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Abstract
In this paper, we propose a qualitative formalism
for representing and reasoning about time at differ-
ent scales. It extends the results of Euzenat [1995]
concerning time and overcomes their major limi-
tations, allowing one to reason about relations be-
tween points and intervals. Our approach is more
expressive than most algebras of temporal rela-
tions: for instance, some relations are more relaxed
than those in Allen’s [1983] algebra, while others
are stricter. In particular, it enables the modeling
of imprecise, gradual, or intuitive relations, such
as “just before” or “almost meet”. In addition, we
give several results about how a relation changes
when considered at different granularities. Finally,
we provide an algorithm to compute the algebraic
closure of a temporal constraint network in our for-
malism, which can be used to check its consistency.

1 Introduction
Autonomous agents must often be able to reason about time;
the study of qualitative formalisms is a way to achieve this
concern. The most popular of such formalisms are alge-
bras of temporal relations, in which the time location of
events (called primitives or entities) are defined relatively
to each other, without quantification or measurement. The
point algebra of Vilain et al. [1986] (further studied by Lad-
kin and Maddux [1994] and Hirsch [1996]) deals with the
three elementary relations between points. The interval al-
gebra of Allen [1983] characterizes and allows one to rea-
son about the 13 elementary relations between two inter-
vals. Vilain’s [1982] point and interval algebra, developed
by Meiri [1996] and Krokhin and Jonsson [2002], simultane-
ously extends these two algebras by adding relations between
a point and an interval, for a total of 26 relations. In each
of these three algebras, operators allow one to deduce new
relations between entities, and thus to reason about events.

However, these formalisms consider neither data with dif-
ferent precisions nor the concept of multiscale representation
and reasoning. This concept allows for the representation of
events at various levels of detail, called granularities, such as
days, weeks, or months. Thanks to granularities, one can or-
ganize knowledge hierarchically, and reason about it at differ-

ent scales. For instance, within the time relations, one can say
that an interval A meets another interval B at a coarse gran-
ularity (i.e., looking at it with a general point of view), but
that A is before B at a fine granularity (i.e., with a closer point
of view). The usual algebras cannot process this knowledge
without leading to an inconsistency. To solve this problem,
Euzenat has proposed a granular extension of the point alge-
bra and one of the interval algebra [Euzenat, 1995], each one
providing a table describing how relations change when con-
sidered at a finer granularity (downward conversion) or at a
coarser granularity (upward conversion).

Nevertheless, the conversion table of interval relations is
not always relevant: if an interval becomes a point when seen
at a coarser granularity, no upward conversion is possible,
since the relations of the conversion are only between inter-
vals (not between an interval and a point). For instance, con-
sider two intervals A = [01:30,03:10] and B = [03:15,05:07]
during the same day. At the granularity of minutes, A is be-
fore B, whereas at the granularity of hours, A meets B. At
the granularity of days, A and B are indistinguishable, since
they are both included in the same day; the relation between
A and B is thus the “equality of points”, which exists nei-
ther in Allen’s algebra nor in the granular conversion table of
Euzenat. Consequently, the conditions in which upward con-
version is applicable depend, in particular, on the duration
of intervals, which is not always known. Hence, Euzenat’s
granular extension of the interval algebra does not adequately
describe relations at all possible granularities: reasoning is
impossible when granularities become too coarse.

To overcome the shortcomings of this approach, we pro-
pose, in this paper, a granular extension of Vilain’s [1982]
point and interval algebra, with the goal of representing and
reasoning about imprecise temporal knowledge, e.g., as ex-
pressed by humans, or coming from heterogeneous sources.
From this point of view, our formalism can be seen as an alter-
native to the fuzzy interval algebra of Schockaert et al. [2006],
which also makes it possible to model imprecise relations. In
particular, we are interested in qualitative granularities, i.e.,
granularities for which no quantitative information (such as
the duration of granules) is known, only their relative scales.
These qualitative granularities allow more flexibility in the
modeling process, and are for example necessary for analyz-
ing a temporal information expressed in natural language, as
the granularities are then not exactly known and thus cannot



be quantitatively modeled.
The next section recalls the main concepts about temporal

granularity that we consider in this paper. Then, in the third
section, we introduce granular relations between points and
intervals. The fourth section presents our algebra of granu-
lar temporal relations and its operators, including the granu-
lar conversion ones. In Section 5, we propose a polynomial
algorithm to compute the algebraic closure of a granular tem-
poral constraint network, which can be used to check its con-
sistency, in the case of qualitative granularities. The sixth
section is a discussion about related work. Finally, the con-
clusion and future work are presented in Section 7.

