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K-CENTERPOINTS CONJECTURES FOR POINTSETS IN R d
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In this paper, we introduce the notion of k-centerpoints for any set P of n points in R d . These unify and generalize previous results such as the classical centerpoint theorem 1 , and the recently-proven ray-shooting theorem 2 . We define two variants: affine k-centerpoints, and topological k-centerpoints. We prove their equivalence in R 2 , and conjecture that these are in fact equivalent in any dimension. We present the first nontrivial bounds for these problems in R d , as well as present several conjectures related to them.

Introduction

In this paper, we propose a simple set of conjectures which unify and generalize several previous results. We solve these conjectures for R 2 , present first non-trivial bounds in higher dimensions, and argue for why they might be true in full generality.

Finally, via more detailed arguments, derive better bounds in R 3 . We first explain the background needed to understand the conjectures and our results.

Tukey Depth. One of the classical results in Discrete Geometry is the Centerpoint Theorem 1 , which states the following: given any set P of n points in R d , there exists a point q ∈ R d , not necessarily in P , such that any closed halfspace containing q contains at least n/(d + 1) points of P . Any such point q is called a centerpoint of P . Furthermore, this is optimal. The Tukey-depth of a point q is the minimum number of points contained in any half-space containing q. The point of highest Tukey-depth w.r.t. P is called the Tukey median of P , and its depth called the Tukey depth of P .

This theorem and its generalizations has found several applications in combinatorial geometry, statistics, geometric algorithms and related areas [START_REF] Kenneth | Approximating center points with iterative Radon points[END_REF][START_REF] Miller | Separators for sphere-packings and nearest neighbor graphs[END_REF][START_REF] Yao | A 3-space partition and its applications[END_REF][START_REF] Miller | Automatic mesh partitioning. Workshop on Sparse Matrix Computations: Graph Theory Issues and Algorithms[END_REF][START_REF] Donoho | Breakdown properties of location estimates based on halfspace depth and projected outlyingness[END_REF][START_REF] Mustafa | Weak -nets have a basis of size O(1/ log 1/ )[END_REF] .

One way to view the Centerpoint Theorem is as a generalization of the concept of the median of a set P of n numbers in R: when d = 1, the Centerpoint Theorem gives a point q ∈ R which has at least n/2 numbers of P larger and n/2 numbers smaller than q, i.e., the median of P . Therefore the centerpoint of a set P can essentially be viewed as one measure to capture the statistical data depth of P (e.g., the centroid is another measure, which can be seen as the generalization of mean of a set of numbers).

Simplicial Depth. Another closely related measure of data depth is the Simplicial depth of a point, defined as follows. (For the moment, we restrict ourselves to the two-dimensional case -as we'll see later, things are much less well-understood even in R 3 ). Given a set P of n points in R2 , the simplicial depth of a point q is the number of triangles spanned by P that contain q. The simplicial depth of P is the highest such depth of any point q. The First-selection Lemma (see [START_REF] Matoušek | Lectures in Discrete Geometry[END_REF] , pg. 207) in two-dimensions states that any set P in R 2 has simplicial-depth at least n 3 /27. This was first proved in 1984 by Boros-Furedi 10 (see Bukh 11 for the 'Book Proof') and was also shown to be optimal [START_REF] Bukh | Stabbing simplices by points and flats[END_REF] . Not surprisingly, there is a close relation between Tukey and Simplicial depth. This can be proved easily using the technique in [START_REF] Boros | The number of triangles covering the center of an n-set[END_REF] (Proof is easy and we leave it as an exercise for the reader): Claim 1.1. Given a set P of n points in R 2 with Tukey depth τ n, 1/3 ≤ τ ≤ 1/2, the simplicial depth of P is at least (-2τ 3 + 2.5τ 2τ + 1/6) • n 3 .

In particular, the above claim together with the centerpoint theorem implies the First-selection Lemma in R [START_REF] Fox | Overlap properties of geometric expanders[END_REF] .

In fact, apart from the above relation between depths of pointsets, there is also a relation between depth of single points: [START_REF] Bukh | Stabbing simplices by points and flats[END_REF] , [START_REF] Wagner | On k-Sets and Applications[END_REF] . Any point q of Tukey depth τ n has Simplicial depth at least 3τ 2 -4τ 3 3!

• n 3 -O(n 2 ) [START_REF] Wagner | On k-Sets and Applications[END_REF] . This bound is tight [START_REF] Bukh | Stabbing simplices by points and flats[END_REF] : for every τ and n, there exists a set P of n points, and a point q of depth τ n where the simplicial depth of q is at most the above lower-bound (upto lower-order terms).

Ray-Shooting Depth. Recently, an elegant new result has been discovered that easily implies both the Centerpoint theorem and the Simplicial depth theorem in the plane (it surprises the authors that such fundamental results are still being discovered!). Given P , let E be the set of all n 2 edges spanned by points of P . Then Ray-Shooting depth of a point q ∈ R 2 is the smallest r such that any halfinfinite ray from q in any direction u ∈ S 1 intersects at least r edges in E. The Ray-Shooting depth (henceforth called RS-depth) of P is the maximum RS-depth of any point in R 2 . Then the Ray-Shooting Theorem states the following:

2 . Any set P of n points in R 2 has RS-depth at least n 2 /9. Furthermore, this bound is tight. Now let q be a point with RS-depth rn 2 . Consider any line l through q. Then l must intersect at least 2rn 2 edges, and therefore both halfspaces defined by l must contain at least (nn √ 1 -8r)/2 points. For simplicial depth, consider, for each point p ∈ P , the ray from q in the direction pq. Then for every edge {p i , p j } that interesects this ray, the triangle defined by {p, p i , p j } must contain q. Summing up these triangles over all points, each triangle can be counted three times, and so q lies in at least rn 3 /3 distinct triangles. Let us state this direct connection: Fact 1. Given a set P of n points in R 2 , and a point q with RS-depth rn 2 . Then q has

• Tukey depth at least n • (1 -√ 1 -8r)/2 • Simplicial depth at least rn 3 /3. Now, by Ray-Shooting theorem, there exists a point with RS-depth n 2 /9. Plugging r = 1/9 gives the Centerpoint theorem and the First-selection Lemma. So any point with RS-depth at least n 2 /9 is both a centerpoint, as well as a high simplicialdepth point.

The status in R 3 and higher dimensions. Things are much less well-understood already in R 3 . Of the depth measures, as stated earlier, the Centerpoint theorem again gives the Tukey-depth bound of n/4 in R 3 , and this is optimal.

