V,

o] Jo

For q € L*(Q), we define Pyq € Ly by:

Paf@) = 1 [ al@) (39)
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Let mye > 0 be defined by (6). Let o € (HL(Q))4, then

divae(Pe ) = P (divep), (40a)
1Pepllie.0 < Con IVl (120, (40b)

where C,), depends only on my and €. In particular, if dive = 0, then divM(va’ggo) =0.

Theorem 3.4 (Existence and estimates). There ezists a solution to (33), and there exists C,, > 0 depending
only on the regularity nye of the mesh and ), such that any solution of (33) satisfies the following stability
estimate:

[ull1e.0 + Pl 22 @) < Cnae [1FllL2(0)a- (41)

Proof. Let us start by an a priori estimate on the approximate velocity. Assume that (u,p) € He g X Lo
satisfies (26); taking v = u in (33a) we get that:

ullfeo= /Qp divay dz w — be (u, u,u) + /Q fe-u de.

Since divycu = 0 and bg (u, u,u) = 0 by (36) this yields that
[ullie0 < diam(Q)[[f[l(z2)a- (42)

thanks to the fact that || fell(£2())e < || fll(z2(q))« and to the discrete Poincaré inequality [10, Lemma 9.1].

An a priori estimate on the pressure is obtained by remarking as in [27] that the MAC scheme is inf-sup
stable. Indeed, since p € LZ(12), there exists ¢ € (H}(Q2))? such that dive = p a.e. in Q and

lell(m e < cllpllzz@), (43)

where ¢ depends only on  [23]. Taking v = P¢ ¢ (defined by (38)) as test function in (33a), we obtain thanks
to Lemma 3.3 that

[u,v]1,e,0 + be(u,u,v) — / p?de= [ Pef- v de.
o Q

Thanks to the estimate (35) on bg and the Cauchy-Schwarz inequality we get:

IPlZ20) < lullreollvlieo + Colluli e ollvlieo + [ £l lvllLa@ye,

which yields

pllze < Concll Fll L2 (@) (44)
thanks to (40b), (43) and to the estimate (42).

Let us now prove the existence of a solution to (33). Consider the continuous mapping

F: Hg,o X LM70 X [O, 1] — H&Q X LM70
(w,p,¢) = F(u,p, () = (&,p)

where (@, p) € He o X Ly o is such that

/ w-v=[u,v1e0+ ¢ be(u,u,v) —/ p divye v —/ fe-v,YveHegy (45a)
Q Q Q

/ﬁqz/ divae w g, Vg € Lo (45D)
Q Q
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It is easily checked that F is indeed a one to one mapping, since the values of 4(9;i = 1,--- ,d, and p are readily
obtained by setting in this system v; = 1p_, v; = 0,5 # ¢ in (45a) and ¢ = 1k in (45b). The mapping F is
continuous; moreover, if (u,p) € He o X Lo is such that F(u,p,¢) = (0,0), then for any (v,q) € He o X L,

[u,v]1,e,0 + ¢ be(u, u,v) — / pdiva(v) de = / Pef v dx,
Q Q
/ divay (u) g de = 0.
Q

The arguments used in the above estimates on possible solutions of (33) may be used in a similar way to show
that (u,p) is bounded independently of ¢. Since F(u,p,0) = 0 is a bijective affine function by the stability of
the linear Stokes problem (see [2]), the existence of at least one solution (u,p) to the equation F(u,p,1) =0
which is exactly (33), follows by a topological degree argument (see [7] for the theory, [9] for the first application
to a nonlinear scheme and [13, Theorem 4.3] for an easy formulation of the result which can be used here). O

3.3. Convergence analysis

In order to prove the convergence of the scheme, we introduce an alternate convection operator by, defined
on the pressure grid and easier to manipulate in the proofs. It relies on the reconstruction of each velocity
component on all edges (or faces in 3D) of the mesh.

Lemma 3.5 (Full grid velocity interpolate). For a given MAC mesh (M, &), we define, fori,j =1,...,d, the
i-th full grid velocity reconstruction operator by

RED - HYY - LA(Q)

v ng’j)v = Z Uy XD, s (47)
veel)
where
: 1
Uy =0, if 0 € el 3, = m J,EZN Vg Otherwise, (48)
where, for any o € €\ €YD, N, = {0’ € €D D, no’ #0}. (49)

Then there exists C > 0, depending only on the regularity of the mesh defined by (6), such that, for any
ve LXQ), and any i, j = 1,....d, |REDv] 120y < Cllv]| 2 (y-

Proof. Let us prove the bound on ||Rg’j)HL2(Q) for d = 2,4 =1and j = 2. Other cases are similar. Let

veH g)o By definition of fR(g’j )v, retaining for each o € &y the cells where v, is involved and noting that

[i(cﬂ—b—l—(H—d)]Q§(12—i-b2—&-(:2+d27 we have:

IRE 0220y < S 021Dyt | + 1Dy | + 1Dyt | +Dn )
JES(i)

int

oc=K|L

<d4n® Y 02D,
ceeld

int
o=K|L
where Dg: (resp. D,y denotes the velocity cell associated to the top (resp. bottom) edge of K, with o = KL,

see Figure 3.
O
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D

oL

o~

Dy

o

o=K|L

[)//

Ficure 3. Full grid velocity interpolate.