2 Preliminaries
2.1 Temporal Granularities
There are many possible approaches to formalize time gran-
ularities. Our work is based on the set-theoretic framework
of Bettini et al. [2000] as presented by Euzenat and Monta-
nari [2005]. Let us recall the basic concepts that we need to
build our formalism.

Time is modeled by a time domain T , which is a discrete or
dense, totally ordered set. Its elements are called time points.
Definition 1. A granularity g is a function from a discrete
ordered set Ig to the power set of the time domain T such
that:

∀ i, j,k ∈ Ig, i < k < j ∧ gi 6=∅ ∧ g j 6=∅ =⇒ gk 6=∅
∀ i, j ∈ Ig, i < j =⇒ ∀x ∈ gi,∀y ∈ g j, x < y

Thus, each granularity is a sequence of subsets of the time
domain that preserves the natural order of the time points.
Sets gi are called granules of the granularity g. By abuse of
notation, we consider that T is itself a granularity, viewing it
as the function T : i ∈ T 7→ {i}; i.e., IT = T (even if it is not
discrete) and Ti = {i}.

Bettini et al. have defined several relations between granu-
larities; we are interested in two of them in particular.
Definition 2. Let g,h be two granularities over T .
• g is finer than h, denoted g � h, if and only if ∀ i ∈

Ig,∃ j ∈ Ih : gi ⊆ h j, i.e., each granule of g is included
in a granule of h.
• h is coarser than g,1 denoted g v h, if and only if
∀ j ∈ Ih,∃S ⊆ Ig : h j =

⋃
i∈S gi, i.e., each granule of h

is composed of granules of g.
Relations � and v are partial orders; they give two differ-

ent characterizations of the intuitive notion of “being more
precise”, which both require that the two granularities be
aligned. If both g� h and gv h hold, then the set of granules
of g is a partition of the set of granules of h.

Bettini et al. have also defined two conversion operators
between granularities. They associate a granule of a given
granularity with the corresponding granules of another gran-
ularity. The upward conversion ↑, which converts the granule
to a “less precise” granularity, is defined as:

∀ i ∈ Ig, ↑h
g i =

{
j ∈ Ih : gi ⊆ h j

}
1This relation is called “g groups into h” by Bettini et al.

The downward conversion ↓, which converts the granule to a
“more precise” granularity, is defined as:

∀ j ∈ Ih, ↓h
g j =

{
S⊆ Ig : h j =

⋃
i∈S

gi

}
Proposition 3. Let g and h be two granularities over T , and
let i ∈ Ig and j ∈ Ih. If g � h (resp. g v h), then ↑h

g i (resp.
↓h

g j) contains exactly one element.

2.2 Gregorian Calendar
To represent relations between events, one first has to choose
a specific set of granularities. Among the most useful is the
Gregorian calendar, in which the month, year, week, and day
scales are granularities (the hour, minute, and second scales
can easily be added). For each pair (g,h) of these granular-
ities such that g is (intuitively) “more precise” than h, both
g � h and g v h hold (e.g., we have “months � years” and
“months v years”), except for the pairs weeks-months and
weeks-years: since their granules are not aligned, weeks are
not finer than months and years, nor are months and years
coarser than weeks.

Note that a granularity is not necessarily a partition of
the time domain, as there may be gaps. An example is
the granularity of business weeks, of which granules are
Monday to Friday periods (weekends are excluded); we
have “business weeks � weeks” but not “business weeks v
weeks”, and “days v business weeks” but not “days � busi-
ness weeks” [Bettini et al., 2000].