However, the optimal bound for the Simplicial-depth is not known. It is known that for any set P of n points in R (d+1)!(d+1) d+1 by Wagner [START_REF] Wagner | On k-Sets and Applications[END_REF] , who in fact showed that any point of depth τ n is contained in at least the following number of simplices:

(d + 1)τ d -2dτ d+1 (d + 1)! • n d+1 -O(n d ) (1) 
More recently, Bukh, Matoušek and Nivash [START_REF] Bukh | Stabbing simplices by points and flats[END_REF] showed an elegant construction of a point set P so that no point in R d is contained in, upto lower-order terms, more than (n/(d + 1)) d+1 simplices defined by P . Furthermore, they conjecture that this is the right bound.

For d = 3 then, the conjectured bound is c 3 = 0.0039. For this case, the bound of Wagner was recently improved by Basit et al. [START_REF] Basit | Hitting simplices with points in r 3[END_REF] , where they showed that c 3 ≥ 0.0023. This was further improved by a complicated topological argument by Gromov [START_REF] Gromov | Singularities, expanders and topology of map. part 2: From combinatorics to topology via algebraic isoperimetry[END_REF] , who showed that c d ≥ 2d/((d + 1)(d + 1)! 2 ). For d = 3 this gives c 3 ≥ 0.0026. This bound for R 3 has since been improved even further by Krall et al. [START_REF] Kral | A new lower bound based on gromovs method of selecting heavily covered points[END_REF] to c 3 ≥ 0.0031.

In higher dimensions, the notion of RS-depth corresponds to finding a point q such that any half-infinite ray from q intersects "lots" of (d -1)-simplices spanned by points of P . No combinatorial bounds on the RS-depth of such a point are known for d ≥ 3. It was not studied in the paper that proposed it 2 , and their topological technique used for the two-dimensional case fails for d = 3 and above. Using the bounds on Simplicial-depth, it is not too hard to derive a first such bound: any set P of n points in R d has RS-depth at least 2d/((d + 1)

((d + 1)!) 2 ) • n d .
Organization. In Section 2 we present a broad and uniform way of seeing much of the earlier work on geometric data-depth as part of a bigger simpler geometric structure. This geometric structure is fully proven in two dimensions and asymptotically optimally proven for R d in Section refsec:2d. Finally we prove a near-optimal exact result for three dimensions in Section 4.

A Uniform View of Data Depth

Given the lack of optimal bounds for Simplicial-depth and RS-depth in dimensions higher than two, the first question is what are the bounds to expect? What would be a good conjecture?

We think that one good way to answer such questions is by the following analogy. Consider the following pointset of size n: take any simplex in R d (does not have to be regular) and place a tiny cloud of n/(d+1) points around each of its (d+1) vertices. Call such a pointset a Simplex-like point set. For the kind of questions considered in this paper, this seems to represent the 'extremal' case. In other words, if some 'affine property' is true for this pointset, then it is true for any pointset. So let's consider all these depth measures for the Simplex-like pointset over a simplex S. Take the centroid c of this simplex. Then the Centerpoint theorem follows because any halfspace containing c must contain at least one vertex of S, and so contains n/(d+1) points. Similarly, each point from one of the vertices makes a simplex containing c, and so c is contained in (n/(d + 1)) d+1 simplices. Finally, k-centers k-centerpoints Conjectures for Pointsets in R d 5 any half-infinite ray from c must intersect at least one facet of S, and so intersect (n/(d + 1)) d (d -1)-simplices spanned by P and so have that much RS-depth.

Let us give some justification for reliance on this extremal case. First note that, so far, all theoretical and empirical evidence seems to show that as the Tukey depth of a pointset increases, so does its Simplicial-depth and also its RS-depth. So, for example, for a pointset with the Tukey-depth the maximum of n/2, we get the maximum possible values of both Simplicial-depth and RS-depth. Theoretical results for R 2 relating Tukey-depth to Simplicial-depth have already been discussed in Claim 1.1.

Second, below we outline an argument showing that when the Tukey-depth of a pointset is the lowest possible, i.e., n/(d + 1), then we get exactly the bounds one expects from the Simplex-like pointset. This, together with the first point, leads us to suspect that the bounds derived from the Simplex-like pointset might indeed be always realizable for any pointset.

So consider the following theorem of Boros-Furedi 10 : Given a set P of n points in R d with Tukey-depth n/(d + 1), there exists a point p with depth n/(d + 1), and a set H of d + 1 halfspaces {h 1 , . . . , h d+1 }, such that i) |h i ∩ P | = n/(d + 1), ii) p lies on the boundary plane of each h i , and iii) h 1 ∪ . . . ∪ h d+1 cover the entire R d . It is easy to see that in this configuration, with the given constraints, the d + 1 regions A i = H i ∩ j =i H j each contain exactly n/(d+1) points, and all the other 2 d+1 -2 regions are empty. And it is not too hard to prove that in such a configuration in R d , the point p has centerpoint-depth n/(d + 1), it has simplicial-depth (n/(d + 1)) d+1 , and has RS-depth (n/(d + 1)) d . In some sense, with respect to the point p, the n points are essentially in a Simplex-like position, combinatorially, if Tukey-depth is n/(d + 1).

Furthermore, the intuition one gets from Simplex-like pointsets corresponds to every information we know about these problems. It gives exactly the results known for R (which is trivial) and for R 2 . And it matches the conjecture in [START_REF] Bukh | Stabbing simplices by points and flats[END_REF] that there always exists a point of simplicial depth (n/(d+1)) d+1 (ignoring lower-order terms).

Line-depth in R 3 . Let us continue with the consideration of the set P in R 3 where n/4 points are placed near each of the vertices of some tetrahedron S. And let c be the centroid of S.

Then by considering the 3-dimensional space defined by a halfspace with c on its (2-dimensional) boundary, we get the notion of Centerpoints. By considering the 1dimensional space defined by a half-line with c on its (0-dimensional) boundary, we get the notion of RS-depth. But this begs the question: what about 2-dimensional space with c on its (1-dimensional) boundary? The natural answer is to consider the 2-dimensional space defined by a half-plane h with c on its (1-dimensional) boundary. And then count the number of edges spanned by P that intersect h. And what answer is to be expected? Going by the intutition of Simplex-like pointset, any half-plane through c will intersect at least one edge of S, and so intersect at least (n/4) 2 edges spanned by P . Formally, a point q ∈ R 3 has Line-depth r if any halfplane through q intersects at least r edges spanned by P . The Line-depth of a pointset P is the highest Line-depth of any point. We conjecture: Conjecture 2.1. Any set P of n points in R 3 has Line-depth at least (n/4) 2 .