Lemma 3.6 (Weak consistency of the nonlinear convection term). Let (Dy)nen, with D, = (M, &) be a
sequence of meshes such that hy, = maxg g, diam(K) — 0 as n — 400 ; assume that there exists n > 0 such
that nye, < n for any n € N (with n,, defined by (6)). Let (Vn)nen and (wy)nen be two sequences of functions
such that

- v, € He o and w, € He, o,

- the sequences (Vy)nen and (wy)nen converge in L2(Q)% to v € L2(Q)? and w € L*(Q)? respectively.
Let (TIlg, Jnen be a family of interpolators satisfying (12) and let o € CX(Q)4. Then be (v, wy, e, @) —
b(v,w,p) as n — +oo.

Proof. Let i € |1,d]. We have: be, (v, w,, e, @) = E?Zl bg) (v, w;, Hg)goi), where we have omitted the sub-
and superscripts n for the sake of clarity in the right hand side of the equality, with:

b (v, wi I 0) = Y7 pis D lelvgcwe =51+ 5s,

ol ec&(D,)
where ¢; » = p;(x,), with
Vg + Vo' We + Wer Vr + Vpr We + Wy
Si= > lel— 5 iy 2= > el = 5 i
iy -1 e 100\
e=olo’€E; 1 e=olo' €&}
ele;,eCK ete;,eCTUT’

where 7 and 7/ are the faces of €9),j # i such that e C 7 U 7',
For K € M and 0,0’ € &(K)NE® we denote by ¥ ; the mean value %(vo +v,/). Reordering over the edges,
we get that

Sl = Z |U|{)K,i"bK,i(§0i,o — 901',0')
KeM
—
K=[o0c']

> (Dot + Dy, o 1,0)0:11¢ o

0E€Eint
o=K|L

%—/ﬁiwiﬁicpidwasn—)—&—oo
Q
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thanks to the fact that @, ; — 4; and @, ; — w; in L?(£2), and thanks to Lemma 2.3. Now Sy = Z So,; with

j€[1,d]
J#i
4
Sz = Z T |7 Z (Woy +Woy) iy + (Wou + Wos) Pinoy — (Woy + Way) Pisry — (Woy + Wou) Pioy
768(72 k=1
where (ok)g=1,..4 are the four neighbouring faces (or edges) of 7 o1 72
belonging to €*, i.e. such that 7 N &, M, see figure on the right. o3 T o4
Thus,
U7
Sz,j = Z |T|Z [(wffe, + w01) (@i,dl - @i,ds) + (wo, + wUz) ((pi,ffz - Spi,04)]
T€€(J‘2
= — Z |D7—|U7—w7—aj§0i(w‘r) + R
regl
where |R| < Cy,, Jllz2(@)hn, with Cy ;) > 0 depending only on ¢ and 7. Hence
Saj — —/ v; wy 0j¢; dx as n — +o00,
Q
which concludes the proof. O

Theorem 3.7 (Convergence of the scheme). Let (Dy,)nen, with D,, = (M,,, E,) be a sequence of meshes such
that hyt, = maxg oy, diam(K) — 0 as n — +oo ; assume that there exists 1 > 0 such that ny, < n for any
n € N (with nv,, defined by (6)). Let (tn,pn) be a solution to the MAC scheme (26) or its weak form (33), for

D = D,,. Then there evists u € H}(Q)? and p € L*(Q) such that, up to a subsequence:

- the sequence (U )nen converges to 4 in L(2)%,

- the sequence (Vpuy, )nen converges to Va in L?(Q)?*4,
- the sequence (pp)nen converges to p in L*(Q),
- (u,p) is a solution to the weak formulation (2).

Proof. Thanks to the estimate (42) on the velocity, we can apply the classical translate estimate [10, Theorem
14.2] and the estimates on the translates [10, Theorem 14.1] to obtain the existence of a subsequence of ap-
proximate solutions (., )nen Which converges to some w € L?(Q)¢. From the estimates on the translates, we
also get the regularity of the limit, that is @ € Hg(Q2)?. The estimate (44) on the pressure then yields the weak
convergence of a subsequence of (p,)nen to some p in L2(€). Let us then pass to the limit in the scheme in
order to prove its (weak) consistency.

Passing to the limit in the mass balance equation: Let ¢ € C°(Q), taking 1, = IIy, 1 the point-wise
interpolate defined by (15) as test function in (33b) and using (16), we get that:

d
0= / divayg, wp oy da = 7/ Vat, Un - Uy doe = — Z/ uDdp, de.
Q Q PR

Therefore, thanks to Lemma 2.4,

d
0= lim / divye, wpth, de = — / a1 de = — /
n—-+oo Q ; Q

Q

ﬁ~V¢dm:/divﬁwdaz.
Q
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so that @ satisfies (33b).