3 Formalizing Temporal Relations with
Granularities

In this section, we define point relations in the context of time
granularities, building upon the formal framework of Bettini
et al. [2000]. Then, we introduce our definitions of granular
relations between points and intervals, and finally discuss on
the modeling possibilities offered by our framework.

3.1 Granular Point Relations
We start by formally defining granular relations between
points, which was not done in the original work of Eu-
zenat [1995]. Thanks to this formalization, we can exhibit
sufficient conditions to use our granular conversion tables
(and incidentally, Euzenat’s). There are three possible ele-
mentary relations between two time points at a given granu-
larity.
Definition 4. Let a,b ∈ T . The granular point relations “be-
fore at granularity g” <g, “equals at granularity g” =g, and
“after at granularity g” >g are defined as:

a <g b ⇐⇒ ∃ i, j ∈ Ig : i < j ∧ a ∈ gi ∧ b ∈ g j

a =g b ⇐⇒ ∃ i ∈ Ig : a,b ∈ gi

a >g b ⇐⇒ ∃ i, j ∈ Ig : i > j ∧ a ∈ gi ∧ b ∈ g j

We say that a time point a is representable at granularity g
if a ∈

⋃
i∈Ig gi, and we denote it by a ∝ g. If two time points

are representable at granularity g, then the three relations are
exhaustive: if a ∝ g and b ∝ g, then a<g b or a=g b or a>g b.
They are also exclusive, since we cannot have more than one
granular elementary relation between two points.



rAB a− R a+ b− R b+ a− R b− a− R b+ a+ R b− a+ R b+

< = = < < < <
·a = < > > > >
·b = < < < < <
b < < < < < <
o < < < < > <
m < < < < = <
d < < > < > <
·d = < > < > <
s < < = < > <
·s = < = < = <
f < < > < > =
·f = < > = > =
e < < = < > =
= = = = = = =

Table 1: Definitions of the granular relations between inter-
vals and points from the granular point relations at the same
granularity (superscripts are omitted for clarity).

3.2 Granular Point and Interval Relations
We define a time entity E as an ordered pair (e−,e+) ∈ T 2

of time points such that e− ≤ e+. This pair represents the set
of points that are between e− and e+ in T , that is, {t ∈ T :
e− ≤ t ≤ e+}. A time entity E is said to be representable at a
granularity g if e− ∝ g and e+ ∝ g; this is denoted by E ∝ g.
At granularity g, E can be of two types: if e− =g e+, then E
is a point, whereas if e− <g e+, then E is an interval.

There are thus three categories of possible elementary rela-
tions between two time entities at a given granularity g. First,
there are the interval relations: before, meets, overlaps, starts,
during, and finishes, denoted by bg, mg, og, sg, dg, and f g;
their inverses, denoted by r̄g (with rg one of these relations);
and the equals relation, denoted by eg. Second, there are the
point relations: before <g, equals =g, and after >g. Third,
there are the point-interval relations: before ·bg, during ·dg,
starts ·sg, finishes ·f g, and after ·ag; and their inverses, the
interval-point relations, that we also denote by r̄g, with rg a
point-interval relation.

The definitions of these relations between time entities at
the considered granularity are given in Table 1; they are the
same as in the non-granular framework, i.e., on the time do-
main [Krokhin and Jonsson, 2002]. For instance, let A =
(a−,a+) and B = (b−,b+) be two time entities; A mg B holds
if a− <g a+, b− <g b+, and a+ =g b−. To obtain the defini-
tions of the inverse relations, substitute “<” for “>” and “>”
for “<” in columns 4 to 7, and swap columns 2 and 3 as well
as columns 5 and 6. In the following, we denote byR the set
of all 26 elementary relations.

In many situations, the actual bounds of the entities are un-
known. In fact, even the actual elementary relation between
two entities is generally unknown: often, several elementary
relations are possible, and there is no way to choose. The next
definition is used to represent such ambiguities.

Definition 5. A general relation R is a set of elementary re-
lations: R = {r1, . . . ,rn } ⊆ R. We say that R holds at gran-
ularity g between two time entities A,B, denoted A Rg B or
A (r1 · · · rn)

g B, if and only if
∨n

i=1 A rg
i B holds.