Like RS-depth and Simplicial-depth in R 3 , it seems hard to prove this exact bound using current techniques. But we are able to show the following (the rather lengthy proof of this is given in Section 4):

Theorem 1 (Proof in Section 4). Given any set P of n points in R 3 , there exists a point q such that any halfplane through c intersects at least 2n 2 /49 edges spanned by P .

So with the notion of Line-depth, we have three measures in R 3 for any point q: 2-dimensional space is the familiar Tukey-depth, 1-dimensional space gives Linedepth, and 0-dimensional space gives RS-depth. Intuitively, it is clear that as the dimension of the flat decreases, the degrees of freedom increase and the problem becomes more complicated. On one end, optimal results for the 2-dimensional case (Tukey-depth) are known. And on the other end, very partial results are known for the 0-dimensional case. It is our hope that the middle 1-dimensional case will be more within current reach than the 0-dimensional case. That is another motivation to study the Line-depth problem.

K-centerpoints

In R 2 and R d for d ≥ 4

The previous view can be extended to d-dimensions, giving the following "affine k-centerpoints" conjectures: Conjecture 3.1 (Affine k-centerpoints Conjectures). Given a set P of n points in R d , and an integer 0 ≤ k ≤ d -1, there exists a point q ∈ R d (a kcenterpoint) such that any (d-k)-half flat through q intersects at least (n/(d+1)) k+1 k-simplices spanned by P .

The case k = 0 is the centerpoint theorem in any R d . The case d = 2, k = 1 is the RS-depth result of 2 .
The case d = 3, k = 1 is the Line-depth theorem, for which we have presented Theorem 1.

For the general k-centerpoints problems, one can get the following bounds by extending the technique of Bárány 14 and using the result of Gromov [START_REF] Gromov | Singularities, expanders and topology of map. part 2: From combinatorics to topology via algebraic isoperimetry[END_REF] . Note that this implies that for every k, d, there exists a point q and a constant c d,k such that any (d-k)-half flat through q intersects at least c d,k •n k+1 k-simplices spanned by P . Using some approximations for binomial coeffcient and factorials, it can be showed that first bound dominates the expression below for k < 0.9d and for k > 0.9d the second bound starts to dominate for d > 800. For smaller values of d, this threshold tends to grow with d from 0.8d to 0.9d.
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Theorem 2. Given a set P of n points in R d , and an integer 0 ≤ k ≤ d -1, there exists a point q ∈ R d such that any (dk)-half flat through q intersects at least

max n/(d + 1) k + 1 , 2d (d + 1)(d + 1)! n d-k • n d + 1
k-simplices spanned by P .

Proof. Given P , use Tverberg's Theorem 9 to partition P into t = n/(d + 1) sets P 1 , . . . , P t such that there exists a point q in the convex hull of the points in P i for all i. Consider any (d-k)-dimensional half-flat F through q, where ∂F, the boundary of F, is a (d-k-1)-dimensional flat containing q. Project F onto a (k+1)-dimensional subspace H orthogonal to ∂F such that the projection of F is a ray r in H, and ∂F and q are projected to the point q . And let P 1 , . . . , P t be the projected sets whose convex-hulls now contains the point q . Then note that the k-dimensional simplex spanned by (k + 1) points Q ⊂ P intersects the ray r if and only if the k-dimensional simplex defined by the correponding set Q in R d interescts the flat F. Now apply the single-point version a of Colorful Caratheodory's Theorem 14 to every (k + 1)-tuple of sets, say P 1 , . . . , P k+1 , together with the point s at infinity in the direction antipodal to the direction of r to get a 'colorful' simplex, defined by s and one point from each P i , and containing q . Then the ray r must intersect the k-simplex defined by the (k + 1) points of P , and so the corresponding points of P in R d span a (k + 1)-simplex intersecting F. In total, we get n/(d+1) k+1 k-simplices intersecting F.

Another way is to use the result of Gromov [START_REF] Gromov | Singularities, expanders and topology of map. part 2: From combinatorics to topology via algebraic isoperimetry[END_REF] , that given any set P of n points in R d , there exists a point q lying in 2d/((d + 1)(d + 1)!) • n d+1 d-simplices. Now take any (dk)-half flat through q. It must intersect at least one k-simplex of each d-simplex containing it, and where each k-simplex is counted at most n d-k times. And we get

2d (d + 1)(d + 1)! n d-k • n d + 1 distinct k-simplices intersecting any (d -k)-half flat through q.
Coming back to the Simplex-like pointset, one can further observe another thing. Say S is the tetrahedron of the Simplex-like point set in R 3 . And we're studying the Line-depth of the centroid c. Then, as mentioned earlier, any half-plane through c intersects at least one edge of the tetrahedron, so intersects at least (n/4) 2 edges spanned by P . But, in fact, something stronger is true: take any line l through c and move l in any way to 'infinity' (i.e., outside the convex-hull of P ). Then it a Given any point s ∈ R d and d sets P 1 , . . . , P d in R d such that each convex hull of P i contains the origin, there exists a d-simplex spanned by s and one point from each P i which also contains the origin.

still has to intersect at least one edge of the tetrahedron. So the property for the Simplex-like point set is in fact topological in nature.

In fact, this property is already true for centerpoints: if a point q has Tukeydepth r, then any plane through q has to cross at least r points to reach a point at infinity, regardless of whether the movement is any arbitrary continuous movement or affine. See 18 for a discussion of this.

The "affine" k-centerpoints conjectures can therefore be strengthened to a more natural topological version: Conjecture 3.2 (k-centerpoints Conjectures). Given a set P of n points in R d , and an integer 0 ≤ k ≤ d -1, there exists a point q ∈ R d such that any (dk -1)-flat through q must cross at least (n/(d + 1)) k+1 k-simplices spanned by P to move to a point at infinity.

We now give a proof of these topological k-centerpoints conjectures in R 2 . Theorem 3. For any set P of n points in R 2 , the k-centerpoints conjectures are true.

Proof. As centerpoint-depth is already proven to be topological, we only have to resolve the RS-depth case b .

We will actually prove the contrapositive: given a set P of n points in R 2 , let q be the point with RS-depth ρ. Take any curve γ from q that intersects at most ρ edges spanned by P . We want to show that there exists a half-infinite ray from q that also intersects at most ρ edges spanned by P . We prove this in two steps: first by replacing γ by a piecewise linear curve, and then replacing this piecewise linear curve with a half-infinite ray.

