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CONVERGENCE OF THE MAC SCHEME FOR THE INCOMPRESSIBLE

NAVIER-STOKES EQUATIONS

T. Gallouët1, R. Herbin2, J.-C. Latché3 and K. Mallem4

Abstract. We prove in this paper the convergence of the Marker and cell (MAC) scheme for the dis-
cretization of the steady-state and unsteady-state incompressible Navier-Stokes equations in primitive
variables on non-uniform Cartesian grids, without any regularity assumption on the solution. A priori
estimates on solutions to the scheme are proven ; they yield the existence of discrete solutions and the
compactness of sequences of solutions obtained with family of meshes the space step of which tends to
zero. We then establish that the limit is a weak solution to the continuous problem.

2010 AMS Subject Classification. Primary 65M08, 76N15 ; Secondary 65M12, 76N19.

September 7, 2015.

1. Introduction

Let Ω be an open bounded domain of Rd with d = 2 or d = 3. We consider the steady-state incompressible
Navier-Stokes equations, which read:

divū = 0, in Ω, (1a)

−∆ū+ (ū · ∇)ū+ ∇p̄ = f , in Ω, (1b)

ū = 0, on ∂Ω. (1c)

where ū stands for the (vector-valued) velocity of the flow, p̄ for the pressure and f is a given field of L2(Ω)d,
and where for two given vector fields v = (v1, . . . , vd) and w = (w1, . . . , wd), the quantity (v · ∇)w is a vector

field whose components are ((v · ∇)w)i =
∑d
k=1 vk∂kwi, i = 1, . . . , d. A weak formulation of Problem (1) reads:

Find (ū, p̄) ∈ H1
0 (Ω)d × L2

0(Ω) such that, ∀(v, q) ∈ H1
0 (Ω)d × L2

0(Ω),∫
Ω

∇ū : ∇v dx+

∫
Ω

((ū · ∇)u) · v dx−
∫

Ω

p̄ divv dx =

∫
Ω

f · v dx, (2a)∫
Ω

q divū dx = 0, (2b)
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where L2
0(Ω) stands for the subspace of L2(Ω) of zero mean-valued functions.

We shall consider the transient Navier-Stokes equations:

divū = 0 in Ω× (0, T ), (3a)

∂tū−∆ū+ (ū · ∇)ū+ ∇p̄ = f in Ω× (0, T ), (3b)

ū = 0 on ∂Ω× (0, T ), (3c)

ū(x, 0) = u0. in Ω. (3d)

This problem is posed for (x, t) in Ω× (0, T ) where T ∈ R∗+ and Ω is an open bounded domain of Rd; d = 2 or 3,

ū stands for the (vector-valued) velocity of the flow, p̄ for the pressure, f is a given vector field of L2(Ω×(0, T ))d

and u0 ∈ L2(Ω). Denoting by E(Ω) = {u ∈ H1
0 (Ω)d ; div u = 0, a.e. in Ω} the set of divergence free functions,

we consider the following weak formulation of the transient problem (3) (see e.g. [3]).

Find u ∈ L2(0, T ;E(Ω)) ∩ L∞(0, T ;L2(Ω)d) ; such that, ∀v ∈ L2(0, T ;E(Ω)) ∩ C∞c (Ω× [0, T ))

−
∫ T

0

∫
Ω

ū(x, t) · ∂tv(x, t) dx dt−
∫

Ω

u0(x) · v(x, 0) dx+

∫ T

0

∫
Ω

∇ū(x, t) : ∇v(x, t) dx dt

+

∫ T

0

∫
Ω

((ū · ∇)ū)(x, t) · v(x, t) dx dt =

∫ T

0

∫
Ω

f(x, t) · v(x, t) dx dt.

(4)

The aim of this paper is to show, under minimal regularity assumptions on the solution, that sequences of
approximate solutions obtained by the discretization of problem (1)(resp. (3)) by the Marker-And-cell (MAC)
scheme converge to a solution of (2)(resp. (4)) as the mesh size tends to 0.
The Marker-And-Cell (MAC) scheme, introduced in the middle of the sixties [20], is one of the most popular
methods [25, 29] for the approximation of the Navier-Stokes equations in the engineering framework, because
of its simplicity, its efficiency and its remarkable mathematical properties. The first error analysis seems to be
that of [26] in the case of the time-dependent Stokes equations on uniform square grids. The mathematical
analysis of the scheme was performed for the steady-state Stokes equations in [24] for uniform rectangular
meshes with H2 regularity assumption on the pressure. Error estimates for the MAC scheme applied to the
Stokes equations have been obtained by viewing the MAC scheme as a mixed finite element method [18, 19]
or a divergence conforming DG method [21]. Error estimates for rectangular meshes were also obtained for
the related covolume method, see [6] and references therein. Using the tools that were developed for the finite
volume theory [10, 11], an order 1 error estimate for non-uniform meshes was obtained in [1], with order 2
convergence for uniform meshes, under the usual regularity assumptions (H2 for the velocities, H1 for the
pressure). It was recently shown in [22] that under higher regularity assumptions (C4 for the velocities and
C3 for the pressure) and an additional convergence assumption on the pressure, superconvergence is obtained
for non uniform meshes. Note also that the convergence of the MAC scheme for the Stokes equations with a
right-hand-side in H−1(Ω) was proven in [2].

Mathematical studies of the MAC scheme for the non linear Navier-Stokes equations are scarcer. A pioneering
work was that of [24] for the steady-state Navier-Stokes equations and for uniform rectangular grids. More
recently, a variant of the MAC scheme was defined on locally refined grids and the convergence proof was
performed for both the steady-state and time dependent cases in two or three space dimensions [4]. For the
Stokes equations on uniform grids, this latter scheme coincides with the usual MAC scheme that is classically
used in CFD codes. However, for the Navier-Stokes equations, the nonlinear convection term is discretised
in a manner which is similar to the finite element framework (see e.g. [28]), which no longer coincides with
the usual MAC scheme, even on uniform grids. This discretization entails in a larger stencil, and numerical
experiments [5] tend to show that is not as efficient as the classical MAC scheme. Our purpose here is to analyse
the classical MAC scheme for the Navier-Stokes equations in primitive variables on a non-uniform rectangular
mesh in two or three dimensions, and, as in [4], without regularity assumptions on the solutions.

In section 2 we introduce the MAC space grid and the discrete operators. In particular, the velocity convection
operator is approximated so as to be compatible with a discrete continuity equation on the duals cells ; this
discretization coincides with the usual discretization on uniform meshes [25], contrary to the scheme of [4].
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We introduce the MAC scheme for the steady state Navier-Stokes equations in Section 3. We give a weak
formulation of the scheme. Velocity and pressure estimates are thus obtained, which lead to the compactness
of sequences of approximate solutions. We then show that any prospective limit is a weak solution of the
Navier-Stokes equations.

In Section 4, we turn to the unsteady Navier-Stokes equations. An essential feature of the studied scheme
is that the (discrete) kinetic energy remains controlled. We show the compactness of approximate sequences
of solutions thanks to a discrete Aubin-Simon argument, and again conclude that any prospective limit of the
approximate velocities is a weak solution of the Navier-Stokes equations thanks to a passage to the limit in the
scheme. In the case of the unsteady Stokes equations, we are able to obtain some estimates which yield the
compactness of sequences of approximate pressures; we are then able to conclude that the approximate pressure
converges to a weak solution of the Stokes equations as the mesh size and time steps tend to 0.

2. Space discretization

We assume that the domain Ω is a union of rectangles (d = 2) or orthogonal parallelepipeds (d = 3),
and, without loss of generality, we assume that the edges (or faces) of these rectangles (or parallelepipeds) are
orthogonal to the canonical basis vectors, denoted by (e1, . . . , ed).

Definition 2.1 (MAC grid). A discretization of Ω with MAC grid, denoted by D, is given by D = (M,E),
where:

- the pressure (or primal) grid denoted by M, which consists of a union of possibly non uniform rectangles;
a generic cell of this grid is denoted by K, and its mass center xK . A generic face (or edge in the
two-dimensional case) of such a cell is denoted by σ ∈ E(K), and its mass center xσ, where E(K) denotes
the set of all faces of K. The set of all faces of the mesh is denoted by E; we have E = Eint ∪ Eext, where
Eint (resp. Eext) are the edges of E that lie in the interior (resp. on the boundary) of the domain. The
set of faces that are orthogonal to the ith unit vector ei of the canonical basis of Rd is denoted by E(i),

for i = 1, . . . , d. We then have E(i) = E
(i)
int ∪ E

(i)
ext, where E

(i)
int (resp. E

(i)
ext) are the edges of E(i) that lie in

the interior (resp. on the boundary) of the domain.

- For each σ ∈ E, we write that σ = K|L if σ = ∂K ∩ ∂L and we write that σ =
−−→
K|L if, furthermore,

σ ∈ E(i) and −−−→xKxL · ei > 0 for some i ∈ [|1, d|]. A dual cell Dσ associated to a face σ ∈ E is defined as
follows:

∗ if σ = K|L ∈ Eint then Dσ = DK,σ ∪DL,σ, where DK,σ (resp. DL,σ) is the half-part of K (resp.
L) adjacent to σ (see Fig. 1 for the two-dimensional case) ;
∗ if σ ∈ Eext is adjacent to the cell K, then Dσ = DK,σ.

A primal cell K will be denoted K = [
−→
σσ′] if σ, σ′ ∈ E(i) ∩ E(K) for some i = 1, . . . , d are such that

(xσ′ − xσ) · ei > 0. A dual face separating two duals cells Dσ and Dσ′ is denoted by ε = σ|σ′ or ε =
−−→
σ|σ′

when specifying its orientation: more precisely we write that ε =
−−→
σ|σ′ if −−−→xσxσ′ · ej > 0 for some j ∈ [|1, d|].

To any dual face ε, we associate a distance dε as sketched on Figure 1. For a dual face ε ⊂ ∂Dσ, σ ∈ E(i),
i ∈ [|1, d|], the distance dε is defined by:

dε =

{
d(xσ,xσ′) if ε =

−−→
σ|σ′ ∈ Ẽ

(i)
int,

d(xσ, ε) if ε ∈ Ẽ
(i)
ext ∩ Ẽ(Dσ)

(5)

where d(·, ·) denotes the Euclidean distance in Rd, and the set Ẽ(i) of the faces of the i-th dual mesh

(associated to the ith velocity component) is decomposed into the internal and boundary edges: Ẽ(i) =

Ẽ
(i)
int ∪ Ẽ

(i)
ext.

