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ABSTRACT

In this paper, we introduce the notion of k-centerpoints for any set P of n points in

Rd. These unify and generalize previous results such as the classical centerpoint theo-

rem 1, and the recently-proven ray-shooting theorem 2. We define two variants: affine
k-centerpoints, and topological k-centerpoints. We prove their equivalence in R2, and

conjecture that these are in fact equivalent in any dimension. We present the first non-

trivial bounds for these problems in Rd, as well as present several conjectures related to
them.

Keywords: Centerpoint; data depth; Ray Shooting Depth

1. Introduction

In this paper, we propose a simple set of conjectures which unify and generalize

several previous results. We solve these conjectures for R2, present first non-trivial

bounds in higher dimensions, and argue for why they might be true in full generality.
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Finally, via more detailed arguments, derive better bounds in R3. We first explain

the background needed to understand the conjectures and our results.

Tukey Depth. One of the classical results in Discrete Geometry is the Centerpoint

Theorem 1, which states the following: given any set P of n points in Rd, there exists

a point q ∈ Rd, not necessarily in P , such that any closed halfspace containing q

contains at least n/(d + 1) points of P . Any such point q is called a centerpoint

of P . Furthermore, this is optimal. The Tukey-depth of a point q is the minimum

number of points contained in any half-space containing q. The point of highest

Tukey-depth w.r.t. P is called the Tukey median of P , and its depth called the

Tukey depth of P .

This theorem and its generalizations has found several applications in combina-

torial geometry, statistics, geometric algorithms and related areas 3,4,5, 6,7,8.

One way to view the Centerpoint Theorem is as a generalization of the concept

of the median of a set P of n numbers in R: when d = 1, the Centerpoint Theo-

rem gives a point q ∈ R which has at least bn/2c numbers of P larger and bn/2c
numbers smaller than q, i.e., the median of P . Therefore the centerpoint of a set P

can essentially be viewed as one measure to capture the statistical data depth of P

(e.g., the centroid is another measure, which can be seen as the generalization of

mean of a set of numbers).

Simplicial Depth. Another closely related measure of data depth is the Simplicial

depth of a point, defined as follows. (For the moment, we restrict ourselves to the

two-dimensional case - as we’ll see later, things are much less well-understood even

in R3). Given a set P of n points in R2, the simplicial depth of a point q is the

number of triangles spanned by P that contain q. The simplicial depth of P is the

highest such depth of any point q. The First-selection Lemma (see 9, pg. 207) in

two-dimensions states that any set P in R2 has simplicial-depth at least n3/27. This

was first proved in 1984 by Boros-Furedi 10 (see Bukh 11 for the ‘Book Proof’) and

was also shown to be optimal 12.

Not surprisingly, there is a close relation between Tukey and Simplicial depth.

This can be proved easily using the technique in 10 (Proof is easy and we leave it

as an exercise for the reader):

Claim 1.1. Given a set P of n points in R2 with Tukey depth τn, 1/3 ≤ τ ≤ 1/2,

the simplicial depth of P is at least (−2τ3 + 2.5τ2 − τ + 1/6) · n3.

In particular, the above claim together with the centerpoint theorem implies the

First-selection Lemma in R2.

In fact, apart from the above relation between depths of pointsets, there is also

a relation between depth of single points:
12, 13. Any point q of Tukey depth τn has Simplicial depth at least 3τ2−4τ3

3! ·
n3 − O(n2) 13. This bound is tight 12: for every τ and n, there exists a set P of n
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points, and a point q of depth τn where the simplicial depth of q is at most the

above lower-bound (upto lower-order terms).

Ray-Shooting Depth. Recently, an elegant new result has been discovered that

easily implies both the Centerpoint theorem and the Simplicial depth theorem in

the plane (it surprises the authors that such fundamental results are still being

discovered!). Given P , let E be the set of all
(
n
2

)
edges spanned by points of P .

Then Ray-Shooting depth of a point q ∈ R2 is the smallest r such that any half-

infinite ray from q in any direction u ∈ S1 intersects at least r edges in E. The

Ray-Shooting depth (henceforth called RS-depth) of P is the maximum RS-depth

of any point in R2. Then the Ray-Shooting Theorem states the following:
2. Any set P of n points in R2 has RS-depth at least n2/9. Furthermore, this

bound is tight.

Now let q be a point with RS-depth rn2. Consider any line l through q. Then l

must intersect at least 2rn2 edges, and therefore both halfspaces defined by l must

contain at least (n − n
√

1− 8r)/2 points. For simplicial depth, consider, for each

point p ∈ P , the ray from q in the direction ~pq. Then for every edge {pi, pj} that

interesects this ray, the triangle defined by {p, pi, pj} must contain q. Summing up

these triangles over all points, each triangle can be counted three times, and so q

lies in at least rn3/3 distinct triangles. Let us state this direct connection:

Fact 1. Given a set P of n points in R2, and a point q with RS-depth rn2. Then q

has

• Tukey depth at least n · (1−
√

1− 8r)/2

• Simplicial depth at least rn3/3.

Now, by Ray-Shooting theorem, there exists a point with RS-depth n2/9. Plug-

ging r = 1/9 gives the Centerpoint theorem and the First-selection Lemma. So any

point with RS-depth at least n2/9 is both a centerpoint, as well as a high simplicial-

depth point.

The status in R3 and higher dimensions. Things are much less well-understood

already in R3. Of the depth measures, as stated earlier, the Centerpoint theorem

again gives the Tukey-depth bound of n/4 in R3, and this is optimal.

However, the optimal bound for the Simplicial-depth is not known. It is known

that for any set P of n points in Rd, there exists a point lying in cd ·nd+1 simplices,

where cd is a constant that depends on the dimension d. The determination of the

exact value of cd is a long-standing open problem. Bárány 14 proved that cd ≥
1

d!(d+1)d+1 . Bárány’s bound was improved to d2+1
(d+1)!(d+1)d+1 by Wagner 13, who in

fact showed that any point of depth τn is contained in at least the following number

of simplices:
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(d+ 1)τd − 2dτd+1

(d+ 1)!
· nd+1 −O(nd) (1)

More recently, Bukh, Matoušek and Nivash 12 showed an elegant construction

of a point set P so that no point in Rd is contained in, upto lower-order terms, more

than (n/(d+ 1))d+1 simplices defined by P . Furthermore, they conjecture that this

is the right bound.

For d = 3 then, the conjectured bound is c3 = 0.0039. For this case, the

bound of Wagner was recently improved by Basit et al. 15, where they showed

that c3 ≥ 0.0023. This was further improved by a complicated topological argu-

ment by Gromov 16, who showed that cd ≥ 2d/((d + 1)(d + 1)!2). For d = 3 this

gives c3 ≥ 0.0026. This bound for R3 has since been improved even further by Krall

et al. 17 to c3 ≥ 0.0031.

