N Bus

N H Mustafa
email: mustafan@esiee.fr

V Biri
email: biri@u-pem.fr

Global Illumination Using Well-Separated Pair Decomposition -PREPRINT

. In this work we use the notion of geometric separatedness of point sets as a basis for a data structure for pre-computing and compactly storing a set of candidate VPL clusterings. Our data structure is created prior to rendering, is view-independent and relies only on geometric and radiometric information. For any point to be shaded, we show that a suitable clustering of the VPLs can be efficiently extracted from this data structure. We develop the above framework into an accurate and efficient clustering algorithm based on well-separated pair decompositions which outperforms earlier work in speed and/or quality for diffuse scenes.

Introduction

Several methods have been proposed to solve the global illumination problem, towards the ultimate goal of efficient and realistic rendering of large scenes in the presence of varied and complex lighting effects. Pure unbiased Monte Carlo algorithms such as Metropolis light transport [START_REF] Veach | Metropolis light transport[END_REF] or simple bidirectional path tracing [START_REF] Veach | Bidirectional estimators for light transport[END_REF] are considered to be gold standards for reference solutions. However they produce noisy results that are slow to converge in the case of complex scenes. Biased algorithms like Photon Mapping [START_REF] Jensen | Realistic image synthesis using photon mapping[END_REF], point-based global illumination [START_REF] Christensen | Point-Based Approximate Color Bleeding[END_REF] or the many-lights methods, such as Instant Radiosity [START_REF] Keller | Instant radiosity[END_REF], provide good performance in many practical applications.

The last method and its improvements have proven to be very useful for approximating global illumination. By tracing light paths from light sources, they create virtual point lights (VPLs) at the intersections of the surface of the scene and the paths. Global illumination is estimated by computing the direct illumination from all of the VPLs (we refer the reader to the SIGGRAPH 2012 course notes on the many- lights problem [KHA * 12] and to the EG state-of-the-art report [DKH * 13]). Despite some limitations, they provide a unified and scalable approach to the problem of computing global illumination. However, as the number of VPLs needed for a good-fidelity approximation is large, computing the illumination for each point by summing up the contribution of each individual VPL can become prohibitively expensive.

Clustering in the many-lights method. Let S be the set of VPLs, henceforth considered the set of input lights and P be the set of points to be shaded, i.e., points in the scene hit by the rays traced for all the pixels. One key idea for speeding up computations is to cluster the VPLs. In other words, for each point p ∈ P, partition S into a small number of clusters (each partition of S into clusters is called a clustering of S), and then consider each cluster as a single VPL when calculating its contribution to the shading at p.

The goal is to compute, for each p ∈ P, a clustering that minimizes the shading error at p. See Figure 1 for the image produced by our clustering algorithm as well as the differ-ence from the reference image. This forces all algorithms to be adaptive, i.e., as one iterates over all the points to be shaded, the clustering has to be recomputed again with respect to the spatial and radiometric properties of each point (though various improvements are possible, at a loss of quality, by exploiting spatial coherence to re-use previous computation).

As the set S of VPLs is view-independent, an idea that improves efficiency is to compute the set of all possible candidate clusters of S before the rendering computation (and store in some hierarchical structure). Then during rendering, a clustering for each point is selected by choosing an appropriate subset of clusters from this pre-computed set. This is an expensive task which forces examining a large number of clusters (again, this can be somewhat ameliorated by exploiting the spatial coherence between neighboring pixels). This has been the basis of previous work; two well-known examples are Lightcuts [WFA * 05] and Light-Slice [START_REF] Ou | Lightslice: matrix slice sampling for the many-lights problem[END_REF].

Our Contributions. We consider our main contributions to be two-fold. First, we make the next logical step in the many-lights clustering paradigm: rather than precomputing a set of individual candidate clusters from which clusterings are computed during rendering, we pre-compute a number of clusterings of S. Then, during the rendering phase, the clustering for a point p can simply taken to be one of these pre-computed clusterings, together with some minor modification. Our data structure stores the clusterings compactly, it is view-independent and computed prior to rendering. This results in a very efficient rendering phase. For a very natural criterion of clustering, we show that

• the total number of these pre-computed clusterings will be independent of the number of points in P to be shaded and will only depend on the size of S.