We define the regularity of the mesh M by:

ηM = max

{
|σ|
|σ′|

, σ ∈ E(i),∀σ′ ∈ E(j), i, j ∈ [|1, d|], i 6= j

}
, (6)
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Dσ

K

L

σ = K|L σ′′×

×

×

xσ′

xσ xσ′′

ε2 ε3

σ′

ε1 = σ|σ′

∂Ω

dε3dε2

dε1

Figure 1. Notations for control volumes and dual cells (for the second component of the velocity).

where | · | stands for the (d − 1)-dimensional measure of a subset of Rd−1 (in the sequel, it is also be used to
denote or d-dimensional measure of a subset Rd). We also define the size of the mesh by

hM = max{diam(K),K ∈M}.

The discrete velocity unknowns are associated to the velocity cells and are denoted by (uσ)σ∈E(i) , i = 1, . . . , d,
while the discrete pressure unknowns are associated to the primal cells and are are denoted by (pK)K∈M.

Definition 2.2 (Discrete spaces). Let D = (M,E) be a MAC grid in the sense of Definition 2.1. The discrete
pressure space LM is defined as the set of piecewise constant functions over each of the grid cells K of M,

and the discrete i− th velocity space H
(i)
E as the set of piecewise constant functions over each of the grid cells

Dσ , σ ∈ E(i). We shall denote by LM,0 the functions of LM with zero mean value. As in the continuous case,
the Dirichlet boundary conditions are (partly) incorporated in the definition of the velocity spaces, and, to this

purpose, we introduce H
(i)
E,0 ⊂ H

(i)
E , i = 1, . . . , d, defined as follows:

H
(i)
E,0 =

{
u ∈ H(i)

E , u(x) = 0 ∀x ∈ Dσ, σ ∈ Ẽ
(i)
ext, i = 1, . . . , d

}
.

We then set HE,0 =
∏d
i=1H

(i)
E,0. Since we are dealing with piecewise constant functions, it is useful to introduce

the characteristic functions χK ,K ∈M and χDσ , σ ∈ E of the pressure and velocity cells, defined by

χK(x) =

{
1 if x ∈ K,
0 if x 6∈ K,

χDσ (x) =

{
1 if x ∈ Dσ,

0 if x 6∈ Dσ.

We can then write a function u ∈ HE,0 as u = (u1, . . . , ud) with ui =
∑
σ∈E(i)

uσχDσ , i ∈ [|1, d|] and a function

p ∈ LM as p =
∑
K∈M

pKχK .

Let us now introduce the discrete operators which are used to write the numerical scheme.
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Discrete divergence and gradient operators The discrete divergence operator divM is defined by:

divM : HE,0 −→ LM

u 7−→ divMu =
∑
K∈M

1

|K|
∑

σ∈E(K)

|σ|uK,σ χK , (7)

with uK,σ = uσnK,σ · ei for σ ∈ E(i) ∩ E(K), i = 1, . . . , d. (8)

where nK,σ denotes the unit normal vector to σ outward K. Note that we have the usual finite volume property
of local conservativity of the flux through an interface σ = K|L between the cells K,L ∈M, i.e.

uK,σ = −uL,σ, ∀σ = K|L ∈ Eint. (9)

We can now define the discrete divergence free velocity space EE(Ω) = {u ∈ HE,0 ; divM u = 0}.
The discrete divergence of u = (u1, . . . , ud) ∈ HE,0 may also be written as

divM(u) =

d∑
i=1

(ðiui)KχK , (10)

where the discrete derivative (ðiui)K of ui on K is defined by

(ðiui)K =
|σ|
|K|

(uσ′ − uσ) with K = [
−→
σσ′], σ, σ′ ∈ E(i). (11)

The discrete derivatives and divergence are consistent in the following sense:

Lemma 2.3 (Discrete derivative and divergence consistency). Let D = (M,E) be a MAC grid, and let ΠE be
an interpolator from C∞c (Ω)d to HE,0 such that, for any ϕ = (ϕ1, · · · , ϕd)t ∈ (C∞c (Ω))d, there exists Cϕ ≥ 0
depending only on ϕ such that

ΠEϕ =
(

Π
(1)
E ϕ1, · · · ,Π(d)

E ϕd

)
∈ H(1)

E,0 × · · · ×H
(d)
E,0, where

|Π(i)
E ϕi(x)− ϕi(xσ)| ≤ Cϕh

2
M ∀x ∈ Dσ, ∀σ ∈ E(i), ∀i = 1, · · · , d,

(12)

Then there exists Cϕ,η ≥ 0, where η is the regularity of the mesh defined by (6), such that; |ðiΠ(i)
E ϕi(x) −

∂iϕi(x)| ≤ Cϕ,ηhM for a.e. x ∈ Ω.
As a consequence, if (Dn)n∈N = (Mn,En)n∈N is a sequence of MAC grids such that ηn ≤ η for all n and

hMn → 0 as n→ +∞, then divMn(ΠEnϕ)→ divϕ uniformly as n→ +∞.

The gradient in the discrete momentum balance equation is built as the dual operator of the discrete diver-
gence, and reads:

∇E : LM −→ HE,0

p 7−→∇Ep

∇Ep(x) = (ð1p(x), . . . ,ðdp(x))t,

(13)

where ðip ∈ H(i)
E,0 is the discrete derivative of p in the i-th direction, defined by:

ðip(x) =
|σ|
|Dσ|

(pL − pK) ∀x ∈ Dσ, for σ =
−−→
K|L ∈ E

(i)
int, i = 1, . . . , d. (14)

Note that in fact, the discrete gradient of a function of LM should only be defined on the internal faces, and
does not need to be defined on the external faces; we set it here in HE,0 (that is zero on the external faces)
for the sake of simplicity. Again, the definition of the discrete derivatives of the pressure on the MAC grid is
evidently consistent in the following sense:
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Lemma 2.4 (Discrete gradient consistency). Let ΠM be an interpolator from C∞c (Ω) to LM such that, for any
ψ ∈ C∞c (Ω), there exists Cψ ≥ 0 depending only on ψ such that

|ΠMψ(x)− ψ(xK)| ≤ Cψh2
M, ∀x ∈ K, ∀K ∈M. (15)

then there exists Cψ,η ≥ 0 depending only on ψ and η such that

|ðiΠMψ(x)− ∂iψ(x)| ≤ Cψ,ηhM,∀σ ∈ E(i), ∀i = 1, . . . , d.

Let us then verify that the discrete gradient and divergence are dual.

Lemma 2.5 (Discrete div −∇ duality). Let q ∈ LM and v ∈ HE,0 then we have:∫
Ω

q divMv dx+

∫
Ω

∇Eq · v dx = 0. (16)

Proof. Let q ∈ LM and v ∈ HE,0. By the definition (7) of the discrete divergence operator, we have:∫
Ω

q divMv dx =
∑
K∈M

qK
∑

σ∈E(K)

|σ|vK,σ.

with vK,σ = vσnK,σ · ei for σ ∈ E(i) ∩ E(K), i = 1, . . . , d. Thanks to the conservativity (9) of the flux we get
that: ∫

Ω

q divMv dx =
∑

σ∈Eint,σ=K|L

(qK |σ|vK,σ + qL|σ|vL,σ)

=
∑

σ∈Eint,σ=K|L

|σ|(qK − qL)vK,σ.

Therefore, by the definition (14) of the discrete derivative of q, we get:∫
Ω

q divMv dx = −
d∑
i=1

∑
σ∈E(i),σ=K|L

|Dσ|vσðiq = −
∫

Ω

∇Eq · v dx,

which concludes the proof. �

Discrete Laplace operator - For i = 1 . . . , d, we classically define the ith component of the discrete Laplace
operator by:

−∆
(i)
E : H

(i)
E,0 −→ H

(i)
E,0

ui 7−→ −∆Eui = −
∑
σ∈E(i)

(∆u)σχDσ , with − (∆u)σ =
1

|Dσ|
∑

ε∈Ẽ(Dσ)

φσ,ε(ui) (17)

Ẽ(Dσ) denotes the faces of Dσ and

φσ,ε(ui) =

{
|ε|
dε

(uσ − uσ′), if ε =
−−→
σ|σ′ ∈ Ẽ

(i)
int,

|ε|
dε
uσ, if ε ∈ Ẽ

(i)
ext ∩ Ẽ(Dσ)

where dε is defined by (5). Note that we have the usual finite volume property of local conservativity of the

flux through an interface ε =
−−→
σ |σ′:

φσ,ε(ui) = −φσ′,ε(ui), ∀ε =
−−→
σ|σ′ ∈ Ẽ

(i)
int. (18)
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Then the discrete Laplace operator of the full velocity vector is defined by

−∆E : HE,0 −→ HE,0

u 7→ −∆Eu = (−∆
(1)
E u1, . . . ,−∆

(d)
E ud)

t.
(19)

Discrete convection operator - Let us consider the momentum equation (1b) for the ith component
of the velocity, and integrate it on a cell Dσ, σ ∈ E(i). By the Stokes formula we then need to discretise∑
ε⊂∂Dσ

∫
ε
uiu · nσ,ε dγ(x), where nσ,ε denotes the unit normal vector to ε outward Dσ and dγ(x) denotes

the integration with respect to the d − 1-dimensional Lebesgue measure. For ε = σ|σ′, the convection flux∫
ε
uiu · nσ,ε dγ(x) is approximated by |ε|uσ,εuε, where

uε = (uσ + uσ′)/2, (20)

and |ε|uσ,ε is the numerical mass flux through ε outward Dσ; this flux must be chosen carefully to obtain the
L2 stability of the scheme. More precisely, we need that a discrete counterpart of the free divergence of u be
satisfied also on the dual cells. We distinguish two cases:

- First case – The vector ei is normal to ε, and ε is included in a primal cell K, with E(i)(K) = {σ, σ′}.
Then the mass flux through ε = σ|σ′ is given by:

|ε|uσ,ε =
1

2
(−|σ|uK,σ + |σ′|uK,σ′). (21)

- Second case – The vector ei is tangent to ε, and ε is the union of the halves of two primal faces τ and τ ′

such that σ = K|L with τ ∈ E(K) and τ ′ ∈ E(L). The mass flux through ε is then given by:

|ε|uσ,ε =
1

2
(|τ |uK,τ + |τ ′|uL,τ ′). (22)

Note that with this definition, we again have the usual finite volume property of local conservativity of the flux

through an interface
−−→
σ|σ′, i.e.

|ε|uσ,ε = −|ε|uσ′,ε (23)

together with the following discrete free divergence condition on the dual cells:∑
ε∈E(Dσ)

|ε|uσ,ε =
1

2

∑
σ∈E(K)

|σ|uK,σ +
1

2

∑
σ∈E(L)

|σ|uL,σ = 0. (24)

Note that we have also uσ,ε = 0 if ε ⊂ ∂Ω, which is consistent with the boundary conditions (1c).