Passing to the limit in the momentum balance equation: Let ¢ = (¢1,- -+ ,0q)! € (C(2))?, and
take ¢, =1Ilg, @ = (Pn,1,  + ,pna)’ € He, o as test function in (33a); this yields:

/ Ve, Un : Ve @n de + be(Un, Un, pn) — / Pn divay, n dz = / Pe,. [+ pn de. (50)
Q Q Q

Thanks to the L? convergence of u,, to i, to the weak L? convergence of p,, to p and to the uniform convergence
of Pe, f to f and of divye, ¢, to dive (see Lemma 2.3) as n — +oo, we have

/(Pgnf-gondm—)/f-gédzcand /pndiancpndx—>/ﬁdiv¢dmasn—>oo
Q Q Q Q

From [10, Proof of Theorem 9.1], we get that

/ Ve, Uni: Ve, onide = [un’i,cpn’i]l PO s —/ 1;Ap; do as n — +00.
Q E] n Q

and therefore

d
Ve, Un : Ve, ¢, de — —Z/ U; Ap; doe = / Vu: Ve dr as n — +oo.
Q —Ja Q

By Lemma 3.6, we have

n—-+o0o

lim be, (Un, upn, n) = /(11 -V)u - ¢ de. (51)
Q

Passing to the limit as n — 400 in (50) thus yields that @ and p satisfy (2).

Let us now prove the strong convergence of Ve u, to Va in L#(2). The sequence (Vg, u,, )nen is bounded in
L?(9)?*? and therefore, there exists £ € L2(Q)9*? and a subsequence still denoted by (Ve, w,)nen converging
to & weakly in L2(Q)?*¢. Since fQ Ve, Un pn de = fQ div, ¢, u, dz, the uniqueness of the limit in the sense
of distributions implies that Vu = £. Taking ¢,, = u,, in (50) this yields:

/Vg"un Ve, up de = / Pe, f-uy, do.
Q

Passing to the limit as n — oo we get that:

Ve, unll7zyixa = lunlli e, 0 = /Qf ‘ude = ||Vﬁ||i2(§z)dxd,

which implies the strong convergence of the discrete gradient of the velocity.
Let us finally prove the strong convergence of the pressure. Let ¢, € (H}(Q))? be such that dive, = p, a.e.
in Q and

lenllmi@) < cllpallz@),
where ¢ depends only on €. Let v, = 513;5”50”; thanks to Lemma 3.3, we have [[¥,][1,e,,0 < ¢ Oy, [IPnllz2()s

and since p,, is piecewise constant, we get that divye, ¥, = pp, Therefore, taking 1, = Pe, @, as test function
in (33a), we obtain:

/p?m de = / Vﬁnun : Vgnd’n dx + bg(unvuna¢n) _/ (P(‘Zn.f -, dx,
Q Q Q

and [[¢n 1,60 < ¢ Cn, [[Pallr2(0)-
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From the bound on ||, converges to some 1 € H}(Q)? in L2(Q) and thanks to (31)
that Ve, v, — Vi) weakly in (L? (Q)dxd) as n — 4o00. Passing to the limit as n — co we get that

||pn||L2(Qﬁ/w Vo dz + b(@ /f ® dz.

Since (u,p) satisfies (2), this implies that ||p,||r2(q) = [|Pllz2(q), which in turn yields that p, — p in L2(f2) as
n — +00. t

Lemma 3.8 (Convergence of the full grid velocity interpolate). Let (M,,, E,)nen be a sequence MAC meshes
such that hat, — 0 as n — +00, and (N, Jnen Temains bounded. Let v € L*(Q), and let (v, )nen be such that

vy € ES) and v, converges to v as n — +oo in L2(2). Leti,j = 1,...,d and IRE;;Lj) be the full grid velocity
reconstruction operator defined by (47). Then R(g;j)vn — v in L*(Q) as n — +oo0.

Proof. Let ¢ € C(Q). Denoting fR(gnj) by R, and ?gi by P, for short (recall that ﬂ’(gz is defined by (27)) we
have:

||fRn?)n 71_)||L2(Q) < HfRn’Un - R, Oan’l—)”LZ(Q) + ||fRnO(Pn17 7fRnOangOHL2(Q) + ||fRn oancp—cpHLz(Q) + ||80777||L2(Q).