• the modification required for each point will be provably small; in fact it will be independent of the size of S or P.

Second, we develop the above framework into an accurate and efficient new many-lights clustering method. It computes a clustering relying on geometric and radiometric data for fast and accurate computation. We show that the complexity of our scheme is largely invariant on geometric scenes, and it is easily scalable with the number of VPLs.

We prove theoretical guarantees as well as experimentally validate the computational efficiency of our scheme, contrasting it with two of the most well-known earlier systems, Lightcuts [WFA * 05] and LightSlice [START_REF] Ou | Lightslice: matrix slice sampling for the many-lights problem[END_REF]. In particular, the advantages of our work include:

• Our pre-computation phase is view-independent, and so are the pre-computed clusterings. Unlike LightSlice and Lightcuts, this allows our algorithm to re-utilize computation with changing camera position.

• As all the clustering computations are moved to the pre-computation phase, the rendering phase takes constant time for each p ∈ P, i.e., independent of the number of VPLs. On the other hand, Lightcuts has to maintain a heap and do clustering computations. Our method is able to produce similar output as Lightcuts with around 3 times average speedup.

• It outperforms LightSlice in speed and quality, achieving, e.g., 2 times speedup with consistently better quality. The errors of our algorithm are smooth, and visually difficult to detect, unlike for LightSlice which suffers from visible blocking effects.

• It also uses a significantly lower amount of memory than LightSlice which requires around 30 GB for scenes with around 0.5 million VPLs while our algorithm runs with 5 GB. This allows the usage of a considerably higher number of VPLs for rendering.

Broadly our work shows that the set of VPLs itself contain enough information such that with intensive preprocessing, a geometrically good clustering can be constructed for each point p ∈ P with provably little effort.

Organization. In Section 2 we review previous work on global illumination with the many-lights method. After preliminaries in Section 3, we present the novel ideas involved in our approach in Section 4. Theoretical details on our clustering representation and computation follow in Section 5. Section 6 describes additional structures to further improve the clustering. Extensive experimental results and comparison with previous work are presented in Section 7. Finally, limitations and future work is discussed in Section 8. Appendix 10 contains all the formal proofs of the statements stated in the paper.

Previous Work

Many-lights rendering techniques estimate global illumination using VPLs. In Instant radiosity [START_REF] Keller | Instant radiosity[END_REF], the original many-lights technique, each point is shaded using all VPLs. Since then, many improvements have been made to avoid the limitations such as clamping and diffuse-only global illumination. Further efforts to optimize the computation include carefully placing the VPLs, speeding up visibility computation or selecting a subset of the VPLs to use for each shaded point.

Real-time techniques. Approximate global illumination can be done in real-time with incremental selection of the VPLs [LSK * 07], quick shadow computations and deferred shading [RGK * 08] or using simple scene descriptors [START_REF] Holländer | Manylods: Parallel many-view level-of-detail selection for realtime global illumination[END_REF]. Clustering VPLs into area lights for realtime GPU based rendering has been proposed in [START_REF] Prutkin R | Reflective shadow map clustering for real-time global illumination[END_REF]. [START_REF] Segovia | Bidirectional instant radiosity[END_REF] uses stochastic sampling of VPLs to achieve interactive frame rates. Our method has different scope from all these approaches since it is designed to handle significantly larger number of VPLs.