We now define the i-th component C
(i)
E (u) of the non linear convection operator by:

C
(i)
E (u) : H

(i)
E,0 −→ H

(i)
E,0

v 7−→ C
(i)
E (u)v =

∑
σ∈Ẽ(i)

int

1

|Dσ|

 ∑
ε∈Ẽ(Dσ)
ε=σ|σ′

|ε|uσ,ε
vσ + vσ′

2

χDσ ,
(25)

and the full discrete convection operator CE(u), HE,0 −→ HE,0 by

CE(u)v = (C
(1)
E (u)v1, . . . , C

(d)
E (u)vd)

t.
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3. The steady case

With the notations introduced in the previous sections, the MAC scheme for the discretisation of Problem
(1) on a MAC grid D = (M,E) reads:

u ∈ HE,0, p ∈ LM,0, (26a)

−∆Eu+CE(u)u+ ∇Ep = PEf , (26b)

divMu = 0, (26c)

where LM,0 = {q ∈ LM

∫
Ω
q dx = 0} and PE is the cell mean-value operator defined by

PEv =
(
P

(1)
E v1, · · · ,P(d)

E vd

)
∈ H(1)

E,0 × · · · ×H
(d)
E,0, where for i = 1, . . . d,

P
(i)
E : L1(Ω) −→ H

(i)
E,0

vi 7−→ PEvi ; i = 1, · · · , d,

P
(i)
E vi =

∑
σ∈Eint

(
1

|Dσ|

∫
Dσ

vi(x) dx

)
χDσ .

(27)

3.1. Weak form of the scheme

We first recall the definition of the discrete H1
0 inner product [10]; it is obtained by multiplying the discrete

Laplace operator scalarly by a test function v ∈ HE,0 and integrating over the computational domain. A simple
reordering of the sums (which may be seen as a discrete integration by parts) yields, thanks to the conservativity
of the diffusion flux (18):

∀(u,v) ∈ HE,0
2,

∫
Ω

−∆Eu · v dx = [u,v]1,E,0 =

d∑
i=1

[ui, vi]1,E(i),0,

with [ui, vi]1,E(i),0 =
∑
ε∈Ẽ(i)

int

ε=
−−→
σ|σ′

|ε|
dε

(uσ − uσ′) (vσ − vσ′) +
∑
ε∈Ẽ(i)

ext

ε⊂∂(Dσ)

|ε|
dε

uσ vσ.
(28)

The bilinear forms

∣∣∣∣∣ H
(i)
E,0 ×H

(i)
E,0 → R

(u, v) 7→ [ui, vi]1,E(i),0

and

∣∣∣∣∣ HE,0 ×HE,0 → R
(u,v) 7→ [u,v]1,E,0

are inner products on H
(i)
E,0 and HE,0

respectively, which induce the following discrete H1
0 norms:

‖ui‖21,E(i),0 = [ui, ui]1,E(i),0 =
∑
ε∈Ẽ(i)

int

ε=
−−→
σ|σ′

|ε|
dε

(uσ − uσ′)2 +
∑
ε∈Ẽ(i)

ext

ε⊂∂(Dσ)

|ε|
dε

u2
σ for i = 1, . . . , d, (29a)

‖u‖21,E,0 = [u,u]1,E,0 =

d∑
i=1

‖ui‖21,E(i),0. (29b)

Since we are working on Cartesian grids, this inner product may be formulated as the L2 inner product of
discrete gradients. Indeed, consider the following discrete gradient of each velocity component ui.

∇E(i)ui = (ð1ui, . . . ,ðdui) with ðjui =
∑
ε∈Ẽ(i)

ε⊥ej

(ðjui)Dε χDε , (30)
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K L

σ
=
K
|L

Dσ

Dε

σ′

ε = σ|σ′

M N

Figure 2. Full grid for definition of the derivative of the velocity.

where (ðjui)Dε =
uσ′ − uσ

dε
with ε =

−−→
σ|σ′, and Dε = ε × xσxσ′ (see Figure 2). This definition is compatible

with the definition of the discrete derivative (ðiui)K given by (11), since, if ε ⊂ K then Dε = K. With this
definition, it is easily seen that∫

Ω

∇E(i)u · ∇E(i)v dx = [u, v]1,E(i),0,∀u, v ∈ H
(i)
E,0,∀i = 1, . . . , d. (31)

where [u, v]1,E(i),0 is the discrete H1
0 inner product defined by (28). We may then define

∇Eu = (∇E(1)u1, . . . ,∇E(d)ud),

so that ∫
Ω

∇Eu : ∇Ev dx = [u,v]1,E,0.

With this formulation, the MAC scheme for the linear Stokes problem as a gradient scheme in the sense
introduced in [12], see [14] and [8] for more details on the generalization of this formulation to other schemes.
In the stationary case, we can show the (strong) convergence of this discrete gradient to the gradient of the
exact velocity, and thus also show the strong convergence of the pressure, see section 4.4.

The weak form bE of the nonlinear convection operator is defined by:

∀(u,v,w) ∈ HE,0
3, bE(u,v,w) =

d∑
i=1

b
(i)
E (u, vi, wi),

where for i = 1, . . . , d, b
(i)
E (u, vi, wi) =

∫
Ω

C
(i)
E (u)vi wi dx.

(32)

We are now in position to introduce a weak formulation of the scheme, which reads:

Find (u, p) ∈ HE,0 × LM,0 and, ∀(v, q) ∈ HE,0 × LM,∫
Ω

∇Eu : ∇Ev dx+ bE(u,u,v)−
∫

Ω

p divM(v) dx =

∫
Ω

PEf · v dx, (33a)∫
Ω

divMu q dx = 0, (33b)

and which is equivalent to the MAC scheme (26).

3.2. Existence and stability

Lemma 3.1 (Estimate on bE). Let D = (M,E) be a MAC grid and let bE be defined by (32). There exists
CηM > 0, depending only on the regularity ηM of the mesh defined by (6) such that:

∀(u,v,w) ∈ EE ×HE,0
2, |bE(u,v,w)| ≤ CηM ‖u‖L4(Ω)d‖v‖1,E,0 ‖w‖L4(Ω)d (34)
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and

∀(u,v,w) ∈ EE ×HE,0
2, |bE(u,v,w)| ≤ CηM ‖u‖1,E,0 ‖v‖1,E,0‖w‖1,E,0, (35)

Proof. We closely follow the proof of the estimate in the continuous case, where the nonlinear term b(u,v,w)
=
∫

Ω
((u · ∇)v) · w dx is estimated thanks to the Hölder inequality and the Sobolev embedding: there exist

C1 ≥ 0 and C2 ≥ 0 depending only on Ω such that

|b(u,v,w)| ≤ C1‖u‖L4(Ω)d‖∇v‖L2(Ω)d×d‖w‖L4(Ω)d

≤ C2‖∇u‖L2(Ω)d×d‖∇v‖L2(Ω)d×d‖∇w‖L2(Ω)d×d .

Let (u,v,w) ∈ EE ×HE,0
2. Thanks to (24), we have:

b
(i)
E (u, ui, vi) =

∑
σ∈E(i)

wσ
∑

ε∈Ẽ(Dσ)

|ε|(vε − vσ)uσ,ε.

From the definition (20) of uε and with a discrete integration by parts, we get that:

b
(i)
E (u, ui, vi) = −1

2

∑
ε=
−−→
σ|σ′∈Ẽ(i)

int

(vσ − vσ′)|ε|uσ,ε(wσ′ + wσ)

From the definition (21)-(22) of uσ,ε we have for ε =
−−→
σ|σ′ ∈ Ẽ

(i)
int:

|uσ,ε| ≤

{
1
2 (|uσ|+ |uσ′ |) if ε ⊥ ei,
1
2 (|uτ |+ |uτ ′ |) if ε 6⊥ ei and ε ⊂ τ ∪ τ ′,

where τ and τ ′ are the faces of E(j), j 6= i such that ε ⊂ τ ∪ τ ′.

b
(i)
E (u, ui, vi) ≤

∑
ε=
−−→
σ|σ′∈Ẽ(i)

int
ε⊥ei

|ε|(|uσ|+ |uσ′ |)|vσ − vσ′ ||wσ + wσ′ |+
∑

ε=
−−→
σ|σ′∈Ẽ(i)

int

ε 6⊥ei,ε⊂τ∪τ ′

|ε|(|uτ |+ |uτ ′ |)|vσ − vσ′ ||wσ + wσ′ |.

Using Hölder’s inequality, we get:

∑
ε=
−−→
σ|σ′∈Ẽ(i)

int
ε⊥ei

|ε||uσ||vσ − vσ′ ||wσ| =
∑

ε=
−−→
σ|σ′∈Ẽ(i)

int
ε⊥ei

|ε| 14 d
1
4
ε |uσ|

√
|ε|√
dε
|vσ − vσ′ ||ε|

1
4 d

1
4
ε |wσ|

≤
( ∑
ε=
−−→
σ|σ′∈Ẽ(i)

int
ε⊥ei

|ε|dε|uσ|4
) 1

4
( ∑
ε=
−−→
σ|σ′∈Ẽ(i)

int
ε⊥ei

(vσ − vσ′)2 |ε|
dε

) 1
2
( ∑
ε=
−−→
σ|σ′∈Ẽ(i)

int
ε⊥ei

|ε|dε|wσ|4
) 1

4

≤ ‖ui‖L4(Ω)‖vi‖1,E(i),0‖wi‖L4(Ω).

Therefore, with similar computations for the terms involving uσ′ , uτ ,uτ ′ , uσ′ and wσ′ , we get:

b
(i)
E (u, ui, vi) ≤ CM

[
‖ui‖L4(Ω)‖vi‖1,E(i),0‖wi‖L4(Ω) +

∑
j∈[|1,d|]
j 6=i

‖uj‖L4(Ω)‖vi‖1,E(i),0‖wi‖L4(Ω)

]
,∀i ∈ [|1, d|],
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where CM only depends on ηM (6). We then deduce (34). By the discrete Sobolev inequality [10, Lemma 3.5],
we also have

b
(i)
E (u, ui, vi) ≤ CηM

[
‖ui‖1,E(i),0‖vi‖1,E(i),0‖wi‖1,E(i),0 +

∑
j∈[|1,d|]
j 6=i

‖uj‖1,E(i),0‖vi‖1,E(i),0‖wi‖1,E(i),0

]
,∀i ∈ [|1, d|],

from which we get (35).
�

Lemma 3.2 (bE is skew-symmetric). Let (u,v,w) ∈ EE ×HE,0 ×HE,0 then ;

bE(u,v,w) = −bE(u,w,v), (36)

and therefore
∀u ∈ EE, bE(u,u,u) = 0. (37)

Proof. The proof follows that of the continuous case, which is based on a integration by parts. Indeed

b(u,v,w) =

∫
Ω

(u · ∇)v ·w dx = −
∫

Ω

(u · ∇)w · v dx = −b(u,w,v).