For example, “at granularity h, A is an interval and is before
or meets B, or A is a point and is before B which is an interval”
is denoted by A(·bbm)h B.

3.3 Modeling Temporal Imprecise Relations
Granular relations are generally imprecise. In fact, when
granularity changes, relations become ambiguous (see 4.1).
Indeed, we can interpret “granular meets” as “almost meets”,
with a precision that depends on the granularity. For exam-
ple, we can model “nearly meets” using some granularity and
“practically meets” using a finer granularity. Granularities al-
low one to relax the point and interval relations, which is use-
ful to model real phenomena, such as imperfect synchroniza-
tions, and relations expressed in natural, informal language.

Moreover, by combining different granular relations be-
tween the same two entities at different granularities, one can
model new intuitive and imprecise relations. Most of these
combined relations are more restricted than the classic rela-
tions. Let g and h be granularities such that g is more precise
than h; the intuitive relation “just before” can be modeled by
“A (·b)g B and A (=)h B”, or by “A (b)g B and A (m)h B”, or
by “A (·ā)g B and A (·f̄ )h B”, etc., depending on the type of
the temporal entities at the two granularities (if the types are
not known, a general relation can be used: “A (·bb)g B and
A (= e)h B”, etc). Depending on the intended application, it
may be important to keep in mind that this modeling of “just
before” has a stronger meaning than that of common sense.
Yet this modeling is relevant, because with natural language,
the associated precision of the relations is unknown, as it can
vary from person to person. This can be represented in our
formalism using qualitative granularities, i.e., not specifying
any information about their structure, except for their relative
precision with relations� andv. Qualitative granularities al-
low one to model and use a concept of non-metric proximity.

4 Algebra of Granular Temporal Relations
In this section, we define the operators of our algebra and
their rules, which enable the deduction of new relations.
Then, we explain the advantages of granular point and in-
terval relations for reasoning.

4.1 Conversion between Granularities
Knowing that a relation R holds at a granularity g between
A and B can give information about the relation between A
and B at another granularity. For instance, intuitively, if A
is before B at some granularity, B cannot be before A at an-
other. However, this information often lacks precision, since
the real relation between the entities is ambiguous. Hence,
converting an elementary relation to a different granularity
can yield a general relation. We first introduce the conversion
table, which shows what information can be deduced from a
granularity to another, then present sufficient conditions for
this table to be applied.
Definition 6. For each non-inverse elementary relation r ∈
R, we define the upward conversion ↑r and the downward
conversion ↓r of r as general relations using Table 2. The
conversion of an inverse elementary relation is then defined
by ↓ r̄ =

⋃
s∈↓r s̄ and ↑ r̄ =

⋃
s∈↑r s̄.

Finally, the conversion of a general relation is given by
↑R =

⋃
r∈R ↑r and ↓R =

⋃
r∈R ↓r.

Theorem 7. Let A and B be two time entities, g and h two
granularities, and R a general relation.



r ↑ r ↓ r

b b ·ā ·b < ·f̄ ·sm = b
·a ·a > ·f = ·ab̄
·b ·b < ·s = ·bb
< <= < ·b ·āb
o om ·ss ·f̄ f̄ e = o
m m ·s ·f̄ = mob
d ·ss ·d d ·f f e = d
·d ·s ·d ·f = ·d d
s s ·se = sod
·s ·s = mo ·ss ·d d ·bb
f f ·f e = f d ō
·f ·f = m̄ ō ·d d ·f f ·ab̄
e e = eo ōs s̄ f f̄ d d̄
= = R (all)

Table 2: Conversion of relations between points and intervals.

• If gv h, then A Rh B =⇒ A (↓R)g B.

• If g� h, then A Rg B =⇒ A (↑R)h B.

Proof. We represent each elementary relation between points
and intervals as a conjonction of point relations between the
entity bounds, using Table 1. Then, combining the property
“g is finer than h” or “g is coarser than h” with the definition
of granularities, we get a conjunction of disjunctions of point
relations between entity bounds, that we can convert back to a
set of mutually consistent point and interval relations, thanks
to the distributivity between conjunction and disjunction.