In higher dimensions, the notion of RS-depth corresponds to finding a point q

such that any half-infinite ray from q intersects “lots” of (d− 1)-simplices spanned

by points of P . No combinatorial bounds on the RS-depth of such a point are known

for d ≥ 3. It was not studied in the paper that proposed it 2, and their topological

technique used for the two-dimensional case fails for d = 3 and above. Using the

bounds on Simplicial-depth, it is not too hard to derive a first such bound: any set

P of n points in Rd has RS-depth at least 2d/((d+ 1)((d+ 1)!)2) · nd.

Organization. In Section 2 we present a broad and uniform way of seeing much

of the earlier work on geometric data-depth as part of a bigger simpler geometric

structure. This geometric structure is fully proven in two dimensions and asymptot-

ically optimally proven for Rd in Section refsec:2d. Finally we prove a near-optimal

exact result for three dimensions in Section 4.

2. A Uniform View of Data Depth

Given the lack of optimal bounds for Simplicial-depth and RS-depth in dimensions

higher than two, the first question is what are the bounds to expect? What would

be a good conjecture?

We think that one good way to answer such questions is by the following analogy.

Consider the following pointset of size n: take any simplex in Rd (does not have to be

regular) and place a tiny cloud of n/(d+1) points around each of its (d+1) vertices.

Call such a pointset a Simplex-like point set. For the kind of questions considered

in this paper, this seems to represent the ‘extremal’ case. In other words, if some

‘affine property’ is true for this pointset, then it is true for any pointset.

So let’s consider all these depth measures for the Simplex-like pointset over

a simplex S. Take the centroid c of this simplex. Then the Centerpoint theorem

follows because any halfspace containing c must contain at least one vertex of S,

and so contains n/(d+1) points. Similarly, each point from one of the vertices makes

a simplex containing c, and so c is contained in (n/(d + 1))d+1 simplices. Finally,
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any half-infinite ray from c must intersect at least one facet of S, and so intersect

(n/(d+ 1))d (d− 1)-simplices spanned by P and so have that much RS-depth.

Let us give some justification for reliance on this extremal case. First note that,

so far, all theoretical and empirical evidence seems to show that as the Tukey

depth of a pointset increases, so does its Simplicial-depth and also its RS-depth.

So, for example, for a pointset with the Tukey-depth the maximum of n/2, we get

the maximum possible values of both Simplicial-depth and RS-depth. Theoretical

results for R2 relating Tukey-depth to Simplicial-depth have already been discussed

in Claim 1.1.

Second, below we outline an argument showing that when the Tukey-depth of a

pointset is the lowest possible, i.e., n/(d + 1), then we get exactly the bounds one

expects from the Simplex-like pointset. This, together with the first point, leads us

to suspect that the bounds derived from the Simplex-like pointset might indeed be

always realizable for any pointset.

So consider the following theorem of Boros-Furedi 10: Given a set P of n points

in Rd with Tukey-depth n/(d+ 1), there exists a point p with depth n/(d+ 1), and

a set H of d+1 halfspaces {h1, . . . , hd+1}, such that i) |hi∩P | = n/(d+1), ii) p lies

on the boundary plane of each hi, and iii) h1 ∪ . . . ∪ hd+1 cover the entire Rd. It is

easy to see that in this configuration, with the given constraints, the d+ 1 regions

Ai = Hi

⋂(∩j 6=iHj

)
each contain exactly n/(d+1) points, and all the other 2d+1−2

regions are empty. And it is not too hard to prove that in such a configuration in Rd,
the point p has centerpoint-depth n/(d+ 1), it has simplicial-depth (n/(d+ 1))d+1,

and has RS-depth (n/(d + 1))d. In some sense, with respect to the point p, the n

points are essentially in a Simplex-like position, combinatorially, if Tukey-depth is

n/(d+ 1).

Furthermore, the intuition one gets from Simplex-like pointsets corresponds to

every information we know about these problems. It gives exactly the results known

for R (which is trivial) and for R2. And it matches the conjecture in 12 that there

always exists a point of simplicial depth (n/(d+1))d+1 (ignoring lower-order terms).

Line-depth in R3. Let us continue with the consideration of the set P in R3 where

n/4 points are placed near each of the vertices of some tetrahedron S. And let c be

the centroid of S.

Then by considering the 3-dimensional space defined by a halfspace with c on its

(2-dimensional) boundary, we get the notion of Centerpoints. By considering the 1-

dimensional space defined by a half-line with c on its (0-dimensional) boundary, we

get the notion of RS-depth. But this begs the question: what about 2-dimensional

space with c on its (1-dimensional) boundary? The natural answer is to consider

the 2-dimensional space defined by a half-plane h with c on its (1-dimensional)

boundary. And then count the number of edges spanned by P that intersect h. And

what answer is to be expected? Going by the intutition of Simplex-like pointset,

any half-plane through c will intersect at least one edge of S, and so intersect at

least (n/4)2 edges spanned by P . Formally, a point q ∈ R3 has Line-depth r if any
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halfplane through q intersects at least r edges spanned by P . The Line-depth of a

pointset P is the highest Line-depth of any point. We conjecture:

Conjecture 2.1. Any set P of n points in R3 has Line-depth at least (n/4)2.

Like RS-depth and Simplicial-depth in R3, it seems hard to prove this exact

bound using current techniques. But we are able to show the following (the rather

lengthy proof of this is given in Section 4):

Theorem 1 (Proof in Section 4). Given any set P of n points in R3, there

exists a point q such that any halfplane through c intersects at least 2n2/49 edges

spanned by P .

So with the notion of Line-depth, we have three measures in R3 for any point

q: 2-dimensional space is the familiar Tukey-depth, 1-dimensional space gives Line-

depth, and 0-dimensional space gives RS-depth. Intuitively, it is clear that as the

dimension of the flat decreases, the degrees of freedom increase and the problem

becomes more complicated. On one end, optimal results for the 2-dimensional case

(Tukey-depth) are known. And on the other end, very partial results are known for

the 0-dimensional case. It is our hope that the middle 1-dimensional case will be

more within current reach than the 0-dimensional case. That is another motivation

to study the Line-depth problem.

3. K-centerpoints In R2 and Rd for d ≥ 4

The previous view can be extended to d-dimensions, giving the following “affine

k-centerpoints” conjectures:

Conjecture 3.1 (Affine k-centerpoints Conjectures). Given a set P of n

points in Rd, and an integer 0 ≤ k ≤ d − 1, there exists a point q ∈ Rd (a k-

centerpoint) such that any (d−k)-half flat through q intersects at least (n/(d+1))k+1

k-simplices spanned by P .