Let (u,v,w) ∈ EE ×HE,0 ×HE,0. By (24) we have:

b
(i)
E (u, vi, wi) =

∑
σ∈E(i)

wσ
∑

ε∈Ẽ(Dσ)

|ε|(vε − vσ)uσ,ε, for any i ∈ [|1, d|]].

From the definition (20) of uε and with a discrete integration by parts, we get by conservativity of the flux (23)
that:

b
(i)
E (u, ui, vi) = −1

2

∑
ε=
−−→
σ|σ′∈Ẽ(i)

int

|ε|(vσ − vσ′)uσ,ε(wσ′ + wσ)

=
1

2

∑
ε=
−−→
σ′|σ∈Ẽ(i)

int

|ε|(vσ + vσ′)uσ′,ε(wσ′ − wσ).

which yields (36) thanks to another discrete integration by parts. �

In order to obtain an a priori estimate on the pressure, we introduce a so-called Fortin interpolation operator,
which preserves the divergence. The following lemma is given in [17, Theorem 1, case q = 2], and we re-state
here with our notations for the sake of clarity.

Lemma 3.3 (Fortin interpolation operator). Let D = (M,E) be a MAC grid of Ω. For v ∈ HE,, we define

P̃Ev by

P̃Ev =
(
P̃

(1)
E v1, · · · , P̃(1)

E vd

)
∈ HE, where for i = 1, . . . d,

P̃
(i)
E : H1

0 (Ω) −→ H
(i)
E,0

vi 7−→ P̃Evi ; i = 1, · · · , d,

P̃
(i)
E vi(x) =

1

|σ|

∫
σ

vi(x) dγ(x), ∀x ∈ Dσ, σ ∈ E(i).

(38)

For q ∈ L2(Ω), we define PMq ∈ LM by:

PMq(x) =
1

|K|

∫
K

q(x) dx. (39)
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Let ηM > 0 be defined by (6). Let ϕ ∈ (H1
0 (Ω))d, then

divM(P̃Eϕ) = PM(divϕ), (40a)

‖P̃Eϕ‖1,E,0 ≤ CηM‖∇ϕ‖(L2(Ω))d , (40b)

where CηM depends only on ηM and Ω. In particular, if divϕ = 0, then divM(P̃Eϕ) = 0.

Theorem 3.4 (Existence and estimates). There exists a solution to (33), and there exists CηM > 0 depending
only on the regularity ηM of the mesh and Ω, such that any solution of (33) satisfies the following stability
estimate:

‖u‖1,E,0 + ‖p‖L2(Ω) ≤ CηM ‖f‖L2(Ω)d . (41)

Proof. Let us start by an a priori estimate on the approximate velocity. Assume that (u, p) ∈ HE,0 × LM,0

satisfies (26); taking v = u in (33a) we get that:

‖u‖21,E,0 =

∫
Ω

p divM dx u− bE(u,u,u) +

∫
Ω

fE · u dx.

Since divMu = 0 and bE(u,u,u) = 0 by (36) this yields that

‖u‖1,E,0 ≤ diam(Ω)‖f‖(L2)d . (42)

thanks to the fact that ‖fE‖(L2(Ω))d ≤ ‖f‖(L2(Ω))d and to the discrete Poincaré inequality [10, Lemma 9.1].

An a priori estimate on the pressure is obtained by remarking as in [27] that the MAC scheme is inf-sup
stable. Indeed, since p ∈ L2

0(Ω), there exists ϕ ∈ (H1
0 (Ω))d such that divϕ = p a.e. in Ω and

‖ϕ‖(H1
0 (Ω))d ≤ c‖p‖L2(Ω), (43)

where c depends only on Ω [23]. Taking v = P̃Eϕ (defined by (38)) as test function in (33a), we obtain thanks
to Lemma 3.3 that

[u,v]1,E,0 + bE(u,u,v)−
∫

Ω

p2 dx =

∫
Ω

PEf · v dx.

Thanks to the estimate (35) on bE and the Cauchy-Schwarz inequality we get:

‖p‖2L2(Ω) ≤ ‖u‖1,E,0‖v‖1,E,0 + CηM‖u‖21,E,0‖v‖1,E,0 + ‖f‖L2(Ω)d‖v‖L2(Ω)d ,

which yields

‖p‖L2 ≤ CηM‖f‖L2(Ω)d . (44)

thanks to (40b), (43) and to the estimate (42).

Let us now prove the existence of a solution to (33). Consider the continuous mapping

F : HE,0 × LM,0 × [0, 1] −→ HE,0 × LM,0

(u, p, ζ) 7→ F (u, p, ζ) = (û, p̂)

where (û, p̂) ∈ HE,0 × LM,0 is such that∫
Ω

û · v = [u,v]1,E,0 + ζ bE(u,u,v)−
∫

Ω

p divM v −
∫

Ω

fE · v, ∀v ∈ HE,0 (45a)∫
Ω

p̂ q =

∫
Ω

divM u q, ∀q ∈ LM. (45b)
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It is easily checked that F is indeed a one to one mapping, since the values of û(i); i = 1, · · · , d, and p̂ are readily
obtained by setting in this system vi = 1Dσ , vj = 0, j 6= i in (45a) and q = 1K in (45b). The mapping F is
continuous; moreover, if (u, p) ∈ HE,0 ×LM,0 is such that F (u, p, ζ) = (0, 0), then for any (v, q) ∈ HE,0 ×LM,

[u,v]1,E,0 + ζ bE(u,u,v)−
∫

Ω

p divM(v) dx =

∫
Ω

PEf · v dx,∫
Ω

divM (u) q dx = 0.

The arguments used in the above estimates on possible solutions of (33) may be used in a similar way to show
that (u, p) is bounded independently of ζ. Since F (u, p, 0) = 0 is a bijective affine function by the stability of
the linear Stokes problem (see [2]), the existence of at least one solution (u, p) to the equation F (u, p, 1) = 0
which is exactly (33), follows by a topological degree argument (see [7] for the theory, [9] for the first application
to a nonlinear scheme and [13, Theorem 4.3] for an easy formulation of the result which can be used here). �

3.3. Convergence analysis

In order to prove the convergence of the scheme, we introduce an alternate convection operator bM, defined
on the pressure grid and easier to manipulate in the proofs. It relies on the reconstruction of each velocity
component on all edges (or faces in 3D) of the mesh.

Lemma 3.5 (Full grid velocity interpolate). For a given MAC mesh (M,E), we define, for i, j = 1, . . . , d, the
i-th full grid velocity reconstruction operator by

R
(i,j)
E : H

(i)
E,0 → L2(Ω)

v 7→ R
(i,j)
E v =

∑
σ∈E(j)

int

v̂σχDσ , (47)

where

v̂σ = vσ if σ ∈ E(i), v̂σ =
1

card(Nσ)

∑
σ′∈Nσ

vσ′ otherwise, (48)

where, for any σ ∈ E \ E(i), Nσ = {σ′ ∈ E(i), Dσ ∩ σ′ 6= ∅}. (49)

Then there exists C ≥ 0, depending only on the regularity of the mesh defined by (6), such that, for any

v ∈ L2(Ω), and any i, j = 1, . . . , d, ‖R(i,j)
E v‖L2(Ω) ≤ C‖v‖L2(Ω).

Proof. Let us prove the bound on ‖R(i,j)
E ‖L2(Ω) for d = 2, i = 1 and j = 2. Other cases are similar. Let

v ∈ H(i)
E,0. By definition of R

(i,j)
E v, retaining for each σ ∈ Eint the cells where vσ is involved and noting that[

1
4 (a+ b+ c+ d)

]2 ≤ a2 + b2 + c2 + d2, we have:

‖R(i,j)
E v‖2L2(Ω) ≤

∑
σ∈E(i)

int

σ=K|L

v2
σ(|DσtK

|+ |DσbK
|+ |DσtL

|+ |DσbL
|)

≤ 4η2
∑
σ∈E(i)

int

σ=K|L

v2
σ|Dσ|

where DσtK
(resp. DσbK

denotes the velocity cell associated to the top (resp. bottom) edge of K, with σ = K|L,

see Figure 3.
�
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K L

σ
=
K
|L

DσtK
DσtL

DσbK
DσbL

Figure 3. Full grid velocity interpolate.

Lemma 3.6 (Weak consistency of the nonlinear convection term). Let (Dn)n∈N, with Dn = (Mn,En) be a
sequence of meshes such that hMn

= maxK∈Mn
diam(K)→ 0 as n→ +∞ ; assume that there exists η > 0 such

that ηMn
≤ η for any n ∈ N (with ηMn

defined by (6)). Let (vn)n∈N and (wn)n∈N be two sequences of functions
such that

- vn ∈ HEn,0 and wn ∈ HEn,0,
- the sequences (vn)n∈N and (wn)n∈N converge in L2(Ω)d to v̄ ∈ L2(Ω)d and w̄ ∈ L2(Ω)d respectively.

Let (ΠEn)n∈N be a family of interpolators satisfying (12) and let ϕ ∈ C∞c (Ω)d. Then bE(vn,wn,ΠEnϕ) →
b(v̄, w̄,ϕ) as n→ +∞.