Given any curve γ, let RS(γ) denote the number of edges spanned by P that γ intersects.

Lemma 2. Given a curve γ that starts at q and ends at the point at infinity, there exists a piecewise linear curve γ starting at q and ending at a point at infinity, such that RS(γ) = RS(γ ).

Proof. Given P , let A be the arrangement induced by Θ(n 2 ) lines supporting all the edges spanned by points of P . The curve γ enters and leaves a number of cells in the arrangement A. Lets say it enters some cell C at point s i and then leaves that cell at point e i . Replace this portion of γ between s i and e i by the straight-line edge s i e i (by convexity of C, this lies completely inside C). Note that γ cannot intersect any edge in the interior of any cell C (no edge can intersect a cell of this arrangement). Therefore, the RS-depth does not change by this replacement.

b It has been communicated to us by an insightful reviewer that this was implicit in Gromov's paper [START_REF] Gromov | Singularities, expanders and topology of map. part 2: From combinatorics to topology via algebraic isoperimetry[END_REF] . However the techniques there are highly non-trivial and based on algebraic topology arguments, while our short proof is elementary.
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r γ Repeating this for each cell that γ enters and leaves, we get a sequence q = s 1 , . . . , s m , u 1 , s i ∈ R 2 , u 1 ∈ S 1 , which represents the piecewise linear curve γ defined by the segments s 1 s 2 , . . . , s m-1 s m together with the half-infinite ray s m starting from s m in the direction u 1 . Finally, as discussed above, we have RS(γ) = RS(γ ). See Figure 1(a).

Let γ be the piecewise linear curve defined by the sequence s 1 , . . . , s m , u 1 as above. Consider the one-bend curve γ starting at s m-1 and defined by the segment s m-1 s m together with the half-infinite ray s m in direction u 1 . The Lemma below shows that there exists a direction u 2 ∈ S 1 such that the half-infinite ray r starting at s m-1 in direction u 2 has RS(r) ≤ RS(γ ). In other words, γ can be 'straightened' to a ray r without increasing the number of edges intersected. This implies that

RS( s 1 , . . . , s m-1 , u 2 ) ≤ RS( s 1 , . . . , s m , u 1 )
We now repeat this for the curve defined by s 1 , . . . , s m-1 , u 2 to get another curve with one fewer bend. And so on till we get a ray r starting at q in direction u ∈ S 1 . By induction,

RS( q = s 1 , u ) ≤ RS( s 1 , s 2 , u m-1 ) ≤ RS( s 1 , s 2 , s 3 , u m-2 ) ≤ • • • ≤ RS( s 1 , . . . , s m , u 1 )
and the proof of Theorem 3 is completed. It remains to prove the following. Lemma 3. Given a piecewise linear curve γ defined by q 1 , q 2 , u 2 , there exists a direction u 1 ∈ S 1 such that RS( q 1 , u 1 ) ≤ RS( q 1 , q 2 , u 2 ).

Proof. See Figure 1(b). First we show the following: Claim 3.1. There exists a direction u 1 ∈ S 1 such that the ray from q 1 in the direction u 1 : i) intersects the ray from q 2 in direction u 2 , ii) number of points in region A are equal to the number of points in region B (Figure 1(b)).

Proof. Start with the half-infinite ray r from q 1 through q 2 . And continuously rotate r towards the direction u 2 . Initially, one region is empty, while the other region contains the maximum points. When r points in the direction u 2 , then the opposite is true. By intermediate-value theorem, there must be a ray in the middle that has equal number of points in both the region A and B (which could be 0).

Let r be this ray from q 1 in direction u 1 . And assume the regions A and B each contain t points. We now prove that this is the required ray, by showing that the number of edges intersected by r is at most those intersected by the curve γ .

Edges that intersect both r and γ or none, contribute equally, and so can be ignored. Consider the remaining edges spanned by P . Observation 3.1. Any edge e = {p i , p j } that intersects r , but not γ , must have exactly one endpoint in region A or B.

Proof. We prove the contrapositive. If e has one endpoint in A and the other in B, then it must cross both r and γ . On the other hand, if none are in A or B, then either e intersects both, or none. Therefore consider each point p i not in A or in B (see Figure 1(b)):

• p i ∈ C. Then p i has exactly t edges intersecting γ (to points in B), and exactly t edges intersecting r (to points in A). • p i ∈ D. Then p i has at least t edges intersecting γ (to points in B and possibly in A) and at most t edges intersecting r (to points in A). • p i ∈ E. Then p i has at least t edges intersecting γ (to points in A and possibly in B) and exactly t edges intersecting r (to points in B).

Summing up over all p i proves the Lemma.

K-centerpoints In R 3

For R 3 , besides the already studied Tukey-depth, Simplicial depth, and Rayshooting depth, we have proposed the problem of Line-depth. In this section we give improved bounds for it. For any set P with n points and Tukey-depth τ n, our bound is achieved via a two-step strategy. First, we show that there exists an increasing function of τ that lower-bounds the Line-depth of P . Then, via an alternate technique, we show the existence of a decreasing function of τ that also lower-bounds the Line-depth of P . Combining the two yields our theorem.

Lemma 4. Given a set P of n points in R 3 , let p be a point with Tukey depth at least τ n. Then the Line-depth of p is at least

(τ n) 2 /2 -o(n).
Proof. Given an arbitrary half-plane H through such a point p, we define a procedure to find edges that intersect H. 

∩ P | + |H +- i ∩ P | ≥ τ n. Since |H ++ i ∩ P | = i, we have |H +- i ∩ P | ≥ τ n -i.
Observe that for any i ≤ τ n, the line segment defined by p i and p j ∈ H +- i ∩ P must intersect H. Number of such line segments can be bounded as

T ≥ τ n k=1 k = (τ n) 2 2 -o(n) (2) 
Note that since τ ≥ 1/4 by the Centerpoint theorem, Lemma 4 proves the existence of a point with Line-depth at least n 2 /32. By the second method, we prove the following lower-bound: Lemma 5. Given a set P of n points with Tukey-depth τ n, there exists a point q with Line-depth at least (τ -3τ 2 ) • n 2 .

Note that this is a decreasing function of τ for τ ∈ [0.25, 0.5]. For the proof, we extend the approach in [START_REF] Basit | Hitting simplices with points in r 3[END_REF] to work for the Line-depth case. First a key lemma.

Lemma 6 (Boros-Füredi 10 ). Given a set P of n points in R d , where depth(P ) = τ n, there exists a point p with depth τ n, and a set H of d + 1 halfspaces {h 1 , . . . , h d+1 }, such that i) |h i ∩ P | = τ n, ii) p lies on the boundary plane of each h i , and iii) h 1 ∪ . . . ∪ h d+1 cover the entire R d .