The case k = 0 is the centerpoint theorem in any Rd. The case d = 2, k = 1 is

the RS-depth result of 2.

The case d = 3, k = 1 is the Line-depth theorem, for which we have presented

Theorem 1.

For the general k-centerpoints problems, one can get the following bounds by

extending the technique of Bárány 14 and using the result of Gromov 16. Note that

this implies that for every k, d, there exists a point q and a constant cd,k such that

any (d−k)-half flat through q intersects at least cd,k ·nk+1 k-simplices spanned by P .

Using some approximations for binomial coeffcient and factorials, it can be showed

that first bound dominates the expression below for k < 0.9d and for k > 0.9d the

second bound starts to dominate for d > 800. For smaller values of d, this threshold

tends to grow with d from 0.8d to 0.9d.
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Theorem 2. Given a set P of n points in Rd, and an integer 0 ≤ k ≤ d− 1, there

exists a point q ∈ Rd such that any (d− k)-half flat through q intersects at least

max

{(
n/(d+ 1)

k + 1

)
,

2d

(d+ 1)(d+ 1)!
(
n
d−k
) · ( n

d+ 1

)}
k-simplices spanned by P .

Proof. Given P , use Tverberg’s Theorem 9 to partition P into t = n/(d+ 1) sets

P1, . . . , Pt such that there exists a point q in the convex hull of the points in Pi for all

i. Consider any (d−k)-dimensional half-flat F through q, where ∂F , the boundary of

F , is a (d−k−1)-dimensional flat containing q. Project F onto a (k+1)-dimensional

subspace H orthogonal to ∂F such that the projection of F is a ray r in H, and

∂F and q are projected to the point q′. And let P ′1, . . . , P
′
t be the projected sets

whose convex-hulls now contains the point q′. Then note that the k-dimensional

simplex spanned by (k + 1) points Q′ ⊂ P ′ intersects the ray r if and only if the

k-dimensional simplex defined by the correponding set Q in Rd interescts the flat

F . Now apply the single-point version a of Colorful Caratheodory’s Theorem 14 to

every (k+ 1)-tuple of sets, say P ′1, . . . , P
′
k+1, together with the point s at infinity in

the direction antipodal to the direction of r to get a ‘colorful’ simplex, defined by

s and one point from each P ′i , and containing q′. Then the ray r must intersect the

k-simplex defined by the (k+ 1) points of P ′, and so the corresponding points of P

in Rd span a (k + 1)-simplex intersecting F . In total, we get
(
n/(d+1)
k+1

)
k-simplices

intersecting F .

Another way is to use the result of Gromov 16, that given any set P of n points

in Rd, there exists a point q lying in 2d/((d + 1)(d + 1)!) ·
(
n
d+1

)
d-simplices. Now

take any (d− k)-half flat through q. It must intersect at least one k-simplex of each

d-simplex containing it, and where each k-simplex is counted at most
(
n
d−k
)

times.

And we get

2d

(d+ 1)(d+ 1)!
(
n
d−k
) · ( n

d+ 1

)
distinct k-simplices intersecting any (d− k)-half flat through q.

Coming back to the Simplex-like pointset, one can further observe another thing.

Say S is the tetrahedron of the Simplex-like point set in R3. And we’re studying the

Line-depth of the centroid c. Then, as mentioned earlier, any half-plane through c

intersects at least one edge of the tetrahedron, so intersects at least (n/4)2 edges

spanned by P . But, in fact, something stronger is true: take any line l through c

and move l in any way to ‘infinity’ (i.e., outside the convex-hull of P ). Then it

aGiven any point s ∈ Rd and d sets P1, . . . , Pd in Rd such that each convex hull of Pi contains the
origin, there exists a d-simplex spanned by s and one point from each Pi which also contains the
origin.
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still has to intersect at least one edge of the tetrahedron. So the property for the

Simplex-like point set is in fact topological in nature.

In fact, this property is already true for centerpoints: if a point q has Tukey-

depth r, then any plane through q has to cross at least r points to reach a point at

infinity, regardless of whether the movement is any arbitrary continuous movement

or affine. See 18 for a discussion of this.

The “affine” k-centerpoints conjectures can therefore be strengthened to a more

natural topological version:

Conjecture 3.2 (k-centerpoints Conjectures). Given a set P of n points in

Rd, and an integer 0 ≤ k ≤ d − 1, there exists a point q ∈ Rd such that any

(d− k− 1)-flat through q must cross at least (n/(d+ 1))k+1 k-simplices spanned by

P to move to a point at infinity.

We now give a proof of these topological k-centerpoints conjectures in R2.

Theorem 3. For any set P of n points in R2, the k-centerpoints conjectures are

true.

Proof. As centerpoint-depth is already proven to be topological, we only have to

resolve the RS-depth case b.

We will actually prove the contrapositive: given a set P of n points in R2, let q

be the point with RS-depth ρ. Take any curve γ from q that intersects at most ρ

edges spanned by P . We want to show that there exists a half-infinite ray from q

that also intersects at most ρ edges spanned by P . We prove this in two steps: first

by replacing γ by a piecewise linear curve, and then replacing this piecewise linear

curve with a half-infinite ray.

Given any curve γ, let RS(γ) denote the number of edges spanned by P that γ

intersects.

Lemma 2. Given a curve γ that starts at q and ends at the point at infinity, there

exists a piecewise linear curve γ′ starting at q and ending at a point at infinity, such

that RS(γ) = RS(γ′).

Proof. Given P , let A be the arrangement induced by Θ(n2) lines supporting all

the edges spanned by points of P . The curve γ enters and leaves a number of cells

in the arrangement A. Lets say it enters some cell C at point si and then leaves

that cell at point ei. Replace this portion of γ between si and ei by the straight-line

edge siei (by convexity of C, this lies completely inside C). Note that γ cannot

intersect any edge in the interior of any cell C (no edge can intersect a cell of this

arrangement). Therefore, the RS-depth does not change by this replacement.

bIt has been communicated to us by an insightful reviewer that this was implicit in Gromov’s
paper 16. However the techniques there are highly non-trivial and based on algebraic topology
arguments, while our short proof is elementary.
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q

γ

γ′

q1 q2

u2

u1
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B

C

D

E

(a) (b)

r γ′

Fig. 1. (a) Converting γ to piecewise linear, (b) Illustration for Lemma 3.

Repeating this for each cell that γ enters and leaves, we get a sequence 〈q =

s1, . . . , sm, u1〉, si ∈ R2, u1 ∈ S1, which represents the piecewise linear curve γ′

defined by the segments s1s2, . . . , sm−1sm together with the half-infinite ray ~sm
starting from sm in the direction u1. Finally, as discussed above, we have RS(γ) =

RS(γ′). See Figure 1(a).