Proof. Let i ∈ [|1, d|]. We have: bEn(vn,wn,ΠEnϕ) =
∑d
i=1 b

(i)
E (v, wi,Π

(i)
E ϕi), where we have omitted the sub-

and superscripts n for the sake of clarity in the right hand side of the equality, with:

b
(i)
E (v, wi,Π

(i)
E ϕi) =

∑
σ∈E(i)

ϕi,σ
∑

ε∈Ẽ(Dσ)

|ε|vσ,εwε = S1 + S2,

where ϕi,σ = ϕi(xσ), with

S1 =
∑

ε=
−−→
σ|σ′∈Ẽ(i)

int
ε⊥ei,ε⊂K

|ε|vσ + vσ′

2

wσ + wσ′

2
ϕi,σ, S2 =

∑
ε=
−−→
σ|σ′∈Ẽ(i)

int

ε6⊥ei,ε⊂τ∪τ ′

|ε|vτ + vτ ′

2

wσ + wσ′

2
ϕi,σ,

where τ and τ ′ are the faces of E(j), j 6= i such that ε ⊂ τ ∪ τ ′.
For K ∈M and σ, σ′ ∈ E(K)∩E(i) we denote by ṽK,i the mean value 1

2 (vσ +vσ′). Reordering over the edges,
we get that

S1 =
∑
K∈M
K=
−−−→
[σσ′]

|σ|ṽK,iw̃K,i(ϕi,σ − ϕi,σ′)

=
∑
σ∈Eint

σ=K|L

|(DK,σ ṽK,i +DL,σ ṽL,i)ðiΠ(i)
E ϕi

→ −
∫

Ω

v̄i w̄i ∂iϕi dx as n→ +∞
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thanks to the fact that ṽn,i → ūi and w̃n,i → w̄i in L2(Ω), and thanks to Lemma 2.3. Now S2 =
∑
j∈[1,d]
j 6=i

S2,j with

S2,j =
∑
τ∈E(j)

int

|τ |vτ
4

[
4∑
k=1

(wσ3
+ wσ1

)ϕi,σ1
+ (wσ4

+ wσ2
)ϕi,σ2

− (wσ1
+ wσ3

)ϕi,σ3
− (wσ2

+ wσ4
)ϕi,σ4

]

where (σk)k=1,...,4 are the four neighbouring faces (or edges) of τ

belonging to E(i), i.e. such that τ̄ ∩ σ̄k 6 ∅, see figure on the right. τ

σ1 σ2

σ3 σ4

Thus,

S2,j =
∑
τ∈E(j)

int

|τ |vτ
4

[(wσ3
+ wσ1

) (ϕi,σ1
− ϕi,σ3

) + (wσ4
+ wσ2

) (ϕi,σ2
− ϕi,σ4

)]

= −
∑
τ∈E(j)

|Dτ |vτ ŵτ∂jϕi(xτ ) +R

where |R| ≤ Cϕ,η‖vn,i‖L2(Ω)‖wn,j‖L2(Ω)hn, with Cϕ,η ≥ 0 depending only on ϕ and η. Hence

S2,j → −
∫

Ω

v̄i w̄j ∂jϕi dx as n→ +∞,

which concludes the proof. �

Theorem 3.7 (Convergence of the scheme). Let (Dn)n∈N, with Dn = (Mn,En) be a sequence of meshes such
that hMn = maxK∈Mn diam(K) → 0 as n → +∞ ; assume that there exists η > 0 such that ηMn ≤ η for any
n ∈ N (with ηMn

defined by (6)). Let (un, pn) be a solution to the MAC scheme (26) or its weak form (33), for
D = Dn. Then there exists ū ∈ H1

0 (Ω)d and p̄ ∈ L2(Ω) such that, up to a subsequence:

- the sequence (un)n∈N converges to ū in L2(Ω)d,
- the sequence (∇nun)n∈N converges to ∇ū in L2(Ω)d×d,
- the sequence (pn)n∈N converges to p̄ in L2(Ω),
- (ū, p̄) is a solution to the weak formulation (2).

Proof. Thanks to the estimate (42) on the velocity, we can apply the classical translate estimate [10, Theorem
14.2] and the estimates on the translates [10, Theorem 14.1] to obtain the existence of a subsequence of ap-
proximate solutions (un)n∈N which converges to some ū ∈ L2(Ω)d. From the estimates on the translates, we
also get the regularity of the limit, that is ū ∈ H1

0 (Ω)d. The estimate (44) on the pressure then yields the weak
convergence of a subsequence of (pn)n∈N to some p̄ in L2(Ω). Let us then pass to the limit in the scheme in
order to prove its (weak) consistency.

Passing to the limit in the mass balance equation: Let ψ ∈ C∞c (Ω), taking ψn = ΠMnψ the point-wise
interpolate defined by (15) as test function in (33b) and using (16), we get that:

0 =

∫
Ω

divMn
unψn dx = −

∫
Ω

∇Mn
ψn · un dx = −

d∑
i=1

∫
Ω

u(i)
n ðiψn dx.

Therefore, thanks to Lemma 2.4,

0 = lim
n→+∞

∫
Ω

divMn
unψn dx = −

d∑
i=1

∫
Ω

ū(i)∂iψ dx = −
∫

Ω

ū · ∇ψ dx =

∫
Ω

divū ψ dx.
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so that ū satisfies (33b).

Passing to the limit in the momentum balance equation: Let ϕ = (ϕ1, · · · , ϕd)t ∈ (C∞c (Ω))d, and
take ϕn = ΠEnϕ = (ϕn,1, · · · , ϕn,d)t ∈HEn,0 as test function in (33a); this yields:∫

Ω

∇Enun : ∇Enϕn dx+ bE(un,un,ϕn)−
∫

Ω

pn divMnϕn dx =

∫
Ω

PEnf ·ϕn dx. (50)

Thanks to the L2 convergence of un to ū, to the weak L2 convergence of pn to p and to the uniform convergence
of PEnf to f and of divMn

ϕn to divϕ (see Lemma 2.3) as n→ +∞, we have∫
Ω

PEnf ·ϕn dx→
∫

Ω

f · ϕ̄ dx and

∫
Ω

pn divMn
ϕn dx→

∫
Ω

p̄ div ϕ̄ dx as n→∞

From [10, Proof of Theorem 9.1], we get that∫
Ω

∇Enun,i : ∇Enϕn,i dx = [un,i, ϕn,i]1,E(i)
n ,0
→ −

∫
Ω

ūi∆ϕi dx as n→ +∞.

and therefore ∫
Ω

∇Enun : ∇Enϕn dx→ −
d∑
i=1

∫
Ω

ūi∆ϕi dx =

∫
Ω

∇ū : ∇ϕ dx as n→ +∞.

By Lemma 3.6, we have

lim
n→+∞

bEn(un,un,ϕn) =

∫
Ω

(ū · ∇)ū ·ϕ dx. (51)

Passing to the limit as n→ +∞ in (50) thus yields that ū and p̄ satisfy (2).
Let us now prove the strong convergence of ∇Enun to ∇ū in L2(Ω). The sequence (∇Enun)n∈N is bounded in

L2(Ω)d×d and therefore, there exists ξ ∈ L2(Ω)d×d and a subsequence still denoted by (∇Enun)n∈N converging
to ξ weakly in L2(Ω)d×d. Since

∫
Ω
∇Enun ϕn dx =

∫
Ω

divnϕn un dx, the uniqueness of the limit in the sense
of distributions implies that ∇ū = ξ. Taking ϕn = un in (50) this yields:∫

∇Enun : ∇Enun dx =

∫
Ω

PEnf · un dx.

Passing to the limit as n→∞ we get that:

‖∇Enun‖2L2(Ω)d×d = ‖un‖21,En,0 →
∫

Ω

f · ū dx = ‖∇ū‖2L2(Ω)d×d ,

which implies the strong convergence of the discrete gradient of the velocity.
Let us finally prove the strong convergence of the pressure. Let ϕn ∈ (H1

0 (Ω))d be such that divϕn = pn a.e.
in Ω and

‖ϕn‖H1
0 (Ω)d ≤ c‖pn‖L2(Ω),

where c depends only on Ω. Let ψn = P̃Enϕn; thanks to Lemma 3.3, we have ‖ψn‖1,En,0 ≤ c Cηn‖pn‖L2(Ω),

and since pn is piecewise constant, we get that divMnψn = pn, Therefore, taking ψn = P̃Enϕn as test function
in (33a), we obtain:∫

Ω

p2
n dx =

∫
Ω

∇Enun : ∇Enψn dx+ bE(un,un,ψn)−
∫

Ω

PEnf ·ψn dx,

and ‖ψn‖1,E,0 ≤ c Cηn‖pn‖L2(Ω).
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From the bound on ‖ψn‖1,E,0 we know that ψn converges to some ψ ∈ H1
0 (Ω)d in L2(Ω) and thanks to (31)

that ∇Enψn → ∇ψ weakly in (L2(Ω)d×
d

) as n→ +∞. Passing to the limit as n→∞ we get that

‖pn‖2L2(Ω) →
∫

Ω

∇ū : ∇ψ dx+ b(ū, ū,ψ)−
∫

Ω

f ·ψ dx.

Since (ū, p̄) satisfies (2), this implies that ‖pn‖L2(Ω) → ‖p̄‖L2(Ω), which in turn yields that pn → p̄ in L2(Ω) as
n→ +∞. �

Lemma 3.8 (Convergence of the full grid velocity interpolate). Let (Mn,En)n∈N be a sequence MAC meshes
such that hMn

→ 0 as n→ +∞, and (ηMn
)n∈N remains bounded. Let v̄ ∈ L2(Ω), and let (vn)n∈N be such that

vn ∈ E
(i)
n and vn converges to v̄ as n→ +∞ in L2(Ω). Let i, j = 1, . . . , d and R

(i,j)
En

be the full grid velocity

reconstruction operator defined by (47). Then R
(i,j)
En

vn → v̄ in L2(Ω) as n→ +∞.

Proof. Let ϕ ∈ C∞c (Ω). Denoting R
(i,j)
En

by Rn and P
(i)
En

by Pn for short (recall that P
(i)
En

is defined by (27)) we
have:

‖Rnvn− v̄‖L2(Ω) ≤ ‖Rnvn−Rn ◦Pnv̄‖L2(Ω) +‖Rn ◦Pnv̄−Rn ◦Pnϕ‖L2(Ω) +‖Rn ◦Pnϕ−ϕ‖L2(Ω) +‖ϕ− v̄‖L2(Ω).

Since Rnvn = Rn ◦ Pnvn, and thanks to the fact that ‖Rn‖L2(Ω) is bounded (see Lemma 3.5) and that
‖Pn‖L2(Ω) ≤ 1, we get that there exists C ≥ 0 such that

‖Rnvn − v̄‖L2(Ω) ≤ C‖vn − v̄‖L2(Ω) + C‖v̄ − ϕ‖L2(Ω) + ‖Rn ◦ Pnϕ− ϕ‖L2(Ω) + ‖ϕ− v̄‖L2(Ω).