Given a set P of n points in R 3 , with depth(P ) = τ n, use Lemma 6 to get the point p and a set of four halfspaces {h 1 , h 2 , h 3 , h 4 } satisfying the stated conditions. The point p, and halfspaces {h 1 , . . . , h 4 } will refer to these for the rest of the proof. We will now show that p gives the required Line-depth lower-bound of (τ -3τ 2 ) • n 2 . These four halfspaces partition R 3 into the following convex unbounded regions:

A i = ( l =i h l ) ∩ h i , B i,j = ( l =i,j h l ) ∩ h i ∩ h j , C i = ( l =i h l ) ∩ h i (3) 
See Figure 2. We note that regions A i and C i are antipodal around the point p (in the sense that a line through p and intersecting A i will intersect C i and not intersect any other region). Similarly region B i,j is antipodal to region B k,l for distinct 1 ≤ i, j, k, l ≤ 4. For brevity we also define

A := i∈[4] A i , B := i,j∈[4],i =j B i,j . Set α i = |P ∩ A i |/n, β i,j = |P ∩ B i,j |/n, and γ i = |P ∩ C i |/n.
Note that we have these two constraints on the non-negative variables α i , β i,j and γ i :

τ = |h i ∩ P | n = α i + j =i β i,j + j =i γ j for each i = 1 . . . 4. ( 4 
)
h 2 h 3 h 4 h 1 A 1 B 1,4 A 4 B1,2 B1,3 C2 C3 h 1 h 4 h 3 h 2 B 1,2 C 3 B 2,4 A 2 A1 h 1 h 4 h 3 h 2 B 2,3 C 1 B 3,4 A 3 B1,3
Fig. 2. Partitioning of R 3 into 14 regions by the four halfspaces as visible from three different angles. The labels on the planes represent the halfspace that is facing the reader.

i α i + i<j β i,j + i γ i = 1, as {h 1 , h 2 , h 3 , h 4 } cover R 3 \ {p}. (5) 
Summing up (4) for all four halfspaces, and subtracting (5) from it, we get

i<j β i,j + 2 • i γ i = 4 • τ -1. (6) 
Therefore, i<j β i,j + i γ i ≤ 4τ -1. This fact, together with equation ( 4), implies that 1 -3τ ≤ α i ≤ τ for i = 1 . . . 4. Furthemore, we need the following lemma. We will use h i for complement of a halfspace h i , i.e., h i = R 3 \ h i .

Lemma 7. For any 1 ≤ i < j ≤ 4, we have α i α j + β i,j α i ≥ τ -3τ 2 . Similarly,

α i α j + β i,j α j ≥ τ -3τ 2 .
Proof. Assume the other two planes are h k and h l (other than h i and h j ). Since

|P ∩ h k | = 1 -τ , and |P ∩ h l | = τ , we get P ∩ (h k \ h l ) = α i + β i,j + α j ≥ 1 -2τ .
Then we have

α i α j + β i,j α i ≥ α i α j + (1 -2τ -α i -α j )α i = α i (1 -2τ -α i )
This last term is minimized at the extreme values of α i , which are either τ or 1-3τ , both yielding a lower-bound of τ (1 -3τ ).

We repeatedly use the following fact in different cases below to count the number of line segments intersecting an arbitrary half plane H. Fact 8. Given a set of halfspaces H in R 3 , let X be the convex-region of their common intersection. And let H be any set s.t. X \ H has more than one pathconnected component. Then if p and q are two points in two different components, the edge pq must intersect H. Let A + i , A - i be a partition of A i and B + i,j , B - i,j a partition of B i,j (to be specified in individual cases later). Then define:

α + i = |A + i ∩P | n , α - i = |A - i ∩P | n , β + i,j = |B + i,j ∩P | n , β - i,j = |B - i,j ∩P | n . Claim 4.1. α i • α j + β + i,j • α j + β - i,j • α i ≥ τ -3τ 2 .
Proof.

α i • α j + β + i,j • α j + β - i,j • α i ≥ α i α j + min(α i , α j )(β + i,j + β - i,j ) = α i α j + β i,j min(α i , α j ) = min(α i α j + β i,j α i , α i α j + β i,j α j ) ≥ τ -3τ 2 by Lemma 7. Claim 4.2. α + i • α j + α - i • α k + α + i • β - i,j + β + i,j • α j + α - i • β i,k ≥ τ -3τ 2 . Proof. = α + i (α j + β - i,j ) + α - i (α k + β i,k ) + α j β + i,j ≥ min(α j + β - i,j , α k + β i,k )(α + i + α - i ) + α j β + i,j = α i min(α j + β - i,j , α k + β i,k ) + α j β + i,j = min(α i α j + α i β - i,j + α j β + i,j , α i α k + β i,k α i + α j β + i,j ) ≥ min(α i α j + min(α i , α j )(β + i,j + β - i,j ), α i α k + β i,k α i ) = min(min(α i α j + α i β i,j , α i α j + α j β i,j ), α i α k + β i,k α i ) = min(α i α j + α i β i,j , α i α j + α j β i,j , α i α k + β i,k α i ) ≥ τ -3τ 2
where the last inequality follows from Lemma 7.

Claim 4.3. α - i •α + l +α + i •α k +α j •α - l +β + i,l •α - i +β - i,l •α + l +α + i •β i,k +α - l •β j,l ≥ τ -3τ 2 .
Proof.

= α + i (α k + β i,k ) + α - i (α + l + β + i,l ) + α - l (α j + β j,l ) + α + l • β - i,l ≥ α i • min(α k + β i,k , α + l + β + i,l ) + α - l (α j + β j,l ) + α + l • β - i,l ≥ min(α i • α k + α i • β i,k , α i • α + l + α i • β + i,l + α - l (α j + β j,l ) + α + l • β - i,l ) ≥ min(α i • α k + α i • β i,k , α + l (α i + β - i,l ) + α - l (α j + β j,l ) + α i • β + i,l ) ≥ min(α i • α k + α i • β i,k , α l min(α i + β - i,l , α j + β j,l ) + α i • β + i,l ) ≥ min(α i • α k + α i • β i,k , min(α l • α j + α l • β j,l , α l • α i + α l • β - i,l + α i • β + i,l )) ≥ min(α i • α k + α i • β i,k , α l • α j + α l • β j,l , α l • α i + β i,l min(α l , α i )) ≥ min(α i • α k + α i • β i,k , α l • α j + α l • β j,l , α l • α i + β i,l • α l , α l • α i + β i,l • α i ) ≥ τ -3τ 2 .
where last line follows from Lemma 7.