Let γ′ be the piecewise linear curve defined by the sequence 〈s1, . . . , sm, u1〉
as above. Consider the one-bend curve γ′′ starting at sm−1 and defined by the

segment sm−1sm together with the half-infinite ray ~sm in direction u1. The Lemma

below shows that there exists a direction u2 ∈ S1 such that the half-infinite ray r

starting at sm−1 in direction u2 has RS(r) ≤ RS(γ′′). In other words, γ′′ can be

‘straightened’ to a ray r without increasing the number of edges intersected. This

implies that

RS(〈s1, . . . , sm−1, u2〉) ≤ RS(〈s1, . . . , sm, u1〉)
We now repeat this for the curve defined by 〈s1, . . . , sm−1, u2〉 to get another curve

with one fewer bend. And so on till we get a ray r starting at q in direction u ∈ S1.

By induction,

RS(〈q = s1, u〉) ≤ RS(〈s1, s2, um−1〉) ≤ RS(〈s1, s2, s3, um−2〉) ≤ · · · ≤ RS(〈s1, . . . , sm, u1〉)
and the proof of Theorem 3 is completed. It remains to prove the following.

Lemma 3. Given a piecewise linear curve γ′ defined by 〈q1, q2, u2〉, there exists a

direction u1 ∈ S1 such that RS(〈q1, u1〉) ≤ RS(〈q1, q2, u2〉).

Proof. See Figure 1(b). First we show the following:

Claim 3.1. There exists a direction u1 ∈ S1 such that the ray from q1 in the

direction u1: i) intersects the ray from q2 in direction u2, ii) number of points in

region A are equal to the number of points in region B (Figure 1(b)).
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Proof. Start with the half-infinite ray r from q1 through q2. And continuously

rotate r towards the direction u2. Initially, one region is empty, while the other

region contains the maximum points. When r points in the direction u2, then the

opposite is true. By intermediate-value theorem, there must be a ray in the middle

that has equal number of points in both the region A and B (which could be 0).

Let r be this ray from q1 in direction u1. And assume the regions A and B each

contain t points. We now prove that this is the required ray, by showing that the

number of edges intersected by r is at most those intersected by the curve γ′.
Edges that intersect both r and γ′ or none, contribute equally, and so can be

ignored. Consider the remaining edges spanned by P .

Observation 3.1. Any edge e = {pi, pj} that intersects r , but not γ′ , must have

exactly one endpoint in region A or B.

Proof. We prove the contrapositive. If e has one endpoint in A and the other in

B, then it must cross both r and γ′. On the other hand, if none are in A or B, then

either e intersects both, or none.

Therefore consider each point pi not in A or in B (see Figure 1(b)):

• pi ∈ C. Then pi has exactly t edges intersecting γ′ (to points in B), and

exactly t edges intersecting r (to points in A).

• pi ∈ D. Then pi has at least t edges intersecting γ′ (to points in B and

possibly in A) and at most t edges intersecting r (to points in A).

• pi ∈ E. Then pi has at least t edges intersecting γ′ (to points in A and

possibly in B) and exactly t edges intersecting r (to points in B).

Summing up over all pi proves the Lemma.

4. K-centerpoints In R3

For R3, besides the already studied Tukey-depth, Simplicial depth, and Ray-

shooting depth, we have proposed the problem of Line-depth. In this section we

give improved bounds for it. For any set P with n points and Tukey-depth τn,

our bound is achieved via a two-step strategy. First, we show that there exists an

increasing function of τ that lower-bounds the Line-depth of P . Then, via an al-

ternate technique, we show the existence of a decreasing function of τ that also

lower-bounds the Line-depth of P . Combining the two yields our theorem.

Lemma 4. Given a set P of n points in R3, let p be a point with Tukey depth at

least τn. Then the Line-depth of p is at least (τn)2/2− o(n).

Proof. Given an arbitrary half-plane H through such a point p, we define a pro-

cedure to find edges that intersect H. Starting from H, rotate a half-plane in one
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direction with the axis of rotation as the bounding line of H. Sort points in P by

the order in which they intersect this rotating half-plane, i.e., p1 is the first point

to be hit. Call the half-plane through pi as Hi, and the plane containing Hi as

Gi. Let H+
i be the halfspace defined by Gi such that H ⊆ H+

i . H partitions H+
i

into H++
i and H+−

i ; denote the wedge containing points p1 through pi as H++
i . By

definition of depth of p, |H++
i ∩ P | + |H+−

i ∩ P | ≥ τn. Since |H++
i ∩ P | = i, we

have |H+−
i ∩ P | ≥ τn − i. Observe that for any i ≤ τn, the line segment defined

by pi and pj ∈ H+−
i ∩ P must intersect H. Number of such line segments can be

bounded as

T ≥
τn∑
k=1

k =
(τn)2

2
− o(n) (2)

Note that since τ ≥ 1/4 by the Centerpoint theorem, Lemma 4 proves the

existence of a point with Line-depth at least n2/32. By the second method, we

prove the following lower-bound:

Lemma 5. Given a set P of n points with Tukey-depth τn, there exists a point q

with Line-depth at least (τ − 3τ2) · n2.

Note that this is a decreasing function of τ for τ ∈ [0.25, 0.5]. For the proof, we

extend the approach in 15 to work for the Line-depth case. First a key lemma.

Lemma 6 (Boros-Füredi 10). Given a set P of n points in Rd, where depth(P ) =

τn, there exists a point p with depth τn, and a set H of d + 1 halfspaces

{h1, . . . , hd+1}, such that i) |hi ∩ P | = τn, ii) p lies on the boundary plane of

each hi, and iii) h1 ∪ . . . ∪ hd+1 cover the entire Rd.

Given a set P of n points in R3, with depth(P ) = τn, use Lemma 6 to get the

point p and a set of four halfspaces {h1, h2, h3, h4} satisfying the stated conditions.

The point p, and halfspaces {h1, . . . , h4} will refer to these for the rest of the proof.

We will now show that p gives the required Line-depth lower-bound of (τ−3τ2) ·n2.

These four halfspaces partition R3 into the following convex unbounded regions:

Ai = (
⋂
l 6=i

hl) ∩ hi, Bi,j = (
⋂
l 6=i,j

hl) ∩ hi ∩ hj , Ci = (
⋂
l 6=i

hl) ∩ hi (3)

See Figure 2. We note that regions Ai and Ci are antipodal around the point p

(in the sense that a line through p and intersecting Ai will intersect Ci and not

intersect any other region). Similarly region Bi,j is antipodal to region Bk,l for

distinct 1 ≤ i, j, k, l ≤ 4. For brevity we also define

A :=
⋃
i∈[4]

Ai, B :=
⋃

i,j∈[4],i6=j
Bi,j .