Let ε > 0. Let us choose ϕ ∈ C∞c (Ω) so that ‖ϕ− v̄‖L2(Ω) ≤ ε
C+1 . There exists n1 such that C‖vn − v̄‖L2(Ω) ≤

ε, ∀n ≥ n1, and there exists n2 such that ‖Rn ◦ Pnϕ − ϕ‖L2(Ω) ≤ ε, ∀n ≥ n2. Therefore, for n ≥ max(n1, n2),
we get:

‖Rnvn − v̄‖L2(Ω) ≤ 3ε,

which concludes the proof. �

4. Unsteady case

4.1. Time discretization

Let us now turn to the time discretization of the problem (3); we consider a MAC grid D = (M,E) of Ω
in the sense of Definition 2.1, and a partition 0 = t0 < t1 < · · · < tN = T of the time interval (0, T ), and,
for the sake of simplicity, a constant time step δt = tn+1 − tn; hence tn = nδt for n ∈ {0, · · · , N − 1}. Let

{u(n+1)
σ , σ ∈ E(i), n ∈ {0, · · · , N − 1}} and {p(n+1)

K ,K ∈M, n ∈ {0, · · · , N − 1}) be the sets of discrete velocity
and pressure unknowns; we define the corresponding piecewise constant functions u = (u1, . . . , ud) and p. For
the velocities, these constant functions are of the form:

ui =

N−1∑
n=0

∑
σ∈E(i)

int

u(n+1)
σ χDσχ]tn,tn+1],

where χ]tn,tn+1] is the characteristic function of the interval ]tn, tn+1]. We denote by Xi,E,δt the set of such

piecewise constant functions on time intervals and dual cells, and we set XE,δt =
∏d
i=1Xi,E,δt. For the pressure,

the constant functions are of the form:

p(x, t) = p
(n+1)
K for x ∈ K and t ∈]tn, tn+1].

and we denote by YM,δt the space of such piecewise constant functions.
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We look for an approximation (u, p) ∈ XE,δt × YM,δt of (ū, p̄) solution of the problem (3). For σ ∈ E(i),

i ∈ {1, · · · , d} the value u
(n+1)
σ is an expected approximation of ui(x, tn+1), for x ∈ Dσ, and the value p

(n+1)
K is an

expected approximation of p(x, tn+1) for x ∈ K. For a given u ∈XE,δt associated to the set of discrete velocity

unknowns {u(n+1)
σ , σ ∈ E(i), n ∈ {0, · · · , N − 1}}, and for n ∈ {0, · · · , N − 1}, we denote by u

(n)
i ∈ H(i)

E,0 the

piecewise constant function defined by u
(n)
i (x) = u

(n)
σ for x ∈ Dσ, σ ∈ E(i), and set u(n) = (u

(n)
1 , . . . , u

(n)
d )t ∈ HE.

Setting

u(·, 0) =
∑
σ∈E(i)

int

u(0)
σ χDσ = PEu0,

we define the discrete derivative ðtu ∈XE,δt by

ðtu =
N−1∑
n=0

1

δt
(u(n+1) − u(n))χ]tn,tn+1]

Denoting by u(n) = u(·, tn) and p(n) = p(·, tn), the time-implicit MAC scheme for the transient Navier-Stokes
reads:

Initialization

u(0) = P̃Eu0 (52a)

Step n ≥ 0. Solve for u(n+1) and p(n+1) :

u(n+1) ∈ HE,0, p
(n+1) ∈ LM,0, (52b)

ðtu(n+1) −∆Eu
(n+1) +CE(u(n+1))u(n+1) + ∇E p(n+1) = f

(n+1)
E , (52c)

divMu
(n+1) = 0, (52d)

where for all n ∈ {0, . . . , N − 1}, f (n+1)
E = PEf(·, t(n+1)) (recall that PE is the mean value operator defined by

(27)). A weak formulation of Step n of the scheme (52) reads:

Find u(n+1) ∈ EE ; n ∈ {0, · · · , N − 1}, such that, for any v ∈ EE,∫
Ω

ðtu(n+1) · v dx+

∫
Ω

∇u(n+1) · ∇v dx+ bE(u(n+1),u(n+1),v) =

∫
Ω

f
(n+1)
E · v dx. (53)

4.2. Existence and estimates on the approximation solution

Lemma 4.1 (Existence and first estimates on the velocity). There exists at least a solution u ∈XM,δt satisfying
(52). Furthermore, there exists C > 0 depending only on u0 and f such that any function u ∈XM,δt satisfying
(52) satisfies:

‖u‖L2(0,T ;HE,0) ≤ C, (54)

‖u‖L∞(0,T ;L2(Ω)d) ≤ C, (55)

where ‖u‖2L2(0,T ;HE,0) =

N−1∑
n=0

δt‖u(n+1)‖21,E,0, ‖u‖L∞(0,T ;L2(Ω)d) = max{‖u(n+1)‖L2(Ω)d , n ∈ [|0, N − 1|]}, and

u(n) = u(·, tn).

Proof. We prove the a priori estimates (54) and (55). The existence of a solution then follows by a topological
degree argument as for the stationary case.
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Let M ≤ N − 1; taking v = u(n+1) in (53), multiplying by δt and summing the result over n ∈ {0, · · · ,M},
we obtain thanks to Lemma 3.2 and to the Cauchy-Schwarz inequality:

M∑
n=0

∑
σ∈E(i)

|Dσ|u(n+1)
σ (u(n+1)

σ − u(n)
σ ) +

M∑
n=0

δt‖u(n+1)
i ‖21,E(i),0 ≤

M∑
n=0

δt‖fi(., tn+1)‖L2(Ω)‖ui(., tn+1)‖L2(Ω).

Using the fact that for all a, b ∈ R, a(a− b) = 1
2 (a− b)2 + 1

2a
2 − 1

2b
2 for the first term of the left hand-side and

the discrete Poincaré and Young inequalities for the right and side, we get that

‖u(M+1)
i ‖2L2(Ω) +

M∑
n=0

δt‖u(n+1)
i ‖21,E(i),0 ≤ ‖u

(0)
i ‖

2
L2(Ω) + C2

P ‖f (i)‖2L2(0,T ;L2(Ω)),

where CP > 0 depends only on Ω. On one hand, this inequality yields the L∞ estimate (55); on the other hand,
taking M = N − 1 and summing for i = 1, . . . , d, we get the L2 estimate (54).

�

Next we turn to an estimate on the discrete time derivative. To this end, we introduce the following discrete
dual norms on HE,0 and XE,δt.

v ∈ HE,0 7→ ‖v‖E′
E

= max{
∣∣∣∣∫

Ω

v ·ϕ dx

∣∣∣∣ ; ϕ ∈ EE and ‖ϕ‖1,E,0 ≤ 1},

v ∈XE,δt 7→ ‖v‖L4/3(0,T ;E′
E

) =

(
N−1∑
n=0

δt‖fn+1)‖4/3E′
E

)3/4

.

(56)

Lemma 4.2 (Estimate on the dual norm of the discrete time derivative). Let u ∈XE,δt be a solution to (52).
Then there exists C > 0 depending only on u0, Ω, ηM and f such that:

‖ðtu‖L4/3(0,T ;E′
E

) ≤ C.

Proof. If u ∈XE,δt is a solution to (52) then u(n+1) = u(·, tn+1) ∈ EE is a solution to (53); taking v ∈ EE such
that ‖v‖1,E,0 ≤ 1 as test function in (53) we have ∀n ∈ {0, · · · , N − 1}:∫

Ω

ðtu(n+1) · v dx+

∫
Ω

∇u(n+1) · ∇v dx+ bE(u(n+1),u(n+1),v) =

∫
Ω

f
(n+1)
E · v dx.

By Lemma 3.2 and thanks to the estimate (34) we have

|bE(u(n+1),u(n+1),v)| ≤ CηM‖u(n+1)‖2L4(Ω))d‖v‖1,E,0.

Using the Cauchy-Schwarz inequality, we note that

‖u(n+1)‖4L4(Ω)d =

∫
Ω

|u(n+1)||u(n+1)|3 dx ≤ ‖u(n+1)‖L2(Ω)d‖u(n+1)‖3L6(Ω)d .

Therefore, thanks to the estimate (55) of Lemma 4.1,∫
Ω

ðtu(n+1) · v dx ≤ CηMC‖u(n+1)‖3/2
(L6(Ω))d

+ ‖u(n+1)‖1,E,0 + ‖f (n+1)
E ‖(L2(Ω))d ,

Hence

‖ðtu(n+1)‖4/3E′
E

≤ 9
(

(CηMC)
4
3 ‖u(n+1)‖2L6(Ω)d + ‖u(n+1)‖4/31,E,0 + ‖f (n+1)

E ‖4/3
L2(Ω)d

)
≤ 9

(
(CηMC)

4
3 ‖u(n+1)‖2L6(Ω)d + ‖u(n+1)‖21,E,0 + ‖f (n+1)

E ‖2L2(Ω)d + 2
)
.
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Multiplying this latter inequality by δt and summing for n = 0, . . . , N − 1, we get

‖v‖
4
3

L4/3(0,T ;E′
E

)
≤ 9

(
(CηMC)

4
3 ‖u‖2L2(0,T,L6(Ω)d) + ‖u‖2L2(0,T,HE,0) + ‖f‖2L2(0,T,L2(Ω)d) + 2T

)
.

We conclude by the discrete Sobolev inequality [10, Lemma 3.5] and thanks to the L2(0, T ; HE,0) estimate on
u given in (54). �

4.3. Convergence analysis

Theorem 4.3 (Convergence of the scheme). Let (δtm)m∈N and (Dm)m∈N = (Mm,Em)m∈N be a sequence of
time steps and MAC grids (in the sense of Definition 2.1) such that δtm → 0 and hMm

→ 0 as m → +∞ ;
assume that there exists η > 0 such that ηMm

≤ η for any m ∈ N (with ηMm
defined by (6)). Let um be a

solution to (53) for δt = δtm and D = Dm. Then there exists ū ∈ L2(0, T ;E(Ω)) such that, up to a subsequence:

- the sequence (um)m∈N converges to ū in L4/3(0, T ;L2(Ω)d),
- ū is a solution to the weak formulation (4).
- ∂tū ∈ L4/3(0, T ;E′(Ω)).

Proof. We proceed in four steps.
First step: compactness in L4/3(0, T ;L2(Ω)d).

The first step consists in applying the discrete Aubin-Simon theorem 5.3 in order obtain the existence of
subsequence of (um)m∈N which converges to ū in L4/3((0, T );L2(Ω)d). In our setting, we apply Theorem 5.3
with p = 4

3 ; the Banach space B of is L2(Ω)d, and the spaces Xm and Ym consist in the space HEm,0 endowed
with the norms defined respectively in (29) and (56). By [10, Theorem 14.2] and the Kolmogorov compactness
theorem (see e.g. [10, Theorem 14.1]) we obtain that (Xm, Ym)m∈N is compactly embedded in B in the sense of
Definition 5.1. Let us then show that the sequence (Xm, Ym)m∈N is compact-continuous in L2(Ω)d in the sense
of Definition 5.2. Let um ∈ HEm,0 such that (‖um‖1,Em,0)m∈N is bounded and ‖um‖E′m → 0 as m → +∞.