Let p be as defined in Lemma 6; we will show that any half-plane through p intersects at least (τ -3τ 2 ) • n 2 edges spanned by P . We identify a line as the supporting line of the halfplane H if it lies on the boundary of H. The supporting line of H passes through a pair of antipodal regions among the fourteen regions define in Equation 3 as well as the point p.

There are two obvious possibilities for a halfplane H: either it intersects A (recall that A is the union of A i , i ∈ [4]) or it does not intersect A (Case 2 below). For the first possibility we can have three possible subcases: supporting line of H passes through for some A i but H doesn't intersect A \ A i (Case 1) or H intersects A but the supporting line doesn't (Case 4) or passes through some A i and H intersects some A j , j = i (Case 3).

The four halfspaces create the structure of a cuboctahedron. The bounding planes of the four halfspaces partition a sphere S centered on p into 8 triangular and 6 quadrilateral faces creating a cuboctahedron structure. A triangular face represents a spherical cross-section of either an A i region (lying in exactly one halfspace h i ) or a C i region (lying in all but one halfspace h i ). Similarly a quadrilateral face represents a spherical cross-section of a B ij region (lying in exactly two halfspaces h i and h j ). Each A i is adjacent to all B i,j where j = i, and each C i is adjacent to all B j,k such that j, k = i. Now, let π be a fifth plane through p that intersects the other four planes generically. There is combinatorially only one way of doing this: The plane π intersects the following 8 faces of the cuboctahedron in circular order:

(A i , B i,j , C k , B j,l , C i , B k,l , A k , B k,i ).
We want a halfplane, not a full plane, so we choose a halfplane H of π bounded by a line that passes through p. Since intersects two opposite faces, the halfplane H can intersect any 5 adjacent faces out of the above circular list. Therefore, we get the following possibilities(ignoring the cases that are symmetric to the ones noted below): (a).

A i , B i,j , C k , B j,l , C i (Case 1), (b). B i,j , C k , B j,l , C i , B k,l (Case 2), (c). B j,l , C i , B k,l , A k , B k,i (Case 3), (d). C i , B k,l , A k , B k,i , A i (Case 4), and (e). B k,l , A k , B k,i , A i , B i,j (Case 4).
It suffices to prove the bound on the number of edges intersecting a half-plane H, say denoted by η(H), separately for the following four cases. We will use terms above (or below) a half-plane H to distinguish between points that lie on opposite sides of the plane passing through H.

Case 1. (Supporting line passes through A i and H does not intersect

A \ A i for i ∈ [4]).
Note that in this case the supporting line also passes through C i . By definition C i = ( j =i h j )∩h i . Since there is no point common in all four (open) halfspaces (or k-centers k-centerpoints Conjectures for Pointsets in R d 15 their complements) we also have that C i = ( j =i h j ). There are three neighbors c of C i : B j,k , B k,l , B j,l where j, k, l ∈ [4] \ {i} and any halfplane H with supporting line passing through C i will intersect exactly one of them (see Figure 3). Without loss of generality let us assume that H intersects some B j,k where j, k = i, and let H = {h i , h l }. By definition, all the points in A j ∪ B j,k ∪ A k lie in the intersection of halfspaces in H. As H does not intersect A j and A k (by assumption), H partitions the region defined by the intersection of halfspaces in H into two pieces, with A j ∪ B + j,k lying above H, while A k ∪ B - j,k lying below H. Using Fact 8 with H and H, we get that the following number of edges must intersect

H: η(H) ≥ α j • α k + β + j,k • α k + β - j,k • α j . From Claim 4.1, it follows that η(H) ≥ τ -3τ 2 . C i B j,k B k,l B j,l h k h j h l h i
Fig. 3. Region C i has three neighboring regions: B j,k , B j,l and B k,l and for a halfplane H with supporting line passing through A i and C i , H intersects exactly one of them.

Case 2. (H does not intersect any

A i for i ∈ [4]).
If H does not intersect any A i then it must be that the supporting line passes through B i,j and B k,l and H intersects B xy with x ∈ {i, j} and y ∈ {k, l}. With loss of generality assume that x = j and y = k. Let H = {h i , h l } . Then, by definition, all the points in A j ∪ B j,k ∪ A k lie in the intersection of halfspaces in H. And in this case of H, H partitions the region defined by the intersection of halfspaces in H into two pieces, with A j ∪ B + j,k lying above H, while A k ∪ B - j,k lying below H. Using Fact 8 with H and H, we get that the following number of edges must intersect H:

η(H) ≥ α j • α k + β + j,k • α k + β - j,k • α j . From Claim 4.
1, it follows that η(H) ≥ τ -3τ 2 . Case 3. (Supporting line passes through A i and H also intersects some A j for some i, j ∈ [4], j = i).

In this case H may also intersect B j,k or B j,l but not both. Without loss of generality H intersects B j,k (if H does not intersect any of them then we can take either one part of the assumed partition to contain no points of P ). Let H = {h i , h l }. Then, by definition, all the points in A j ∪ B j,k ∪ A k lie in the intersection of halfspaces in H. And in this case of H, H partitions the region defined by the intersection of halfspaces in H into two pieces, with

A + j ∪ B + j,k lying above H, while A - j ∪ A k ∪ B - j,k
lying below H. Using Fact 8 with H and H, we get that edges with endpoints in the following pairs of regions are intersecting H:

(A + j , A k ), (A + j , B - j,k ), (A k , B + j,k
). Similarly H also partitions h i ∩ h k ; setting H = {h i , h k }, the edges with endpoints in following pairs must intersect H: (A l , A - j ), (A - j , B j,l ). Therefore, the following number of edges must intersect 

H: η(H) ≥ α + j • α k + α - j • α l + α + j • β - j,k + β + j,k • α k + α - j • β j,l . From Claim 4.2, it follows that η(H) ≥ τ -3τ 2 . A j B j,k A k hi hl hj h i h l A + j A - j B + j,k B - j,k Ak h j 4. Halfplane H partitions h i ∩ h l = A j ∪ B j,k ∪ A k into two parts: A + j ∪ B + j,k lying above H and A - j ∪ A k ∪ B - j,
(A + j , A k ), (A + j , B - j,k ), (A k , B + j,k
). Similarly H also partitions h i ∩h k ; setting H = {h i , h k }, the edges with endpoints in following pairs must intersect H: (A l , A - j ), (A - j , B j,l ). Therefore, the following number of edges must intersect