Since R,v, = R, o Ppu,, and thanks to the fact that [|R,|12(q) is bounded (see Lemma 3.5) and that
[Pnllz20) < 1, we get that there exists C' > 0 such that

[Rnvn — 0l z2(0) < Cllvn — 9||L2(0) + Cllv — @l L2() + [|Rn 0 Pr — @llz2(0) + I — 0llz2(0)

Let € > 0. Let us choose p € C°(12) so that [[¢ — 9| 12(0) < &35 There exists ny such that C|v, — 0[[12(q) <
g, ¥n > ny, and there exists ny such that [|R, o P — ¢l|12q) < &, Vn > ny. Therefore, for n > max(ni, na),
we get:

(|Rnvs — ’D”Lz(g) < 3e,
which concludes the proof. O

4. UNSTEADY CASE

4.1. Time discretization

Let us now turn to the time discretization of the problem (3); we consider a MAC grid D = (M, €) of Q2
in the sense of Definition 2.1, and a partition 0 = ¢ty < t; < --- < ty = T of the time interval (0,T), and,
for the sake of simplicity, a constant time step & = t,,11 — t5; hence ¢, = nd for n € {0,--- ,N —1}. Let

{u?,"“), océ&® nelo,--- —1}} and {p("H) KeM,ne{0,---,N —1}) be the sets of discrete velocity
and pressure unknowns; we deﬁne the corresponding piecewise constant functions w = (u1,...,uq) and p. For

the velocities, these constant functions are of the form:

N-1
— Z Z uS XD Xt i)

n=0 seed®

int

where Xy, +,,,] is the characteristic function of the interval |t,,t,1]. We denote by Xj ¢ 5 the set of such

piecewise constant functions on time intervals and dual cells, and we set X¢ 5 = H?Zl Xi e . For the pressure,
the constant functions are of the form:

p(x,t) = pg?-H) forx e K andt €|t,, thy1]

and we denote by Yy & the space of such piecewise constant functions.
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We look for an approximation (u,p) € Xe & X Yars of (4,p) solution of the problem (3). For ¢ € £,

i€ {l,---,d} the value uS™ is an expected approximation of u;(x, t,+1), for € € D,, and the value pg(+ )is an

expected approximation of p(x,t,11) for @ € K. For a given u € X¢ 4 associated to the set of discrete velocity
unknowns {uS"", o € €0 n € {0, —1}}, and for n € {0,--- , N — 1}, we denote by u\" € Hél)o the
piecewise constant function defined by u(n)( )= ul™ for z € D,,0 € &9 andset ul™ = (u(ln), cee {(;L))t € He.
Setting

u(,0) = Z uOxp, = Peuo,

seel®

int

we define the discrete derivative 0;u € X¢ & by

N-1

1
6tu = Z g(U(nJ’_l) - U(n))x]t"7t7l+l]
n=0

Denoting by u(™ = u(-,t,) and p(™ = p(-,t,), the time-implicit MAC scheme for the transient Navier-Stokes
reads:

Initialization
w® = Pyug .
Step n > 0. Solve for ™" and p("+1) .
u D ¢ H; o, P+ ¢ Lo, o
Bt — Agut) 4 Cp (u D)) u ) 4w pntD) = gt (520)
divpru™tD) =0, (52d)

where for all n € {0,...,N — 1}, fénﬂ) = Pe f(-,t D) (recall that Pe is the mean value operator defined by
(27)). A weak formulation of Step n of the scheme (52) reads:

Find u™*V € E¢ ; n € {0, - - — 1}, such that, for any v € Eg,

/5u”+1) vda:—f—/Vu(”H) Vo dz + be (u T u D), /f(nH) v dx. (53)

4.2. Existence and estimates on the approximation solution

Lemma 4.1 (Existence and first estimates on the velocity). There ezists at least a solution u € Xy 5 satisfying
(52). Furthermore, there exists C' > 0 depending only on ug and f such that any function u € X & satisfying
(52) satisfies:

lullzz0,rm, o) < C, (54)

1wl Lo (0,122 ()4) < C, (55)
N-1

where ||U||2L2(0,T;H£,D) = Z w3 ¢ o, Il om;r20ye) = max{u 2@, n € [0,N — 1]}, and
n=0

u™ = (- t,).

Proof. We prove the a priori estimates (54) and (55). The existence of a solution then follows by a topological
degree argument as for the stationary case.
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Let M < N — 1; taking v = «("*1 in (53), multiplying by & and summing the result over n € {0,---, M},
we obtain thanks to Lemma 3.2 and to the Cauchy-Schwarz inequality:

n (n (n n+1
Z > Do ful D (i — +Z5t|| P2 e o < Z&Ilfz tna1) 2@ lui (s tnga) 220 -
n=0

n=0 &)

Using the fact that for all a,b € R, a(a —b) = 1(a — b)* + Fa* — b* for the first term of the left hand-side and

the discrete Poincaré and Young inequalities for the right and side, we get that

M+1) n+1) (0 i
ud™ )2, Q>+Z&n N2 0 S ul Ry + CRIFDN2 0 206
n=0

where Cp > 0 depends only on . On one hand, this inequality yields the L> estimate (55); on the other hand,
taking M = N — 1 and summing for i = 1,...,d, we get the L? estimate (54).
O

Next we turn to an estimate on the discrete time derivative. To this end, we introduce the following discrete
dual norms on Hg ¢ and X¢ 5.
/ v-pde
Q

N-1 >3/4 (56)

4/3
veE Xegr ||UHL4/3(O,T;E’S) = (Z &||fn+l)\|E/é
n=0

v € He o = [|v]| g, = max{ i @€ Be and |@llie0 <1},

Lemma 4.2 (Estimate on the dual norm of the discrete time derivative). Let u € X¢ 5 be a solution to (52).
Then there exists C > 0 depending only on wug, 2, ny and f such that:

10¢ull /30,78,y < C.