Assume that um → û in (L2(Ω))d; by definition (56) of the dual norm, we have∫
Ω

um · um dx ≤ ‖um‖1,Em,0‖um‖E′m .

Passing to the limit in this inequality as m → ∞, we get that û = 0, so that the sequence (Xm, Ym)m∈N is
compact-continuous in L2(Ω)d. We now check the three assumptions (H1), (H2) and (H3) of Theorem 5.3:
By Lemma 4.1, the sequence ‖um‖L1(0,T ;HE,0) is bounded, and thanks to the discrete Poincaré inequality, the

sequence (um)m∈N is also bounded in L4/3(0, T ; (L2(Ω)d)); furthermore, the sequence ‖ðtum‖L4/3(0,T ;E′
E

) is

bounded by Lemma 4.2. Hence, Theorem 5.3 applies and there exists ū ∈ L4/3(0, T ;L2(Ω)d) such that, up to
a subsequence,

um → ū in L4/3
(
0, T ;L2(Ω)d

)
as m→ +∞.

Step 2: Convergence in L2(Ω× (0, T )).
By Lemma 4.1, the sequence (um)m∈N is bounded in L∞(0, T, L2(Ω)d), and therefore, there exists û ∈
L∞(0, T ;L2(Ω)d) and a subsequence (uφ(m))m∈N converging to û ?-weakly in L∞(0, T ;L2(Ω)d). Since uφ(m) →
ū in L4/3(0, T ;L2(Ω)d), the uniqueness of the limit in the sense of distributions implies that ū = û so that
ū ∈ L∞(0, T ;L2(Ω)d). By a classical interpolation result on Lp(0, T ) spaces, we have

‖ū− um‖L2(0,T ;L2(Ω)d) ≤ ‖ū− um‖
2/3

L4/3(0,T ;L2(Ω)d)
‖ū− um‖1/3L∞(0,T ;L2(Ω)d)

,

which implies that um converges towards ū in L2(0, T ;L2(Ω)d) as m tends to infinity.

Step 3: Weak consistency of the scheme
The notion of weak consistency that we use here is the Lax-Wendroff notion: we show that if a sequence of
approximate solutions of the scheme converges to some limit, then this limit is a weak solution to the original
problem. Let us then show that ū satisfies (4). Let ϕ ∈ C∞c (Ω × [0, T ))d, such that divϕ = 0. By Lemma
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3.3, we have divMm P̃Emϕ(·, tn) = 0, and so we can take ϕ
(n)
m = P̃Emϕ(·, tn) ∈ EE as test function in (53) ;

multiplying by δtm and summing for n = {0, . . . , Nm − 1} (with Nmδtm = T ), we then get:

Nm−1∑
n=0

δtm

(∫
Ω

ðtu(n+1)
m ·ϕ(n)

m dx dt+

∫
Ω

∇Emu
(n+1)
m : ∇Emϕ

(n)
m dx+ bEm(u(n+1)

m ,u(n+1)
m ,ϕ(n)

m )

−
∫

Ω

PEmf
(n+1) ·ϕ(n)

m dx

)
= 0.

The first term of the left handside reads T1m =
∑d
i=1 T1m,i with

T1m,i =

Nm−1∑
n=0

∑
σ∈E(i)

|Dσ| (u(n+1)
m,σ − u(n)

m,σ)ϕ(n)
m,σ

= −
Nm−1∑
n=0

δt
∑
σ∈E(i)

|Dσ|u(n+1)
m,σ

ϕ
(n+1)
m,σ − ϕ(n)

m,σ

δt
−
∑
σ∈E(i)

|Dσ|u(0)
m,σ ϕ

(0)
m,σ

= −
∫ T

0

∫
Ω

um,i(x, t)ðtϕm,i(x, t) dx dt−
∫

Ω

P
(i)
Em
u0,i(x)ϕ(0)

m (x) dx.

We know that um,i → ui in L2(0, T ;L2(Ω)) as m → +∞. By definition, the discrete partial derivative ðtϕm,i
converges uniformly to ∂ϕi as m→ +∞. Moreover, PEmu0,i converges to (ū0,i) in Lq(Ω) for all q in [1, 2], and

ϕ
(0)
m,σ converges to ϕ̄i(·, 0) in Lq(Ω) for all q in [1,∞]. Hence

T1m → −
∫ T

0

∫
Ω

ū(x, t) · ∂tϕ(x, t) dx dt−
∫

Ω

ū0(x) ·ϕ(x, 0) dx as m→∞. (57)

Let us then study the second term of the left hand side. We have∫
Ω

∇Emu
(n+1)
m : ∇Emϕ

(n)
m dx =

∫
Ω

∇Emu
(n+1)
m : ∇Emϕ

(n+1)
m dx+

∫
Ω

∇Emu
(n+1)
m : ∇Em(ϕ(n)

m −ϕ(n+1)
m ) dx.

As in the stationary case, we get that

Nm−1∑
n=0

δtm

∫
Ω

∇Emu
(n+1)
m : ∇Emϕ

(n+1)
m dx→

∫ T

0

∫
Ω

∇ū · ∇ϕ dx dt as m→ +∞.

Moreover, thanks to the regularity of ϕ,∫
Ω

∇Emu
(n+1)
m : ∇Em(ϕ(n+1)

m −ϕ(n)
m ) dx ≤ δtmCϕ‖u(n+1)

m ‖1,E,0

where Cϕ depends only on ϕ. We thus get that

Nm−1∑
n=0

δtm

∫
Ω

∇Emu
(n+1)
m : ∇Em(ϕ(n+1)

m −ϕ(n)
m ) dx→ 0 as m→ +∞.

Similarly, we have∫
Ω

PEmf
(n+1) · (ϕ(n)

m −ϕ(n+1)
m ) dx ≤ δtCϕ‖f(·, tn+1)‖L2(Ω) → 0 as m→ +∞,
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so that
Nm−1∑
n=0

δtm

∫
Ω

PEmf
(n+1) ·ϕ(n)

m dx→
∫ T

0

∫
Ω

f ·ϕ dx dt as m→ +∞.

The convection term is easily dealt with by remarking that Lemma 3.6 implies that

N−1∑
m=0

δtmbE(u(n+1)
m ,u(n+1)

m ,ϕ(n)
m )→

∫ T

0

b(ū, ū,ϕ) dt as n→ +∞.

Therefore, ū is indeed a solution of (4).

Step 4: Regularity of the limit
Thanks to [10, theorems 14.1 and 14.2] the sequence of normed vector spaces (HEm,0, ‖ · ‖1,Em,0)m∈N is
L2(Ω)d-limit-included in H1

0 (Ω)d in the sense of Definition 5.4. We have um → ū in L2(0, T, L2(Ω)) as
m → ∞ and (‖um‖L2(0,T ;HEm,0))m∈N is bounded thanks to Lemma 4.1. Therefore Theorem 5.5 applies and

ū ∈ L2(0, T ;E(Ω)).
Let us finally show that ∂tū ∈ L4/3(0, T ;E′(Ω)). Let ϕ ∈ C∞c (Ω×(0, T )) such that divϕ = 0. Let ϕm ∈ EEm

be defined by

ϕm(·, t) =
1

δt

∫ tn+1

tn

P̃Eϕ(·, t) dt for t ∈ [tn, tn+1[.

Thanks to Lemma 4.2, there exists C ≥ 0 depending only on u0, Ω, η and f such that:∫ T

0

∫
Ω

ðtum ·ϕm dx dt ≤ C‖ϕm‖L4(0,T ;HE,0).

By Lemma 3.3, there exists C2 depending only on η and Ω, such that ‖ϕm‖L4(0,T ;HE,0) ≤ C2‖ϕ‖L4(0,T ;E(Ω),

where E(Ω) is endowed with the H1
0 norm. Hence passing to the limit as m→ +∞ in a similar way as for T1m

in Step 1, we get that ∫ T

0

∫
Ω

u · ∂tϕ dx ≤ CC2‖ϕ‖L4(0,T ;E(Ω)).

We then get that ∂tū ∈ L4/3(0, T ;E′(Ω)) by density. �

4.4. Case of the unsteady Stokes equations

In the case of the unsteady Stokes equations, that is Problem (3) where we omit the nonlinear convection
term in (3b), stronger estimates can be obtained, which entail the weak convergence of the pressure. We assume
in this section that u0 ∈ H1(Ω)d and that divu0 = 0, and consider the following weak formulation of the
unsteady Stokes problem:

Find (ū, p̄) ∈ L2(0, T ;E(Ω))× L2(0, T ;L2(Ω)) such that ∀ϕ ∈ C∞c ([0, T [×Ω)d

−
∫ T

0

∫
Ω

ū(x, t) · ∂tϕ(x, t) dx dt−
∫

Ω

u0(x) ·ϕ(x, 0) dx+

∫ T

0

∫
Ω

∇ū(x, t) : ∇ϕ(x, t) dx dt

−
∫ T

0

∫
Ω

p̄ divϕ dx dt =

∫ T

0

∫
Ω

f(x, t) ·ϕ(x, t) dx dt. (58)

Note that this formulation does not use divergence free test functions as in (4). Indeed, in the case of the Stokes
equations, we are able to show the (weak) convergence of the pressure and we thus consider a formulation in
which the pressure is present. Note that the two formulations are in fact equivalent.

The scheme We look for an approximation (u, p) ∈ XE,δt × YM,δt of (u, p) solution to the problem (58); we
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consider the time-implicit MAC scheme which reads:

Initialization

u(0) = P̃Eu0 (59a)

Step n ≥ 0. Solve for u(n+1) and p(n+1) :

u(n+1) ∈ HE,0, p
(n+1) ∈ LM,

∫
Ω

p(n+1) dx = 0, (59b)

ðtu(n+1) −∆Eu
(n+1) + ∇E p(n+1) = f

(n+1)
E , (59c)

divMu
(n+1) = 0, (59d)

Note that the choice of the discretization of the initial condition in (59a), together with the assumption divu0 = 0
implies that divM u(0) = 0; this fact is important for the obtention of the estimates. A weak formulation of
(59b)–(59d) reads:

Find (u(n+1), p(n+1)) ∈ EE × LM ;

∫
Ω

p(n+1) dx = 0, and ∀v ∈ HE,0, (60)∫
Ω

ðtu(n+1) v dx+

∫
Ω

∇Eu
(n+1) : ∇Ev dx−

∫
Ω

p(n+1)divM v dx =

∫
Ω

f
(n+1)
E · v dx. (61)

The estimates of Lemma 4.1 on the approximate solutions obtained in the case of the Navier-Stokes equations
are of course still valid. However we get stronger estimates on ðtu and on p, as we proceed to show.