For example, if A sg B, then b− =g a− <g a+ <g b+ and
thus there exist i, j,k ∈ Ig such that a−,b− ∈ gi, a+ ∈ g j,
b+ ∈ gk, and i < j < k. According to Definition 1, as
i < j < k, we find a−,b− < a+ < b+. Since g� h, there exist
i′, j′,k′ ∈ Ih such that gi ⊆ hi′ , g j ⊆ h j′ , and gk ⊆ hk′ . There-
fore, a−,b− ∈ hi′ and thus a− =h b−; moreover, by contra-
position of the second point of Definition 1, we deduce that
i′ ≤ j′ ≤ k′. Consequently, a− =h b− ≤h a+ ≤h b+, which
corresponds to 4 possible rows in Table 1. We finally con-
clude that A (s ·se =)h B.

As for general relations, since A Rg B ⇐⇒
∨

r∈R A rg B, us-
ing the mechanism described above and noting that disjunc-
tion is commutative and associative, it can be shown that the
final result is the same.

As an example of use of this theorem, consider the relation
A (·bbm)h B mentioned earlier: if g v h, we can conclude
that A (mob ·b)g B by downward conversion.

This theorem shows that granular conversions of relations
between time entities have sufficient conditions that are easy
to verify.2 Moreover, we could also define a table of conver-

2As a side note, these sufficient conditions also apply to Eu-
zenat’s conversion table of point relations, and likewise to his con-
version table of interval relations—but only as long as the intervals

Operator Rule
◦ ∃C ∈ E : A Rg C ∧ C Sg B ⇐⇒ A (R◦S)g B
↑ g� h ∧ A Rg B =⇒ A (↑R)h B
↓ gv h ∧ A Rh B =⇒ A (↓R)g B
∩ A Rg B ∧ A Sg B ⇐⇒ A (R∩S)g B
·̄ A Rg B ⇐⇒ B R̄g A

Table 3: Rules to deduce new relations; A,B are time entities,
g,h are granularities, and R,S⊆R are general relations.

sion between granularities that are not aligned. However, this
is not necessary, because such a conversion would be equiva-
lent to applying an aligned downward conversion followed by
an aligned upward conversion, which is almost always possi-
ble by using the time domain as an intermediary, thanks to the
following property.

Proposition 8. Let g be a granularity over T .

• T v g always holds.

• If
⋃

i∈Ig gi = T then T � g.

So in the Gregorian calendar, or in granularities that are
generally used in natural language, both T � g and T v g
always hold. Consequently, for the majority of applications
we envision, our table can be useful even if the conditions are
not satisfied, making it possible to perform, for example, a
conversion between weeks and months, or weeks and years.

4.2 Reasoning in our Temporal Algebra
Time algebras allow one to make deductions about the rela-
tions between time entities, thanks to their operators. Clas-
sical temporal algebras have three operators: composition ◦,
intersection ∩, and inversion ·̄. In our algebra, these opera-
tors are only used on relations at the same granularity (see
the definition of Meiri [1996]). Moreover, classical composi-
tion allows one to deduce the type of time entities (point or
interval), if there is an ambiguity. We add to these the op-
erators of granular conversion, ↑ and ↓, which allow one to
deduce relations from another granularity. Rules to deduce
new relations using the operators are summed up in Table 3.

4.3 Reasoning about Imprecise Relations
As explained in Section 3.3, thanks to the relations defined
on several granularities, we can represent, for example, the
relation “A is just before B and B finishes soon after” by A bmn

B and A (=)hour B, and the relation “A is really before C”
by A (·bb)hour C. It is interesting to notice that using our
operators, this entails that B bmn C, whereas this conclusion
cannot be deduced if we only have A b B and A b C, as would
be the case without granularities. With the point relations or
point-interval relations, we can compare the “distances” and
use them when reasoning.