Proof. Tf u € X¢ g is a solution to (52) then u(™ ™) = wu(-,t,,1) € E¢ is a solution to (53); taking v € E¢ such
that ||v|1,e,0 <1 as test function in (53) we have Vn € {0,--- ,N — 1}:

/ du™ .y da +/ V™ . Vo de + be (u™T) wD) p) = / fénﬂ) v dx.
Q Q Q
By Lemma 3.2 and thanks to the estimate (34) we have
|be (u(n+1)7u(n+1),"’)| < CvmHu(nH)||2L4(Q))d||”||1,8,0-
Using the Cauchy-Schwarz inequality, we note that
A e P sl A
Therefore, thanks to the estimate (55) of Lemma 4.1,
n n 3/2 n n+1
/Qét“( v de < G, Oflul H)H(éﬁ(n))d + ™D e o + 1F 22 @,
Hence

n 4/3 n n 4/3 n+1)4/3
18 D52 <9 ((Cone )} ™D o gy + I DUE o+ 1A 10 )

3 n n n+1
<9 ((CnMC)3 [k +1)||L6(Q)d + [l Jrl)||178,0 + ||fe i )HL2(Q)d + 2) :
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Multiplying this latter inequality by & and summing for n =0,..., N — 1, we get

4 4
90330 7y <9 (Conc@ w0z, 000y0) + 1320110 o) + 1120 02(000) +2T) -

We conclude by the discrete Sobolev inequality [10, Lemma 3.5] and thanks to the L?(0,7;He o) estimate on
u given in (54). O

4.3. Convergence analysis

Theorem 4.3 (Convergence of the scheme). Let (&m)men and (Dm)men = (M, Em)men be a sequence of
time steps and MAC grids (in the sense of Definition 2.1) such that &, — 0 and hye,, — 0 as m — +oo ;
assume that there exists n > 0 such that nv,, < n for any m € N (with ny,, defined by (6)). Let w,, be a
solution to (53) for & = &, and D = D,,. Then there exists u € L*(0,T; E(Q)) such that, up to a subsequence:

- the sequence (W )men converges to w in L*/3(0,T; L?(Q)%),

- is a solution to the weak formulation (4).

- Oy € LY3(0,T; E'(Q)).

Proof. We proceed in four steps.
First step: compactness in L*/3(0,T; L?(Q)9).

The first step consists in applying the discrete Aubin-Simon theorem 5.3 in order obtain the existence of
subsequence of (U, )men which converges to @ in L*/3((0,T); L2(Q)9). In our setting, we apply Theorem 5.3
with p = %; the Banach space B of is L?(Q)?, and the spaces X, and Y,, consist in the space H¢, o endowed
with the norms defined respectively in (29) and (56). By [10, Theorem 14.2] and the Kolmogorov compactness
theorem (see e.g. [10, Theorem 14.1]) we obtain that (X,,, Y )men is compactly embedded in B in the sense of
Definition 5.1. Let us then show that the sequence (X, Yy )men is compact-continuous in L?(02)? in the sense
of Definition 5.2. Let wu,, € Hg,, o such that (||wn|1.¢,, 0)men is bounded and ||, | g, — 0 as m — +oo.
Assume that u,, — @ in (L%(Q2))%; by definition (56) of the dual norm, we have

/Qum Uy de < lup|1e,, ollunl e, -
Passing to the limit in this inequality as m — oo, we get that u = 0, so that the sequence (X, Yin)men is
compact-continuous in L?(Q2)?. We now check the three assumptions (H1), (H2) and (H3) of Theorem 5.3:
By Lemma 4.1, the sequence ||wm||L1 (0,71, o) 18 bounded, and thanks to the discrete Poincaré inequality, the
sequence (U, )men is also bounded in L*3(0,T; (L?*(Q)%)); furthermore, the sequence 10t || a3 0,1 18
bounded by Lemma 4.2. Hence, Theorem 5.3 applies and there exists @ € L*/3(0,T; L?(Q)?) such that, up to
a subsequence,

U — @ in L*/3 (0,T; LQ(Q)d) as m — +o0.
Step 2: Convergence in L?(Q2 x (0,7)).