Set αi = |P ∩Ai|/n, βi,j = |P ∩Bi,j |/n, and γi = |P ∩Ci|/n. Note that we have

these two constraints on the non-negative variables αi, βi,j and γi:

τ =
|hi ∩ P |

n
= αi +

∑
j 6=i

βi,j +
∑
j 6=i

γj for each i = 1 . . . 4. (4)
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h2h3

h4

h1

A1

B1,4

A4

B1,2

B1,3

C2 C3

h1

h4

h3h2

B1,2

C3 B2,4

A2A1

h1

h4

h3

h2B2,3

C1 B3,4

A3

B1,3

Fig. 2. Partitioning of R3 into 14 regions by the four halfspaces as visible from three different
angles. The labels on the planes represent the halfspace that is facing the reader.

∑
i

αi +
∑
i<j

βi,j +
∑
i

γi = 1, as {h1, h2, h3, h4} cover R3 \ {p}. (5)

Summing up (4) for all four halfspaces, and subtracting (5) from it, we get∑
i<j

βi,j + 2 ·
∑
i

γi = 4 · τ − 1. (6)

Therefore,
∑
i<j βi,j+

∑
i γi ≤ 4τ−1. This fact, together with equation (4), implies

that 1− 3τ ≤ αi ≤ τ for i = 1 . . . 4. Furthemore, we need the following lemma. We

will use hi for complement of a halfspace hi, i.e., hi = R3 \ hi.

Lemma 7. For any 1 ≤ i < j ≤ 4, we have αiαj + βi,jαi ≥ τ − 3τ2. Similarly,

αiαj + βi,jαj ≥ τ − 3τ2.

Proof. Assume the other two planes are hk and hl (other than hi and hj). Since

|P ∩ hk| = 1− τ , and |P ∩ hl| = τ , we get P ∩ (hk \ hl) = αi + βi,j + αj ≥ 1− 2τ .

Then we have

αiαj + βi,jαi ≥ αiαj + (1− 2τ − αi − αj)αi = αi(1− 2τ − αi)
This last term is minimized at the extreme values of αi, which are either τ or 1−3τ ,

both yielding a lower-bound of τ(1− 3τ).

We repeatedly use the following fact in different cases below to count the number

of line segments intersecting an arbitrary half plane H.

Fact 8. Given a set of halfspaces H in R3, let X be the convex-region of their

common intersection. And let H be any set s.t. X \ H has more than one path-

connected component. Then if p and q are two points in two different components,

the edge pq must intersect H.
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Let A+
i , A−i be a partition of Ai and B+

i,j , B
−
i,j a partition of Bi,j (to be spec-

ified in individual cases later). Then define: α+
i =

|A+
i ∩P |
n , α−i =

|A−
i ∩P |
n , β+

i,j =
|B+

i,j∩P |
n , β−i,j =

|B−
i,j∩P |
n .

Claim 4.1. αi · αj + β+
i,j · αj + β−i,j · αi ≥ τ − 3τ2.

Proof.

αi · αj + β+
i,j · αj + β−i,j · αi ≥ αiαj + min(αi, αj)(β

+
i,j + β−i,j)

= αiαj + βi,j min(αi, αj)

= min(αiαj + βi,jαi, αiαj + βi,jαj) ≥ τ − 3τ2

by Lemma 7.

Claim 4.2. α+
i · αj + α−i · αk + α+

i · β−i,j + β+
i,j · αj + α−i · βi,k ≥ τ − 3τ2.

Proof.

= α+
i (αj + β−i,j) + α−i (αk + βi,k) + αjβ

+
i,j

≥ min(αj + β−i,j , αk + βi,k)(α+
i + α−i ) + αjβ

+
i,j

= αi min(αj + β−i,j , αk + βi,k) + αjβ
+
i,j

= min(αiαj + αiβ
−
i,j + αjβ

+
i,j , αiαk + βi,kαi + αjβ

+
i,j)

≥ min(αiαj + min(αi, αj)(β
+
i,j + β−i,j), αiαk + βi,kαi)

= min(min(αiαj + αiβi,j , αiαj + αjβi,j), αiαk + βi,kαi)

= min(αiαj + αiβi,j , αiαj + αjβi,j , αiαk + βi,kαi)

≥ τ − 3τ2

where the last inequality follows from Lemma 7.

Claim 4.3. α−i ·α+
l +α+

i ·αk+αj ·α−l +β+
i,l ·α−i +β−i,l ·α+

l +α+
i ·βi,k+α−l ·βj,l ≥ τ−3τ2.

Proof.

= α+
i (αk + βi,k) + α−i (α+

l + β+
i,l) + α−l (αj + βj,l) + α+

l · β−i,l
≥ αi ·min(αk + βi,k, α

+
l + β+

i,l) + α−l (αj + βj,l) + α+
l · β−i,l

≥ min(αi · αk + αi · βi,k, αi · α+
l + αi · β+

i,l + α−l (αj + βj,l) + α+
l · β−i,l)

≥ min(αi · αk + αi · βi,k, α+
l (αi + β−i,l) + α−l (αj + βj,l) + αi · β+

i,l)

≥ min(αi · αk + αi · βi,k, αl min(αi + β−i,l, αj + βj,l) + αi · β+
i,l)

≥ min(αi · αk + αi · βi,k,min(αl · αj + αl · βj,l, αl · αi + αl · β−i,l + αi · β+
i,l))

≥ min(αi · αk + αi · βi,k, αl · αj + αl · βj,l, αl · αi + βi,l min(αl, αi))

≥ min(αi · αk + αi · βi,k, αl · αj + αl · βj,l, αl · αi + βi,l · αl, αl · αi + βi,l · αi)
≥ τ − 3τ2.
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where last line follows from Lemma 7.

Let p be as defined in Lemma 6; we will show that any half-plane through p

intersects at least (τ − 3τ2) · n2 edges spanned by P . We identify a line ` as the

supporting line of the halfplane H if it lies on the boundary of H. The supporting

line ` of H passes through a pair of antipodal regions among the fourteen regions

define in Equation 3 as well as the point p.

There are two obvious possibilities for a halfplane H: either it intersects A (recall

that A is the union of Ai, i ∈ [4]) or it does not intersect A (Case 2 below). For the

first possibility we can have three possible subcases: supporting line ` of H passes

through for some Ai but H doesn’t intersect A \ Ai (Case 1) or H intersects A

but the supporting line ` doesn’t (Case 4) or ` passes through some Ai and H

intersects some Aj , j 6= i (Case 3).