Moreover, contrary to what one might think, it is not
enough to convert all relations at the finest or the desired
granularity and then to compose them only at this single

do not become points at a coarser granularity; yet this latter condi-
tion requires the knowledge of granule and interval durations.



granularity. For instance, let g be a granularity such that
T � g, and A,B,C time entities such that A (<)T B, B (>)T C,
A (<>)T C, and A (=)g B, B (<>)g C, A (<>)g C. With a
downward conversion and a composition, we deduce nothing.
However, with an upward conversion, we find B (>)g C; by
composition, we have A (>)g C; and by downward conver-
sion, we deduce A (>)T C.

By reasoning with coarse granularities, we can take into
account the fact that some “distances” become points, and
hence deduce that at some granularity, some “distances” are
smaller than others. The deduced relations are thus more pre-
cise. Therefore, reasoning with all granularities at the same
time provides more information and detects more inconsis-
tencies.

5 Consistency
In this section, we are interested in checking the consistency
of constraint networks of time entities connected by granu-
lar temporal relations in the context of qualitative granular-
ities. More precisely, a constraint network is consistent if
we can find an instantiation of its variables that satisfies all
the constraints. In the context of time algebras, this problem
appears, for instance, in planning with temporal constraints
[Allen, 1991] or in plan recognition [Song, 1994].

We define what a constraint network is in our context, and
give a polynomial algorithm to compute the algebraic closure
of a network, which can be used to check its consistency. In
this section, we assume that T � g for every granularity g; i.e.,
we are not interested in granularities with gaps (see Prop. 8),
thus all granularities g,h verify g� h ⇐⇒ gv h.

5.1 Constraint Networks, Algebraic Closure
A constraint network in our framework consists of variables,
which are time entities E = {E1, . . . ,En} and granularities
G = {g1, . . . ,gm}, and constraints on these variables, of the
form “Ei Rgk E j” (with R⊆R), and “gi � g j”. If the relation-
ship between two granularities is unknown, it can be omitted;
but all granularities are necessarily coarser and less fine than
the time domain, so the granularities form a lattice. The con-
straint network is a scenario if there is an elementary relation
as constraint between any two variables at any granularity. A
solution of a constraint network is an assignment of all vari-
ables that satisfies all the constraints, i.e., an assignment of
granularities to the gi such that all relationships � are satis-
fied, together with an assignment of entities to the Ei such that
all granular relations between them are satisfied. A constraint
network is said to be consistent if it has at least one solution.

Note that these constraint networks use qualitative granu-
larities: no quantitative information is used—it is not possi-
ble to check the consistency of the constraints for a specific
set of granularities, such as the Gregorian calendar, although
an inconsistency in the qualitative case implies an inconsis-
tency in the quantitative case. This is notably intended to be
used whenever granularities are not known sufficiently pre-
cisely (in particular from natural language), and when one
needs to relax or approximate the quantitative frame.

Without granularities, the algebraic closure of a constraint
network is a constraint network that has the exact same set

of solutions and satisfies the following property: ∀A,B,C ∈
E ,RAC ⊆ RAB ◦RBC, where RXY denotes the set of elementary
relations between entities X and Y . Generalizing this notion,
we say that a granular constraint network is algebraically
closed if it satisfies ∀A,B,C ∈ E ,∀g ∈ G,Rg

AC ⊆ Rg
AB ◦Rg

BC,
and for all A,B ∈ E and all g,h ∈ G, if g� h then Rh

AB ⊆ ↑Rg
AB

and Rg
AB ⊆ ↓Rh

AB. In other words, applying any of the opera-
tors cannot provide additional information.

5.2 Consistency and Algebraic Closure
Checking the consistency of a constraint network is NP-
complete for the interval algebra and for the point and interval
algebra [Krokhin and Jonsson, 2002]. In this context, a clas-
sic way to check consistency is to explore all scenarios of a
constraint network while pruning inconsistent cases by apply-
ing the algebraic closure, since a scenario is consistent if and
only if its algebraic closure does not contain the empty set.
This also holds for constraint networks that are not scenarios,
for instance, in the case of the point algebra or in the ORD-
Horn subclass [Nebel and Bürckert, 1995]. In more general
cases, the algebraic closure method detects some inconsisten-
cies, but not all of them. However, in some algebras, comput-
ing the algebraic closure is not even sufficient to check the
consistency of a scenario [Renz and Ligozat, 2005].