H: η(H) ≥ α + j •α k +α - j •α l +α + j •β - j,k +β + j,k •α k +α - j •β j,l . From Claim 4.2, it follows that η(H) ≥ τ -3τ 2 . (4.2). Let H = {h i , h l }.
Then, by definition, all the points in A j ∪ B j,k ∪ A k lie in the intersection of halfspaces in H. And in this case of H, H partitions the region defined by the intersection of halfspaces in H into two pieces, with A + j ∪ +A + k ∪ B + j,k lying above H, and A - j ∪ +A - k ∪ B - j,k lying below H. Fact 8 implies that line segments between following pairs of regions are intersecting H: (A + j , A - k ), (A - j , A + k ), (A - j , B + j,k ), (A - k , B + j,k ), (A + j , B - j,k ), (A + k , B - j,k ). Also, setting H = h i ∩ h k , line segments between following pairs must intersect H: (A + j , A l ), (A + j , B j,l ) and setting H = h j ∩ h l , line segments between following pairs must intersect H: (A - k , A i ), (A - k , B i,j ). Therefore, following number of edges must intersect

H: η(H) ≥ α - j • α + k + α + j • α l + α i • α - k + β + j,k • α - j + β - j,k • α + k + α + j • β j,l + α - k • β i,k . From Claim 4.3, it follows that η(H) ≥ τ -3τ 2 .
This completes the proof of Lemma 5. Finally, we complete the proof of Theorem 1: take any set P of n points with Tukey-depth τ n. If τ ≥ 0.285, Lemma 4 gives a point with Line-depth at least (0.285) 2 n 2 /2 ≥ n 2 /24.5. On the other hand, if τ < 0.285, Lemma 5 gives a point with Line-depth at least (0.285 -3(0.285) 2 )n 2 ≥ n 2 /24.5.

Discussion

Relations between data-depth measures in R 3 . For d = 2, we have two fundamental measures: Tukey-depth, and RS-depth. Recall from Fact 1 that any point of RS-depth n 2 /9 has Tukey-depth at least n/3. On the other hand, a centerpoint is not always a point of "high" ray-shooting depth. Consider the example in the figure 5. The centerpoint c in the figure has ray-shooting depth at most n 2 /18 + 6n. It can be shown that this is the worst possible example -that a centerpoint always Proof. It is enough to show that there are at the least acclaimed number of edges meeting an arbitrary ray ρ from the centerpoint c. Since a point in S contributes at most n -1 edges, we may assume that ρ meets a point s 1 . Let the points in S = {s 1 , s 2 , . . . , s n } be ordered radially around c in the counter-clockwise order. Translate and rotate the point set so that c is the origin and s 1 lies on the positive horizontal axis. Let i be the line through c and the point s i -so 1 is the horizontal axis with at least n/3 points above and at least n/3 points below. Note that for a point s i with i ≤ n/3 and a point s j with j ≥ n -(n/3i), the edge s i s j meets the ray ρ. This is because there are at least n/3 points to the right of the line i . And at least n -(n/3i) of them lie below ρ. There are at least (n/3i) edges for each s i with i ≤ n/3 that meet ρ. Therefore the number of edges meeting ρ is more than

n/3 i=1 (n/3 -i). The claim follows.
So there is a hierarchy for d = 2. Is such a similar property true for R 3 ? Speculation 10. Let q be a point with RS-depth (n/4) [START_REF] Kenneth | Approximating center points with iterative Radon points[END_REF] . Then q has Line-depth at least (n/4) 2 . Similarly, let q be a point with Line-depth (n/4) 2 . Then q has Tukey-depth at least (n/4).

Unfortunately, the hierarchical structure that is present in R 2 is not true in R 3 . Claim 5.1. There exists a set of points P and a point q such that q has Line-depth Proof. To prove this statement we will construct one such set of n points and a point q with claimed bounds on its line-depth and Tukey depth. Our pointset P has two parts A and B with |A| = 3n/4 and |B| = n/4. We place the points in A around the origin at regular distance in the unit radius circle in the XY -plane with z = 0. Similarly the points in B lie in a circle of small enough radius r > 0 around the point (0, 0, 1) at regular distance in the plane z = 1 d . We fix q to be the midpoint on the line segment between the centers of these two circles i.e. q = (0, 0, 1/2). It is easy to see that the Tukey depth of q is at most n/4.

We want to show that for any halfplane H through q there are at least (1/16 + 1/128)n 2 edges incident on the pairs of points in P that intersect H. The halfplane H is defined by a supporting line and a direction δ. By symmetry of points in A and B we can assume, without loss of any generality, that the line lies on XZplane and that the direction δ lies in the positive Y halfspace. For a point u in the three dimensional space we use x(u), y(u), z(u) to represent x, y, and z coordinates of u respectively. We write ch(A) and ch(B) for respective convex hulls of the points in A and B. For a set Q of points π(Q) denotes the plane through Q whenever Q defines a unique such plane. Unless a halfplane misses both the convex hulls (which is described in Case 1), its supporting line may or may not intersect ch(B). The scenario when it does intersect ch(B) is described in Case 2 below. We divide the case when it does not intersect ch(B) into further subcases based on whether intersect ch(A) or not.

Case 1: H intersects neither ch(A) nor ch(B).

It is easy to see that for all a ∈ A in positive Y halfspace (i.e. y(a) ≥ 0) and for all b ∈ B edge ab meets H. We have

η(H) ≥ n 4 × 3n 4 × 1 2 = 3n 2 32 
As a matter of fact the number of the edges intersecting H is exactly 3n 2 32 in this case.

Case 2: The supporting line passes through ch(B).

Since the points in B are placed in a small enough circle we have that the line passes very close to the origin i.e. the euclidean distance between origin and the closest point on is at most r . Among all the edges that are incident on a pair of d Any r < 2π 3n/4 will work but for simiplicity assume r is arbitrarily small vertices in A only a linear (in number of points in A) number of them pass through any circle of randius r around origin . That is because for each point a in A there are at most 4 points a such that the edges of the form aa intersect such a circle due to the small choice of r . Since a halfplane passing through q and origin is intersected by 1 2 × 3n 8 × 3n 8 edges with both endpoints in A, in this case we have that

η(H) ≥ 3n 8 × 3n 8 × 1 2 -cn = 9n 2 128 -cn Above c ≤ 2.
For the rest of the proof we will assume that the supporting line does not pass through ch(B). In Case 3 and Case 4 we describe the scenario when does not intersect ch(A) either. And then for Case 5 and Case 6 we assume that the supporting line does pass through ch(A). And let e be the point where meets the XY -plane. Without loss generality assume that x(c) ≥ 0, x(d) < 0, and x(e) < 0. Note that e lies on the segment cd, and the segment ce lies in H. When k > 3/16 the length of the segment ce is more than half of the length of cd. There are i×(3n/4-i) edges with both endpoints in A that intersect cd where i is the number of points in A that lie above π(H). We know that kn ≤ i ≤ 3n/8. Since the segment ce has more than the half of the length of the segment cd, by symmetry of the points in A more than half of those edges meet H. Also edges with one endpoint in B and other in A 2 intersect H. We have Total number of the edges interesting H is at least (1/16 + 1/128)n 2 in both cases.