By Lemma 4.1, the sequence (w,,)men is bounded in L*°(0,T, L%(9)?%), and therefore, there exists 4 &
L>(0,T; L*(2)?) and a subsequence (tg(m))men converging to @ x-weakly in L>(0,T; L2(Q)?). Since g () —
@ in L¥3(0,T; L?(Q)%), the uniqueness of the limit in the sense of distributions implies that @ = @ so that
€ L>(0,T; L2(Q)9). By a classical interpolation result on LP(0,T') spaces, we have

_ _ 2/3 _ 1/3
& — w2 (0,7;22(0)0) < [JU — um||L{L/3(0’T;L2(Q)d) |w— umHL{m(o,T;Lz(Q)d)a

which implies that u,, converges towards @ in L2(0,T; L%(Q)?) as m tends to infinity.

Step 3: Weak consistency of the scheme
The notion of weak consistency that we use here is the Lax-Wendroff notion: we show that if a sequence of
approximate solutions of the scheme converges to some limit, then this limit is a weak solution to the original
problem. Let us then show that @ satisfies (4). Let ¢ € C°(Q x [0,7))¢, such that divp = 0. By Lemma
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3.3, we have divye,, ﬂv’g @(,t,) = 0, and so we can take Lp = ng p(-,tn) € E¢ as test function in (53) ;
multiplying by &, and summing for n = {0, . -1} (w1th Npoty, =T), we then get:
Ny —1

Z Ot ( / dul o) de dt + / Ve, ultt) 1 Ve, o) da + be,, (uli ) ul) o)

- [ Per ol ax) o
Q

The first term of the left handside reads T3,, = Zgzl Tim,; with

Ny —1
Tlm,i = Z Z |D | (n+1 m)a')<p£n)a'
n=0 ge&@
N1 S _
= Z o Z |D |u(”+1)u Z |D |u£r?,)a @mo’

= oce&® cee@®

/ /umlactﬁtcpmlact dxdt—/fP uoZ (0)(33) dz.

We know that u,,; — @; in L*(0,T; L?(Q2)) as m — +oo. By definition, the discrete partial derivative d;pm ;

converges uniformly to Op; as m — +o0o. Moreover, Pg, ug,; converges to (Go;) in LI(Q) for all ¢ in [1,2], and

gm(n)g converges to @;(+,0) in LI(Q) for all g in [1, cc]. Hence

T
Tim — 7/ / u(x,t) - Orp(x, t) de dt — / uo(x) - p(x,0) de as m — oo. (57)
0 Jo Q
Let us then study the second term of the left hand side. We have
/ Ve STTLL+1) Ve, (p(n) de = / Ve 777;-&-1 Ve, @ (ﬂ-&-l) dx _,_/ Ve S:LH_D Ve, (o (n) _ (n+1)) de

As in the stationary case, we get that
Npp—1
Z O, /Vg u(”+1) Ve, (”'H) dx—>/ /Vu Ve dx dt as m — +oo.

n=0

Moreover, thanks to the regularity of ¢,
/ Ve, unt: Ve, (ot — o)) de < &, Colluli™|l1e.0
Q

where C, depends only on ¢. We thus get that

Ny —1
Z Om, /Vg w) Ve (oD o)y da — 0 as m — +o0.

Similarly, we have

/ Pe, FOD - (o) — ) dae < &CL || £ tns1) | r2(0) — 0 as m — +oo,
Q
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so that
N

Z& /98 FotD . ”)dsc—>/ f-pdxdt as m — +oo.
=0 Q
The convection term is easily dealt with by remarking that Lemma 3.6 implies that

N—1
Z Atmbe ( u("+1 (”H) ”) ) — / (u,u,p) dt as n — +o0.
=0

Therefore, @ is indeed a solution of (4).

Step 4: Regularity of the limit
Thanks to [10, theorems 14.1 and 14.2] the sequence of normed vector spaces (He,, o,| - |l1,e,.,0)men 1S
L2(2)%limit-included in H(2)? in the sense of Definition 5.4. We have w,, — @ in L2(0,T, L*(Q)) as
m — oo and (Hum||L2(O,T;Hgm,o))m6N is bounded thanks to Lemma 4.1. Therefore Theorem 5.5 applies and
u € L*(0,T; E(Q)).

Let us finally show that 8;a € L*/3(0,T; E'(Q)). Let ¢ € C°(2x (0,T)) such that dive = 0. Let ,, € Ee¢,,
be defined by

nt+l
Ym(t &/ Pe(-,t) dt for t € [ty, tni1].

Thanks to Lemma 4.2, there exists C' > 0 depending only on ug, 2, n and f such that:

T
/ / Ot - P Az At < C |10 111, )
0 Q

By Lemma 3.3, there exists Cy depending only on 1 and €, such that [[@..|lL10, 1. o) < CallellLio,mE0)
where E(Q) is endowed with the H} norm. Hence passing to the limit as m — +oc0 in a similar way as for T},
in Step 1, we get that

T
/ /Qu -Opp dx < 002||‘P||L4(0,T;E(Q))'
0

We then get that 9, € L*3(0,T; E'(Q)) by density. O

4.4. Case of the unsteady Stokes equations

In the case of the unsteady Stokes equations, that is Problem (3) where we omit the nonlinear convection
term in (3b), stronger estimates can be obtained, which entail the weak convergence of the pressure. We assume
in this section that ugp € H'(Q)? and that divug = 0, and consider the following weak formulation of the
unsteady Stokes problem:

Find ( 0,T; E(R)) x L*(0,T; L*()) such that Ve € C°([0, T[x Q)4

@,p) € L*(
// 8t<p(ast)d:r,dt—/ () - (a:O)d:B—i—/ /Vu:z:t) Ve(a,t) de dt

//pdlvcpd:cdt //fa:t z,t) dz dt. (58)

Note that this formulation does not use divergence free test functions as in (4). Indeed, in the case of the Stokes
equations, we are able to show the (weak) convergence of the pressure and we thus consider a formulation in
which the pressure is present. Note that the two formulations are in fact equivalent.

The scheme We look for an approximation (u,p) € Xe g X Ya,s of (u,p) solution to the problem (58); we
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consider the time-implicit MAC scheme which reads:

Initialization
u® = Peug (59a)
Step n > 0. Solve for u(™ ™Y and p"*+1)
w™Y e He o, p™*Y) € Ly, /Q p Y dz =0, (59b)
Dt — AgutD 4y, pnth) — pirt) (59¢c)
divyu" T =0, (59d)

Note that the choice of the discretization of the initial condition in (59a), together with the assumption divug = 0

implies that diva; w(® = 0; this fact is important for the obtention of the estimates. A weak formulation of
(59b)—(59d) reads:

Find (™ p("tY) € Ee x Ly ;/ p" Y da = 0, and Vv € Hg g, (60)
Q
/ du™t v dx +/ Veu") Voo do — / p(”+1)diVM vde = / fénH) -v de. (61)
Q Q Q Q

The estimates of Lemma 4.1 on the approximate solutions obtained in the case of the Navier-Stokes equations
are of course still valid. However we get stronger estimates on d;u and on p, as we proceed to show.

Lemma 4.4 (Estimates on the discrete time derivative). Let u("*Y) € He o be a solution to (59); then there
exists C' > 0 depending only on ug, 0, myv and f such that:

10: wllp2(0,7,22(0)2) < C, (62)
10¢ wllpee 0,751, ) < C- (63)

Proof. Let u"*1) € E¢ be a solution to (59b)-(59d). Taking v = J;u™+V) in (61) we get:

/(5tu(”+1))2 da:—l—/ Veu™ : Ve (8,uY) da —/
Q Q

p(”H) divM(8tu(”+1)) dx = / fém_l) Du™tY dg.
Q Q

(64)
By linearity of the discrete time derivative discrete divergence operators, and thanks to by (59d), we get
that diva(Fu™t)) = d,(divycu™t)) = 0. Multiplying (64) by & and summing the result over n &
{0,--- ,M}; M <N —1 we obtain T; + T» = T3 where

M M M
T, = Z &A(5tu(n+1))2 de, Th = Z &/QVgu("‘H) . 5t(Vgu("+1)) de, and T3 = Z &/Q fén+1),z§tu(n+1) de.
n=0 n=0 n=0

‘We have:
M9 1 1 1 1
T = Z(§Ilu("+”||%e,o - §|Iu(")llf,e7o + §||u("+1) —u™|3 o) > §|IUM+1||is,o - 5”“0”%,870-
n=0

By the Cauchy-Schwarz and the Young inequalities we obtain:

Nl

M M
5 n 1 1 n
722 38 ( [ 15 twin) o) ([ @) do)t < S e aomy + 5 D0 8 [ (@) da.
n=0 n=0
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Gathering the above inequalities, we get that:

M
> &/Q(5tu(”+1))2 da + [u R g0 < IF122 00,7502 )0 + luolll e 0- (65)
n=0

This in turn yields the L>°(L?) estimate (63) and the L?(L?) estimate (62) (taking M = N — 1) on the discrete
derivative, with C' = \/§(||f||L2(07T;L2(Q)d) + ||u0||(H1)d).
t

Lemma 4.5 (Estimate on the pressure). Let (u,p) € Xor.a X Yar,a be a solution to (59). There exists C > 0
depending only on £, v and f such that:

lpllz2 00,7502 (0) < C. (66)

Proof. With the same arguments as in the proof of the pressure estimate in Proposition 3.4, we choose v = ﬁ’gcp
as test function in (61), where ¢ € Hg(Q)? is such that divey = p"™1) and ||Vel|r2(qyaxa < c|lp™ V|12,
with ¢ depending only on €. Thanks to (40a) we then obtain:

/Qﬁtu(”ﬂ)v dz + /Q Veu™ : Vev da — ||p("+1)||%z(ﬂ) = /Q fém_l) v de,

Thanks to the Cauchy-Schwarz and Poincaré inequalities and to the estimate (40a) we then get that there exists
Cy, depending on €2 and on the regularity of the mesh such that

n n n 1
1P g0y < Cone (1860 iaqpya + VIR e o+ 1D oy ) -

Summing (4.4) over n € {0,--- , N — 1} and multiplying by & yields the result thanks to (54), and (62).
U