Lemma 4.4 (Estimates on the discrete time derivative). Let u(n+1) ∈ HE,0 be a solution to (59); then there
exists C > 0 depending only on u0, Ω, ηM and f such that:

‖ðt u‖L2(0,T ;L2(Ω)d) ≤ C, (62)

‖ðt u‖L∞(0,T ;HE,0) ≤ C. (63)

Proof. Let u(n+1) ∈ EE be a solution to (59b)–(59d). Taking v = ðtu(n+1) in (61) we get:∫
Ω

(ðtu(n+1))2 dx+

∫
Ω

∇Eu
(n+1) : ∇E(ðtu(n+1)) dx−

∫
Ω

p(n+1) divM(ðtu(n+1)) dx =

∫
Ω

f
(n+1)
E · ðtu(n+1) dx.

(64)
By linearity of the discrete time derivative discrete divergence operators, and thanks to by (59d), we get
that divM(ðtu(n+1)) = ðt(divMu

(n+1)) = 0. Multiplying (64) by δt and summing the result over n ∈
{0, · · · ,M} ; M ≤ N − 1 we obtain T1 + T2 = T3 where

T1 =

M∑
n=0

δt

∫
Ω

(ðtu(n+1))2 dx, T2 =

M∑
n=0

δt

∫
Ω

∇Eu
(n+1) : ðt(∇Eu

(n+1)) dx, and T3 =

M∑
n=0

δt

∫
Ω

f
(n+1)
E ·ðtu(n+1) dx.

We have:

T2 =

M∑
n=0

(
1

2
‖u(n+1)‖21E,0 −

1

2
‖u(n)‖21,E,0 +

1

2
‖u(n+1) − u(n)‖21,E,0) ≥ 1

2
‖uM+1‖21,E,0 −

1

2
‖u0‖21,E,0.

By the Cauchy-Schwarz and the Young inequalities we obtain:

T3 ≤
M∑
n=0

δt
( ∫

Ω

|f(., tn+1)|2 dx
) 1

2
( ∫

Ω

(ðtu(n+1))2 dx
) 1

2 ≤ 1

2
‖f‖2L2(0,T ;L2(Ω)d) +

1

2

M∑
n=0

δt

∫
Ω

(ðtu(n+1))2 dx.
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Gathering the above inequalities, we get that:

M∑
n=0

δt

∫
Ω

(ðtu(n+1))2 dx+ ‖uM+1‖21,E,0 ≤ ‖f‖2L2(0,T ;L2(Ω)d) + ‖u0‖21,E,0. (65)

This in turn yields the L∞(L2) estimate (63) and the L2(L2) estimate (62) (taking M = N − 1) on the discrete

derivative, with C =
√

2(‖f‖L2(0,T ;L2(Ω)d) + ‖u0‖(H1)d).
�

Lemma 4.5 (Estimate on the pressure). Let (u, p) ∈ XM,δt × YM,δt be a solution to (59). There exists C ≥ 0
depending only on Ω, ηM and f such that:

‖p‖L2(0,T ;L2(Ω)) ≤ C. (66)

Proof. With the same arguments as in the proof of the pressure estimate in Proposition 3.4, we choose v = P̃Eϕ
as test function in (61), where ϕ ∈ H1

0 (Ω)d is such that divϕ = p(n+1) and ‖∇ϕ‖L2(Ω)d×d ≤ c‖p(n+1)‖L2(Ω),
with c depending only on Ω. Thanks to (40a) we then obtain:∫

Ω

ðtu(n+1)v dx+

∫
Ω

∇Eu
(n+1) : ∇Ev dx− ‖p(n+1)‖2L2(Ω) =

∫
Ω

f
(n+1)
E · v dx,

Thanks to the Cauchy-Schwarz and Poincaré inequalities and to the estimate (40a) we then get that there exists
CηM depending on Ω and on the regularity of the mesh such that

‖p(n+1)‖2L2(Ω) ≤ CηM
(
‖ðtu(n+1)‖2(L2(Ω))d + ‖u(n+1)‖21,E,0 + ‖f (n+1)

E ‖2
L2(Ω)d

)
.

Summing (4.4) over n ∈ {0, · · · , N − 1} and multiplying by δt yields the result thanks to (54), and (62).
�

Theorem 4.6 (Convergence of the scheme). Let (δt)m ∈ (0, T ) and (Dm)m∈N be a sequence of meshes such
that (δt)m → 0 and maxK∈Mm

diam(K) → 0 as m → +∞ ; assume that there exists η > 0 such that ηMm
≤ η

for any m ∈ N (with ηMm
defined by (6)). Let (u(m), pm) be a solution to (59) for (δt)m = δt and D = Dm.

Then there exists (ū, p̄) ∈ L2(0, T ;E(Ω))× L2(0, T ;L2(Ω)) such that, up to a subsequence:

- the sequence (u(m))m∈N converges to ū in L2(0, T ;L2(Ω)d),
- the sequence (pm)m∈N weakly converges to p̄ in ∈ L2(0, T ;L2(Ω)),
- (ū, p̄) is a solution to the weak formulation (58).

Proof. The convergence of the sequence of discrete solutions of the velocity follow from the Theorem 4.3 and
the convergence of the sequence of discrete solutions of the pressure in L2(0, T ;L2(Ω)) follow from the estimate

(66). Let us then show that (ū, p̄) satisfies (58). Let ϕ ∈ C∞c (Ω× [0, T ))d. Taking ϕ
(n)
m = P̃Emϕ(·, tn) ∈ HEm,0

as test function in (61), multiplying by δtm and summing for n = {0, . . . , Nm−1} (with Nmδtm = T ), we obtain:

Nm−1∑
n=0

δtm

(∫
Ω

ðtu(n+1)
m ·ϕ(n)

m dx+

∫
Ω

∇Emu
(n+1)
m : ∇Emϕ

(n)
m dx−

∫
Ω

p(n+1)
m divMm

ϕ(n)
m dx

−
∫

Ω

PEmf
(n+1) ·ϕ(n)

m dx

)
= 0.

Let us deal with the pressure term, (all other terms of the equation can be dealt with as in the proof of Theorem
4.3). We have:∫

Ω

p(n+1)
m divMm

ϕ(n)
m dx =

∫
Ω

p(n+1)
m divMm

ϕ(n+1)
m dx+

∫
Ω

p(n+1)
m divMm

(ϕ(n)
m −ϕ(n+1)

m ) dx.
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By Lemma 3.3 and thanks to the regularity of ϕ,∫
Ω

p(n+1)
m divMm

(ϕ(n) −ϕ(n+1)) dx ≤ ‖p(n+1)
m ‖L2(Ω)‖div (ϕ(n) −ϕ(n+1))‖L2(Ω)

≤ δtm Cϕ‖p(n+1)
m ‖L2(Ω)

→ 0 as m→ +∞.

We proved in the stationary case (see the proof of Theorem 3.7) that∫
Ω

p(n+1)
m divMm ϕ

(n+1)
m dx→

∫
Ω

p̄ divϕ dx as m→∞,

and this concludes the proof that (ū, p̄) is indeed a solution of (58). �

5. Appendix: Discrete functional analysis

Definition 5.1 (Compactly embedded sequence of spaces). Let B be a Banach space; a sequence (Xm)m∈N of
Banach spaces included in B is compactly embedded in B if any sequence (um)m∈N satisfying:

• um ∈ Xm (∀m ∈ N),
• the sequence (‖um‖Xm)m∈N is bounded,

is relatively compact in B.

Definition 5.2 (Compact-continuous sequence of spaces). Let B be a Banach space, and let (Xm)m∈N and
(Ym)m∈N be sequences of Banach spaces such that Xm ⊂ B for m ∈ N. The sequence (Xm, Ym)m∈N is compact-
continuous in B if the following conditions are satified:

• The sequence (Xm)m∈N is compactly embedded in B (see Definition 5.1),
• Xm ⊂ Ym (for all m ∈ N),
• if the sequence (um)m∈N is such that um ∈ Xm (for allm ∈ N), (‖um‖Xm)m∈N is bounded and ‖um‖Ym →

0 as m→ +∞, then any subsequence of (um)m∈N converging in B converges to 0 (in B).

The following theorem is proved [4] and is a generalization of a previous work carried out in [15].

Theorem 5.3 (Aubin-Simon Theorem with a sequence of subspaces and a discrete derivative.). Let 1 ≤ p <∞,
let B be a Banach space, and let (Xm)m∈N and (Ym)m∈N be sequences of Banach spaces such that Xm ⊂ B for
m ∈ N. We assume that the sequence (Xm, Ym)m∈N is compact-continuous in B. Let T > 0 and (u(m))m∈N be
a sequence of Lp(0, T ;B) satisfying the following conditions:

• (H1) the sequence (u(m))m∈N is bounded in Lp(0, T ;B).
• (H2) the sequence (‖u(m)‖L1(0,T ;Xm))m∈N is bounded.

• (H3) the sequence (‖ðtu(m)‖Lp(0,T ;Ym))m∈N is bounded.

Then there exists u ∈ Lp(0, T ;B) such that, up to a subsequence, u(m) → u in Lp(0, T ;B).

Definition 5.4 (B-limit-included). Let B be a Banach space, (Xm)m∈N be a sequence of Banach spaces
included in B and X be a Banach space included in B. The sequence (Xm)m∈N is B-limit-included in X if
there exists C ∈ R such that if u is the limit in B of a subsequence of a sequence (um)m∈N verifying um ∈ Xm

and ‖um‖Xm ≤ 1, then u ∈ X and ‖u‖X ≤ C.

The regularity of a possible limit of approximate solutions may be proved thanks to the theorem which we
recall below [16, Theorem B1].

Theorem 5.5 (Regularity of the limit). Let 1 ≤ p < ∞ and T > 0. Let B be a Banach space, (Xm)m∈N be
a sequence of Banach spaces included in B and B-limit-included in X (where X is a Banach space included in
B). Let T > 0 and, for m ∈ N, Let um ∈ Lp(0, T ;Xm). We assume that the sequence (‖um‖Lp(0,T ;Xm))m∈N is
bounded and that um → u a.e. as m→∞. Then u ∈ Lp(0, T ;X).
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