Fortunately, it does not happen in our algebra: while the
consistency problem is also NP-complete—since with only
one granularity, our algebra boils down to Vilain’s point and
interval algebra—the following property holds nevertheless.
Proposition 9. A scenario is consistent if and only if its al-
gebraic closure does not contain the empty set.

Proof. The main idea is that the bounds of entities are to-
tally ordered at each granularity, since there is no empty set in
the algebraic closure. We start by expressing the constraints
of the scenario using the granular point algebra. Next, we
use the following algorithm to instantiate variables: First, it
instantiates each entity bound so that the constraints on the
time domain are satisfied. Second, for each granularity, it
constructs the granules as intervals [a,b[ such that all entity
bounds that are equal at this granularity, and only them, are
in the same granule, where a is the earliest of these bounds
and b is the earliest bound that is after at this granularity. Us-
ing the fact that the conversion table is respected and that the
algorithm has constructed a correct alignment, we can prove
that the granularities respect the relation �.

Thanks to this property, the algebraic closure can notably
be used in a search to check the consistency of a constraint
network (exhibiting a consistent scenario) [Renz and Ligozat,
2005]. One can use, e.g., the algorithm of Ladkin and Reine-
feld [1992], replacing their path consistency algorithm by the
algebraic closure algorithm presented in the next section.

5.3 Algebraic Closure Algorithm
Algorithm 1 computes the algebraic closure of a constraint
network, and can detect inconsistencies. It takes as input a list
L of tuples (R,A,B,g), the constraints, where A and B are en-
tities, g is a granularity, and R is the set of authorized elemen-
tary relations between A and B at granularity g. The current



knowledge about the relation between A and B at granularity
g is registered in variables Rg

AB; initially, each one is set to R
(i.e., all elementary relations), and at the end, Rg

AB contains
the relation between A and B at granularity g in the algebraic
closure of the initial constraint network.

The algorithm refines the current Rg
AB with the constraints

in L, and propagates this new knowledge by calling the pro-
cedures convert and compose. The former converts the
current relation to every aligned granularity, while the latter
composes the current relation with every other relation at the
same granularity. The deduced constraints are then added to
L. Note that this algorithm can also be used with the granular
point algebra.

Algorithm 1: Computation of the algebraic closure of a
granular temporal constraint network.

while L is not empty do
(R,A,B,g)← pop(L)
r← R∩Rg

AB
if r 6= Rg

AB then
if r =∅ then

There is an inconsistency

Rg
AB← r

append (Rg
AB,B,A,g) to L

compose(A, B, g, L)
convert(A, B, g, L)

Procedure convert(A, B, g, L)
foreach h ∈ G such that g� h do

append (↑ Rg
AB,A,B,h) to L

foreach h ∈ G such that h� g do
append (↓ Rg

AB,A,B,h) to L

Procedure compose(A, B, g, L)
foreach C ∈ E \{A,B} do

append (Rg
AB ◦Rg

BC,A,C,g) to L

Let us show that Algorithm 1 is polynomial. If there are n
time entities, the total number of relations at each granularity
is n(n−1). The idea is that a relation Rg

AB cannot be modified
more than 26 times, since its size can only decrease. Thus,
procedures compose and convert will be called, in the
worst case, 26 ·mn(n− 1) times. The former procedure per-
forms n− 2 compositions, and the latter, m− 1 conversions
in the worst case. Consequently, the number of operations is
bounded by 26 ·mn(n−1)(n−2+m−1). Thus, Algorithm 1
is in O(mn2(m+ n)). If m is constant, then the algorithm is
in O(n3), which is the complexity of the algebraic closure
algorithm for non-granular time algebras.