Case 6: The supporting line intersects ch(A), H intersects ch(B) but does not intersect ch(B).

By symmetry of points in A and B we may assume that intersects the plane z = 0 in the negative X halfplane i.e x( ∩ {p ∈ R 3 : z(p) = 0}) < 0. Since passes through the point q at z = 1/2, this implies that intersects the plane z = 1 in the positive X halfplane. Also notice that as H intersects B, the direction δ of H can also be assumed to lie in the negative X half of the plane z = 0. Let A := A ∩ {(x, y, z) : y ≥ 0} i.e. the points in A that lie in the positive Y halfspace. 
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  d , there exists a point lying in c d • n d+1 simplices, where c d is a constant that depends on the dimension d. The determination of the exact value of c d is a long-standing open problem. Bárány 14 proved that c d ≥ 1 d!(d+1) d+1 . Bárány's bound was improved to d 2 +1

Fig. 1 .

 1 Fig. 1. (a) Converting γ to piecewise linear, (b) Illustration for Lemma 3.
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Fig. 5 .

 5 Fig.5. Two thirds of the points are arranged on a unit circle around a point c so that the line through the pair (s i , s 2n 3 +i ) also passes through c for all 1 ≤ i ≤ n/3. Clearly c is a centerpoint but c doesn't have "high" ray-shooting depth as the ray ρ starting at c intersects at most n 2 /18 + 6n edges.

Fact 9 .

 9 Given a set of points S in the plane any centerpoint c has ray-shooting depth more than n 2 /18 -O(n).
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Fig. 6 .Case 5 :

 65 Fig. 6. Figure(a) on the left illustrates Case 3 when H partitions A into A 1 and A 2 . Similarly figure(b) on the right illustrates Case 4 when H partitions B into B 1 and B 2 .

η(H)/n 2 ≥ 1 / 2 ×Fig. 7 .

 2127 Fig. 7. Case 5: The plane π(H) meets the circle through the points in A at c and d. There are i × (3n/4 -i) edges meeting cd; at least half of those edges meet ec where n/4 < i < n/2.

  H partitions the points in A into two sets: A 1 lying below H and A 2 lying above. Similarly H partitions B into B 1 lying below H and B 2 lying above. Let |A 1 | = kn and |A 2 | = (3/8k)n. Due the small choice of r , the radius of circle that contains B, it must be that |A 1 | ≤ 2. Also with |B 1 | = jn and |B 2 | = (1/4j)n, it must be that |B 1 | > n/8. All edges with one endpoint in A 1 ∪ B 1 and the other endpoint in A 2 ∪ B 2 meet H. Also all the edges with one endpoint in B 2 and the other endpoint in A \ A meet H. We have η(H) ≥ jn × ( the d = 2 case where a point of high RS-depth has a cor-August 10, 2015 17:27 WSPC/Guidelines k-centers k-centerpoints Conjectures for Pointsets in R d 23 respondingly high Tukey-depth, the three measures in R 3 do not have any such hierarchical relation.

  Conjectures for Pointsets in R d 11direction with the axis of rotation as the bounding line of H. Sort points in P by the order in which they intersect this rotating half-plane, i.e., p 1 is the first point to be hit. Call the half-plane through p i as H i , and the plane containing H i as G i . Let H + i be the halfspace defined by G i such that H ⊆ H + i . H partitions H +
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Starting from H, rotate a half-plane in one

  -centerpoints Conjectures for Pointsets in R d 17Case 4. (H intersects A but the supporting line doesn't). Since supporting line does not intersect A, it must intersect B. Without loss of any generality, passes through B i,j and B k,l and H intersects A j . In this case H may also intersect B j,k or B j,l but not both. Again without loss of generality H intersects B j,k (if H does not intersect any of them then we can take either one part of the assumed partition to contain no points of P ). There are two possible subcases (4.1) H intersects only one of A j and A k and (4.2) H intersects both of A j and A k .(4.1). Without loss of generality H only intersects A j . Let H = {h i , h l }. Then, by definition, all the points in A j ∪ B j,k ∪ A k lie in the intersection of halfspaces in H. And in this case of H, H partitions the region defined by the intersection of halfspaces in H into two pieces, with A + j ∪B + j,k lying above H, while A - j ∪A k ∪B - j,k lying below H. See Figure4. Using Fact 8 with H and H, we get that edges with endpoints in the following pairs of regions are intersecting H:

k lying below H. k-centers k

  Case 3: H intersects ch(A) but the supporting line doesn't. Note that H can't intersect ch(B) in this case. Let H partition the points in A into two parts A 1 lying above and A 2 lying below H. All edges with one endpoint in A 1 and the other endpoint in A 2 meet H. Similarly all edges with one point in B and other in A 2 lying in positive Y halfspace meet H too. If there are kn points in A 1 Let H partition the points in B into two parts B 1 lying above and B 2 lying below H. All edges with one point in B 1 and other in A lying in the negative Y halfspace meet H. And all the edges with one point in B 2 and other in A lying in positive Y halfspace meet H as well. If there are kn points in B 1 then we can assume that 0 ≤ k ≤ 1 8 . We have
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	8 . We have then we can assume that 0 ≤ k ≤ 3 η(H) ≥ kn × ( 3 4 -k)n + (	3 8	-k)n ×	n 4
	=	3n 2 32	+	2n 2 k 4	-n 2 k 2
	=	3n 2 32	+ kn(n/2 -kn) ≥	3n 2 32
	Case 4: H does not intersect ch(A), intersects ch(B) and the
	supporting line doesn't intersect ch(B).
	η(H) ≥ kn ×	3n 8	+ (	1 4	-k)n ×	3n 8
		=	3n 2 32		
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c We call a pair of regions as neighbors (to each other) if exactly one halfspace h i separates points in one region from the points in the other region.
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