The four halfspaces create the structure of a cuboctahedron. The

bounding planes of the four halfspaces partition a sphere S centered on p into

8 triangular and 6 quadrilateral faces creating a cuboctahedron structure. A tri-

angular face represents a spherical cross-section of either an Ai region (lying in

exactly one halfspace hi) or a Ci region (lying in all but one halfspace hi). Similarly

a quadrilateral face represents a spherical cross-section of a Bij region (lying in

exactly two halfspaces hi and hj). Each Ai is adjacent to all Bi,j where j 6= i, and

each Ci is adjacent to all Bj,k such that j, k 6= i.

Now, let π be a fifth plane through p that intersects the other four

planes generically. There is combinatorially only one way of doing this: The

plane π intersects the following 8 faces of the cuboctahedron in circular order:

(Ai, Bi,j , Ck, Bj,l, Ci, Bk,l, Ak, Bk,i).

We want a halfplane, not a full plane, so we choose a halfplane H of π bounded

by a line ` that passes through p. Since ` intersects two opposite faces, the halfplane

H can intersect any 5 adjacent faces out of the above circular list. Therefore, we

get the following possibilities(ignoring the cases that are symmetric to the ones

noted below): (a). Ai, Bi,j , Ck, Bj,l, Ci (Case 1), (b). Bi,j , Ck, Bj,l, Ci, Bk,l (Case

2), (c). Bj,l, Ci, Bk,l, Ak, Bk,i (Case 3), (d). Ci, Bk,l, Ak, Bk,i, Ai (Case 4), and (e).

Bk,l, Ak, Bk,i, Ai, Bi,j (Case 4).

It suffices to prove the bound on the number of edges intersecting a half-plane

H, say denoted by η(H), separately for the following four cases. We will use terms

above (or below) a half-plane H to distinguish between points that lie on opposite

sides of the plane passing through H.

Case 1. (Supporting line ` passes through Ai and H does not intersect

A \Ai for i ∈ [4]).

Note that in this case the supporting line ` also passes through Ci. By definition

Ci = (
⋂
j 6=i hj)∩hi. Since there is no point common in all four (open) halfspaces (or
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their complements) we also have that Ci = (
⋂
j 6=i hj). There are three neighborsc

of Ci: Bj,k, Bk,l, Bj,l where j, k, l ∈ [4] \ {i} and any halfplane H with supporting

line passing through Ci will intersect exactly one of them (see Figure 3). Without

loss of generality let us assume that H intersects some Bj,k where j, k 6= i, and let

H = {hi, hl}. By definition, all the points in Aj ∪Bj,k ∪Ak lie in the intersection of

halfspaces in H. As H does not intersect Aj and Ak (by assumption), H partitions

the region defined by the intersection of halfspaces in H into two pieces, with Aj ∪
B+
j,k lying above H, while Ak ∪ B−j,k lying below H. Using Fact 8 with H and H,

we get that the following number of edges must intersect H: η(H) ≥ αj ·αk + β+
j,k ·

αk + β−j,k · αj . From Claim 4.1, it follows that η(H) ≥ τ − 3τ2.

CiBj,k Bk,l

Bj,l

`

hk

hj

hl

hi

Fig. 3. Region Ci has three neighboring regions: Bj,k, Bj,l and Bk,l and for a halfplane H with

supporting line ` passing through Ai and Ci, H intersects exactly one of them.

Case 2. (H does not intersect any Ai for i ∈ [4]).

If H does not intersect any Ai then it must be that the supporting line ` passes

through Bi,j and Bk,l and H intersects Bxy with x ∈ {i, j} and y ∈ {k, l}. With loss

of generality assume that x = j and y = k. Let H = {hi, hl} . Then, by definition,

all the points in Aj ∪Bj,k ∪Ak lie in the intersection of halfspaces in H. And in this

case of H, H partitions the region defined by the intersection of halfspaces in H
into two pieces, with Aj ∪B+

j,k lying above H, while Ak∪B−j,k lying below H. Using

Fact 8 with H and H, we get that the following number of edges must intersect H:

η(H) ≥ αj ·αk +β+
j,k ·αk +β−j,k ·αj . From Claim 4.1, it follows that η(H) ≥ τ −3τ2.

Case 3. (Supporting line ` passes through Ai and H also intersects some

Aj for some i, j ∈ [4], j 6= i).

cWe call a pair of regions as neighbors (to each other) if exactly one halfspace hi separates points
in one region from the points in the other region.
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In this case H may also intersect Bj,k or Bj,l but not both. Without loss of generality

H intersects Bj,k (if H does not intersect any of them then we can take either one

part of the assumed partition to contain no points of P ). Let H = {hi, hl}. Then,

by definition, all the points in Aj ∪ Bj,k ∪ Ak lie in the intersection of halfspaces

in H. And in this case of H, H partitions the region defined by the intersection of

halfspaces in H into two pieces, with A+
j ∪B+

j,k lying above H, while A−j ∪Ak∪B−j,k
lying below H. Using Fact 8 with H and H, we get that edges with endpoints in

the following pairs of regions are intersecting H: (A+
j , Ak), (A+

j , B
−
j,k), (Ak, B

+
j,k).

Similarly H also partitions hi ∩ hk; setting H = {hi, hk}, the edges with endpoints

in following pairs must intersect H: (Al, A
−
j ), (A−j , Bj,l). Therefore, the following

number of edges must intersect H: η(H) ≥ α+
j ·αk +α−j ·αl +α+

j · β−j,k + β+
j,k ·αk +

α−j · βj,l.
From Claim 4.2, it follows that η(H) ≥ τ − 3τ2.

Aj

Bj,k

Ak

hi
hl

hj

hi
hl

A+
j

A−
j

B+
j,k

B−
j,k

Ak

hj

Fig. 4. Halfplane H partitions hi ∩ hl = Aj ∪Bj,k ∪Ak into two parts: A+
j ∪B

+
j,k lying above H

and A−j ∪Ak ∪B
−
j,k lying below H.
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Case 4. (H intersects A but the supporting line ` doesn’t).

Since supporting line ` does not intersect A, it must intersect B. Without loss of

any generality, ` passes through Bi,j and Bk,l and H intersects Aj . In this case H

may also intersect Bj,k or Bj,l but not both. Again without loss of generality H

intersects Bj,k (if H does not intersect any of them then we can take either one

part of the assumed partition to contain no points of P ). There are two possible

subcases (4.1) H intersects only one of Aj and Ak and (4.2) H intersects both of

Aj and Ak.