Theorem 4.6 (Convergence of the scheme). Let (&), € (0,T) and (Dm)men be a sequence of meshes such
that (&)n — 0 and maxg v, diam(K) — 0 as m — 400 ; assume that there exists n > 0 such that ny,, <1
for any m € N (with n,, defined by (6)). Let (w(™ p™) be a solution to (59) for (&), = & and D = D,,.
Then there exists (u,p) € L*(0,T; E(Q)) x L?(0,T; L*(Q)) such that, up to a subsequence:

- the sequence (u'"™)en converges to @ in L(0,T; L?(Q)%),

- the sequence (pm)men weakly converges to p in € L?(0,T; L*(2)),

- (@, p) is a solution to the weak formulation (58).

Proof. The convergence of the sequence of discrete solutions of the velocity follow from the Theorem 4.3 and
the convergence of the sequence of discrete solutions of the pressure in L2(0, T; L*(12)) follow from the estimate
(66). Let us then show that (u,p) satisfies (58). Let ¢ € C°(Q x [0,T))%. Taking cpg,?) = ?gm¢(~7tn) €Heg o
as test function in (61), multiplying by &, and summing for n = {0, ..., N,, — 1} (with N,,é&,, = T), we obtain:

Np—1
e0 Q Q Q

_/ Pe Ot L o) dw) _o.
Q

Let us deal with the pressure term, (all other terms of the equation can be dealt with as in the proof of Theorem
4.3). We have:

[t i, ol dm = [ ot ainnc, o des [ i, (o) - o) de
Q Q Q
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By Lemma 3.3 and thanks to the regularity of ¢,

/Qpﬁff“)diwm (@™ — o) da < |Ip{rtD]| 12y lldiv (0™ — @) 120

< & CollP ™| 22 (0
— 0 as m — +o0.

We proved in the stationary case (see the proof of Theorem 3.7) that

/ pﬁ,’f“)diVMm ¢£g+1) dz — / p divep do as m — oo,
Q Q

and this concludes the proof that (@, p) is indeed a solution of (58). O

5. APPENDIX: DISCRETE FUNCTIONAL ANALYSIS

Definition 5.1 (Compactly embedded sequence of spaces). Let B be a Banach space; a sequence (X, )men of
Banach spaces included in B is compactly embedded in B if any sequence (t,,)men satisfying:

® Uy € Xy, (Vm €N),

e the sequence (||um|x,, )men is bounded,

is relatively compact in B.

Definition 5.2 (Compact-continuous sequence of spaces). Let B be a Banach space, and let (X, )men and
(Y;)men be sequences of Banach spaces such that X,,, C B for m € N. The sequence (X,,, Y, )men is compact-
continuous in B if the following conditions are satified:
e The sequence (X,,)men is compactly embedded in B (see Definition 5.1),
o X,, CY,, (for all m € N),
e if the sequence (s, )men is such that u,, € X, (for allm € N), (||lum| x,, )men is bounded and ||, |
0 as m — +o00, then any subsequence of (u,)men converging in B converges to 0 (in B).

Y 7

The following theorem is proved [4] and is a generalization of a previous work carried out in [15].

Theorem 5.3 (Aubin-Simon Theorem with a sequence of subspaces and a discrete derivative.). Let 1 < p < oo,
let B be a Banach space, and let (X;n)men and (Y, )men be sequences of Banach spaces such that X, C B for
m € N. We assume that the sequence (X, Y )men @8 compact-continuous in B. Let T > 0 and (™) en be
a sequence of LP(0,T; B) satisfying the following conditions:

e (H1) the sequence (u'™)en is bounded in LP(0,T; B).

e (H2) the sequence (||U(m)||L1(0,T;Xm))meN is bounded.

e (H3) the sequence ([|0;u™||Lo(0.1.v,.))men is bounded.

Then there exists u € LP(0,T; B) such that, up to a subsequence, u'™ — u in LP(0,T; B).

Definition 5.4 (B-limit-included). Let B be a Banach space, (X,,)men be a sequence of Banach spaces
included in B and X be a Banach space included in B. The sequence (X,,)men is B-limit-included in X if
there exists C' € R such that if « is the limit in B of a subsequence of a sequence (u,,)men verifying u,, € X,,
and |lum|lx,, <1, then v € X and |ul|x <C.

The regularity of a possible limit of approximate solutions may be proved thanks to the theorem which we
recall below [16, Theorem B1].

Theorem 5.5 (Regularity of the limit). Let 1 < p < oo and T > 0. Let B be a Banach space, (Xm)men be
a sequence of Banach spaces included in B and B-limit-included in X (where X is a Banach space included in
B). Let T >0 and, for m € N, Let u,, € LP(0,T; X,5,). We assume that the sequence (||tml|1r(0,7;x,.))meN 18
bounded and that w,, — u a.e. as m — oco. Then u € LP(0,T; X).
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