5.4 An Example of Reasoning
In this section, we show how to deduce the relation between A
and C from “A is overlapped by B, but they are indistinguish-
able at a coarser point of view”, and “B starts C, and they are
not equal at the same coarser point of view”. The correspond-
ing constraints are g � h, A (ō)g B, A (=)h B, B (s)g C, and

B (R\{e,=})h C. By upward conversion of B (s)g C and in-
tersection, we find B (·ss)h C. By composition of A (=)h B
and B (·ss)h C, we deduce A (·s)h C. Next, by downward
conversion, we conclude A (mo ·ss ·d d ·bb)g C. Then by
composition between A (ō)g B and B (s)g C, we deduce that
A (ōd f )g C. Finally, by intersection, we find A (d)g C. Sup-
pose now that we also know that A ( f )g C; we would deduce
A (∅)g C, and hence prove that the network is inconsistent.

6 Related Work and Discussion
Unlike Euzenat’s conversion table of interval relations, we
do not need quantitative information, namely the duration of
the time entities, to know whether we can apply the conver-
sion operators to a granularity that is finer or coarser: they
can always be used. Since by granularity change an inter-
val can become a point and conversely, in the granular ex-
tension of the interval algebra, it is impossible to reason with
granularities that are too coarse. As for our approach, it has
greater expressiveness, allows for a dense time domain and
non-aligned granularities, and enables a fusion of different
precisions which is more flexible than Euzenat’s table of con-
version. For instance, an “equals” that becomes a “before” at
a finer granularity is inconsistent with Euzenat’s table of con-
version, but not with our table of conversion since an “equal-
ity” can be a “point equality”. The combination of point-
interval relations and interval relations at different granular-
ities reduces ambiguity when reasoning (see 4.3). We have
the possibility to not specify the type of a time entity (point
or interval) and deduce this type. Moreover, even though we
do not detail this for space reasons, our conversion opera-
tors satisfy the list of desirable properties that any system of
granularity conversion operators should verify according to
Euzenat [1995].

There are several other approaches of granular time with
symbolic constraints. That of Badaloni and Berati [1994]
combines numeric and symbolic constraints, but only nu-
meric constraints are converted by granularity change. The
intervals are removed from the temporal network if they are
points at a coarse granularity. In addition, the network can be-
come inconsistent if the associated granularity is too coarse.

Becher et al. [2000] offer a formalism in which granular-
ities are defined implicitly. Indeed, it features relations de-
scribing, in particular, that the granularity of the first entity is
finer than (resp. coarser than, equal to) the granularity of the
second entity, without specifying the two granularities.

Bittner [2002] presents an approach based on the concept
of approximation. It features a table of conversion, but it is
less precise and less general than ours. In fact, at the coars-
est granularity, the type of an entity is not defined, and at the
finest granularity, the entity can only be an interval. Another
table of conversion is given for non-convex periods. How-
ever, the results are limited to two granularities.

Finally, Bettini et al. [2000] offer a granular approach
with numeric constraints; and anchored time formalisms with
granularities, where the time entities are precisely located,
have also been proposed and studied [Franceschet and Mon-
tanari, 2001; Bettini et al., 2000; Montanari, 1996].



7 Conclusion and Future Work
The addition of granularities to time algebras enables one to
combine information with different precisions, to model im-
precise relations and to reason about them. Thanks to our
generalization of the granular conversion table of interval re-
lations of Euzenat [1995], in which relations between points
and intervals are allowed, granular conversions can always
be applied with finer or coarser granularities. Moreover, rep-
resentation is more expressive, since new intuitive relations
are available, and deductions are more flexible and precise:
the qualitative information of different granularities are fully
used. Within our formalism, we can check the consistency
of a set of relations between points and intervals defined on
several scales and using a concept of qualitative proximity as
in natural language. In addition, our work theoretically com-
pletes Euzenat’s in setting forth sufficient conditions to use
his tables of granular conversions (as well as ours), building
on the definition of time granularities by Bettini et al. [2000].

There are several extension tracks: we are currently search-
ing for a subclass of temporal networks in our algebra for
which consistency checking is polynomial. Next, we plan to
analyze whether the algebraic closure enforces path consis-
tency when the time domain is dense. We also intend to gen-
eralize these ideas to qualitative spatial formalisms. More-
over, in a more general framework, we plan to study the con-
ditions under which polynomial consistency checking can be
preserved when adding qualitative granularities to any alge-
bra of relations.
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