(4.1). Without loss of generality H only intersects Aj . Let H = {hi, hl}. Then,

by definition, all the points in Aj ∪Bj,k ∪Ak lie in the intersection of halfspaces in

H. And in this case of H, H partitions the region defined by the intersection of half-

spaces in H into two pieces, with A+
j ∪B+

j,k lying above H, while A−j ∪Ak∪B−j,k lying

below H. See Figure 4. Using Fact 8 withH and H, we get that edges with endpoints

in the following pairs of regions are intersecting H: (A+
j , Ak), (A+

j , B
−
j,k), (Ak, B

+
j,k).

Similarly H also partitions hi∩hk; settingH = {hi, hk}, the edges with endpoints in

following pairs must intersect H: (Al, A
−
j ), (A−j , Bj,l). Therefore, the following num-

ber of edges must intersect H: η(H) ≥ α+
j ·αk+α−j ·αl+α+

j ·β−j,k+β+
j,k ·αk+α−j ·βj,l.

From Claim 4.2, it follows that η(H) ≥ τ − 3τ2.

(4.2). Let H = {hi, hl}. Then, by definition, all the points in Aj ∪ Bj,k ∪ Ak
lie in the intersection of halfspaces in H. And in this case of H, H partitions

the region defined by the intersection of halfspaces in H into two pieces, with

A+
j ∪ +A+

k ∪ B+
j,k lying above H, and A−j ∪ +A−k ∪ B−j,k lying below H. Fact 8

implies that line segments between following pairs of regions are intersecting

H: (A+
j , A

−
k ), (A−j , A

+
k ), (A−j , B

+
j,k), (A−k , B

+
j,k), (A+

j , B
−
j,k), (A+

k , B
−
j,k). Also, setting

H = hi ∩ hk, line segments between following pairs must intersect H: (A+
j , Al),

(A+
j , Bj,l) and setting H = hj ∩ hl, line segments between following pairs must in-

tersect H: (A−k , Ai), (A−k , Bi,j). Therefore, following number of edges must intersect

H: η(H) ≥ α−j · α+
k + α+

j · αl + αi · α−k + β+
j,k · α−j + β−j,k · α+

k + α+
j · βj,l + α−k · βi,k.

From Claim 4.3, it follows that η(H) ≥ τ − 3τ2.

This completes the proof of Lemma 5.

Finally, we complete the proof of Theorem 1: take any set P of n points with

Tukey-depth τn. If τ ≥ 0.285, Lemma 4 gives a point with Line-depth at least

(0.285)2n2/2 ≥ n2/24.5. On the other hand, if τ < 0.285, Lemma 5 gives a point

with Line-depth at least (0.285− 3(0.285)2)n2 ≥ n2/24.5.

5. Discussion

Relations between data-depth measures in R3. For d = 2, we have two fun-

damental measures: Tukey-depth, and RS-depth. Recall from Fact 1 that any point

of RS-depth n2/9 has Tukey-depth at least n/3. On the other hand, a centerpoint

is not always a point of “high” ray-shooting depth. Consider the example in the

figure 5. The centerpoint c in the figure has ray-shooting depth at most n2/18+6n.

It can be shown that this is the worst possible example - that a centerpoint always
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s1
s2

sn
3

s2n
3 +1s2n

3 +2

sn

{sn
3+1, sn

3+2, . . . , s2n
3
}

ρ

Fig. 5. Two thirds of the points are arranged on a unit circle around a point c so that the line

through the pair (si, s 2n
3

+i) also passes through c for all 1 ≤ i ≤ n/3. Clearly c is a centerpoint but

c doesn’t have “high” ray-shooting depth as the ray ρ starting at c intersects at most n2/18 + 6n
edges.

has ray-shooting depth of n2/18−O(n).

Fact 9. Given a set of points S in the plane any centerpoint c has ray-shooting

depth more than n2/18−O(n).

Proof. It is enough to show that there are at the least acclaimed number of edges

meeting an arbitrary ray ρ from the centerpoint c. Since a point in S contributes

at most n − 1 edges, we may assume that ρ meets a point s1. Let the points in

S = {s1, s2, . . . , sn} be ordered radially around c in the counter-clockwise order.

Translate and rotate the point set so that c is the origin and s1 lies on the positive

horizontal axis. Let `i be the line through c and the point si - so `1 is the horizontal

axis with at least n/3 points above and at least n/3 points below. Note that for a

point si with i ≤ n/3 and a point sj with j ≥ n − (n/3 − i), the edge sisj meets

the ray ρ. This is because there are at least n/3 points to the right of the line `i.

And at least n − (n/3 − i) of them lie below ρ. There are at least (n/3 − i) edges

for each si with i ≤ n/3 that meet ρ. Therefore the number of edges meeting ρ is

more than
∑n/3
i=1(n/3− i). The claim follows.

So there is a hierarchy for d = 2. Is such a similar property true for R3?

Speculation 10. Let q be a point with RS-depth (n/4)3. Then q has Line-depth

at least (n/4)2. Similarly, let q be a point with Line-depth (n/4)2. Then q has

Tukey-depth at least (n/4).

Unfortunately, the hierarchical structure that is present in R2 is not true in R3.

Claim 5.1. There exists a set of points P and a point q such that q has Line-depth
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at least (1/16 + 1/128)n2 − cn and Tukey-depth less than (n/4) where c is a fixed

constant independent of n.

Proof. To prove this statement we will construct one such set of n points and a

point q with claimed bounds on its line-depth and Tukey depth. Our pointset P has

two parts A and B with |A| = 3n/4 and |B| = n/4. We place the points in A around

the origin at regular distance in the unit radius circle in the XY -plane with z = 0.

Similarly the points in B lie in a circle of small enough radius εr > 0 around the

point (0, 0, 1) at regular distance in the plane z = 1d. We fix q to be the midpoint

on the line segment between the centers of these two circles i.e. q = (0, 0, 1/2). It is

easy to see that the Tukey depth of q is at most n/4.

We want to show that for any halfplane H through q there are at least (1/16 +

1/128)n2 edges incident on the pairs of points in P that intersect H. The halfplane

H is defined by a supporting line ` and a direction δ. By symmetry of points in A

and B we can assume, without loss of any generality, that the line ` lies on XZ-

plane and that the direction δ lies in the positive Y halfspace. For a point u in the

three dimensional space we use x(u), y(u), z(u) to represent x, y, and z coordinates

of u respectively. We write ch(A) and ch(B) for respective convex hulls of the points

in A and B. For a set Q of points π(Q) denotes the plane through Q whenever Q

defines a unique such plane. Unless a halfplane misses both the convex hulls (which

is described in Case 1), its supporting line ` may or may not intersect ch(B). The

scenario when it does intersect ch(B) is described in Case 2 below. We divide the

case when it does not intersect ch(B) into further subcases based on whether `

intersect ch(A) or not.

Case 1: H intersects neither ch(A) nor ch(B).

It is easy to see that for all a ∈ A in positive Y halfspace (i.e. y(a) ≥ 0) and for all

b ∈ B edge ab meets H. We have

η(H) ≥ n

4
× 3n

4
× 1

2

=
3n2

32

As a matter of fact the number of the edges intersecting H is exactly 3n2

32 in this

case.

Case 2: The supporting line ` passes through ch(B).

Since the points in B are placed in a small enough circle we have that the line `

passes very close to the origin i.e. the euclidean distance between origin and the

closest point on ` is at most εr. Among all the edges that are incident on a pair of

dAny εr <
2π

3n/4
will work but for simiplicity assume εr is arbitrarily small
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vertices in A only a linear (in number of points in A) number of them pass through

any circle of randius εr around origin . That is because for each point a in A there

are at most 4 points a′ such that the edges of the form aa′ intersect such a circle

due to the small choice of εr. Since a halfplane passing through q and origin is

intersected by 1
2 × 3n

8 × 3n
8 edges with both endpoints in A, in this case we have

that

η(H) ≥ 3n

8
× 3n

8
× 1

2
− cn

=
9n2

128
− cn

Above c ≤ 2.

For the rest of the proof we will assume that the supporting line ` does not

pass through ch(B). In Case 3 and Case 4 we describe the scenario when ` does

not intersect ch(A) either. And then for Case 5 and Case 6 we assume that the

supporting line ` does pass through ch(A).

Case 3: H intersects ch(A) but the supporting line ` doesn’t.

Note that H can’t intersect ch(B) in this case. Let H partition the points in A into

two parts A1 lying above and A2 lying below H. All edges with one endpoint in A1

and the other endpoint in A2 meet H. Similarly all edges with one point in B and

other in A2 lying in positive Y halfspace meet H too. If there are kn points in A1

then we can assume that 0 ≤ k ≤ 3
8 . We have

η(H) ≥ kn× (
3

4
− k)n+ (

3

8
− k)n× n

4

=
3n2

32
+

2n2k

4
− n2k2

=
3n2

32
+ kn(n/2− kn) ≥ 3n2

32

Case 4: H does not intersect ch(A), intersects ch(B) and the

supporting line ` doesn’t intersect ch(B).

Let H partition the points in B into two parts B1 lying above and B2 lying below

H. All edges with one point in B1 and other in A lying in the negative Y halfspace

meet H. And all the edges with one point in B2 and other in A lying in positive

Y halfspace meet H as well. If there are kn points in B1 then we can assume that

0 ≤ k ≤ 1
8 . We have

η(H) ≥ kn× 3n

8
+ (

1

4
− k)n× 3n

8

=
3n2

32
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`
q

A B1

B2

A2

A1

Bq

`

(a) (b)

Fig. 6. Figure(a) on the left illustrates Case 3 when H partitions A into A1 and A2. Similarly
figure(b) on the right illustrates Case 4 when H partitions B into B1 and B2.

Case 5: The supporting line ` intersects ch(A) but H doesn’t

intersect ch(B).

H partitions the points in A that lie in positive Y halfspace into two sets A1 and

A2 such that the points in A1 and the points in B lie to the left of the plane π(H)

while the points in A2 lies to the right.

Let |A1| = kn and |A2| = (3/8 − k)n. Depending on the value of k we divide

this case into two subcases. In each subcase we will show that the constant of n2 in

the value of η(H) is large enough i.e., η(H)/n2 ≥ 1/16 + 1/128.

• 0 ≤ k ≤ 3/16: All the edges with one endpoint in B ∪ A1 and the other in

A2 meet H. η(H)/n2 ≥ (k + 1/4)× (3/8− k) which, in the given range, is

minimized when k = 3/16. In this case we have η(H)/n2 ≥ (1/16 + 5/256).

• 3/16 < k ≤ 3/8: Let c and d be the points where π(H) meets the circle

through the points in the set A and let cd be line segment with endpoints

c and d. And let e be the point where ` meets the XY -plane. Without

loss generality assume that x(c) ≥ 0, x(d) < 0, and x(e) < 0. Note that e

lies on the segment cd, and the segment ce lies in H. When k > 3/16 the

length of the segment ce is more than half of the length of cd. There are

i×(3n/4−i) edges with both endpoints in A that intersect cd where i is the

number of points in A that lie above π(H). We know that kn ≤ i ≤ 3n/8.

Since the segment ce has more than the half of the length of the segment

cd, by symmetry of the points in A more than half of those edges meet H.

Also edges with one endpoint in B and other in A2 intersect H. We have

η(H)/n2 ≥ 1/2× k × (3/4− k) + 1/4× (3/8− k)

This is minimized, in the given range, when k = 3/8. We get η(H)/n2 ≥
1/16 + 1/128 in this case.
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Ad

c

e

i

3n
4 − i

Fig. 7. Case 5: The plane π(H) meets the circle through the points in A at c and d. There are

i× (3n/4− i) edges meeting cd; at least half of those edges meet ec where n/4 < i < n/2.

Total number of the edges interesting H is at least (1/16 + 1/128)n2 in both

cases.

Case 6: The supporting line ` intersects ch(A), H intersects

ch(B) but ` does not intersect ch(B).

By symmetry of points in A and B we may assume that ` intersects the plane

z = 0 in the negative X halfplane i.e x(` ∩ {p ∈ R3 : z(p) = 0}) < 0. Since `

passes through the point q at z = 1/2, this implies that ` intersects the plane z = 1

in the positive X halfplane. Also notice that as H intersects B, the direction δ

of H can also be assumed to lie in the negative X half of the plane z = 0. Let

A′ := A∩ {(x, y, z) : y ≥ 0} i.e. the points in A that lie in the positive Y halfspace.

H partitions the points in A′ into two sets: A1 lying below H and A2 lying above.

Similarly H partitions B into B1 lying below H and B2 lying above. Let |A1| = kn

and |A2| = (3/8− k)n. Due the small choice of εr, the radius of circle that contains

B, it must be that |A1| ≤ 2. Also with |B1| = jn and |B2| = (1/4− j)n, it must be

that |B1| > n/8. All edges with one endpoint in A1 ∪B1 and the other endpoint in

A2∪B2 meet H. Also all the edges with one endpoint in B2 and the other endpoint

in A \A′ meet H. We have

η(H) ≥ jn× (
3

8
− k)n+ (

3

8
+ k)n× (

1

4
− j)n

> (
3

8
− k)n× (

n

4
)

=
3n2

32
− 2n

4

as required.

Therefore, unlike the d = 2 case where a point of high RS-depth has a cor-
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respondingly high Tukey-depth, the three measures in R3 do not have any such

hierarchical relation.
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