Avoiding limitations. Several limitations of VPL-based algorithms can be addressed, e.g., clamping [START_REF] Kollig | Illumination in the presence of weak singularities[END_REF] or diffuse only surface BRDFs by using virtual spherical lights [START_REF] Hašan | Virtual spherical lights for manylight rendering of glossy scenes[END_REF] (VSL) or Rich-VPLs [START_REF] Simon | Rich-VPLs for improving the versatility of many-light methods[END_REF]. To cope better with highly glossy material [START_REF] Řivánek | Effects of global illumination approximations on material appearance[END_REF], Davidovič et al. [DKH * 10] use row-column sampling combined with adaptive raycasting. Bidirectional lightcuts [START_REF] Walter | Bidirectional lightcuts[END_REF] or specular gathering [START_REF] Dammertz | Progressive point-light-based global illumination[END_REF] combine path tracing and VPL techniques, therefore extending the range of materials and effects. As those algorithms still rely on the classical clustering of VPLs, our technique is complementary to theirs.

VPL generation can also be optimized by sampling VPLs based on their overall image contribution [START_REF] Georgiev | Simple and Robust Iterative Importance Sampling of Virtual Point Lights[END_REF]. This importance-driven VPL sampling can be further improved [GKPS12] using a sparse set of locations storing probability distributions derived from accurate lighting. Compared to light clustering implementations, sampling introduces unstructured noise. [START_REF] Segovia | Metropolis Instant Radiosity[END_REF] samples the VPLs using a modified Metropolis-Hastings algorithm [START_REF] Veach | Metropolis light transport[END_REF].

Optimization via clustering. Thousands of VPLs are needed for photo-realistic rendering and therefore, given a point to be shaded, a careful grouping of the VPLs can improve efficiency. This leads to clustering strategies such as Lightcuts [WFA * 05] where VPLs are grouped together in light clusters and organized in a tree. This tree is then adaptively searched to extract pertinent VPL clusters for global illumination estimation for each point. This adaptivity works especially well for local lighting but tends to oversample occluded lights. This method has been further generalized by building a tree of the shaded points to further minimize the cost of shading [START_REF] Walter | Multidimensional lightcuts[END_REF][START_REF] Bus | Illumi-nationCut[END_REF].

Hašan et al. [START_REF] Hašan | Matrix row-column sampling for the many-light problem[END_REF] were the first to study the light transport matrix, where each row of the matrix represents a point to be shaded and each column represents a VPL. After sampling a small set of matrix rows to form a reduced matrix, they cluster the columns according to this matrix. Then each point is shaded using representatives of these clusters. It captures greatly the global lighting but fails to handle very local lighting and suffers from the inherent flaws of the shadow mapping algorithm as observed by Ou and Pellacini [START_REF] Ou | Lightslice: matrix slice sampling for the many-lights problem[END_REF], who further studied the light transport matrix. They built LightSlice, a technique that creates matrix slices using a clustering of image pixels based on their geometric proximity. Then these slices are sampled to create a reduced matrix and compute a global clustering of VPLs. This clustering is then refined for each slice based on the sample of the given slice and its neighboring slices in an attempt to capture the local structure of the matrix. Their solution has a prohibitively big memory consumption and shows block artifacts.

Preliminaries

We use similar notation as in Lightcuts [WFA * 05]. The radiance for a point p ∈ P in direction ω caused by the direct contribution of the lights in S is denoted by L(p, ω). It is a function that sums up over all lights the product of the material, geometry, visibility and intensity terms, where each product represents the radiance caused by a single light:

L(p, ω) = ∑ s∈S M s (p, ω) • G s (p) •V p (s) • I s (1) p s θ ω N p ω β N s φ
Here I s is the intensity of the light s while the geometric term G s (p) captures the light attenuation. The VPLs are spotlights having a direction N s , and therefore G s (p) = cos(φ)/d(p, s) 2 , where d(p, s) is the Euclidean distance between p and s, and φ is the angle between N s and the vector ps. The material term M s (p, ω) is the BRDF which depends on the local geometry and material at p. We will use Lambertian and Phong BRDFs, which only depend on the angles θ and β. The former is the angle between the surface normal N p and the light direction sp and the latter is the angle between ω (the view direction ω reflected on N p) and the light direction. V p (s) denotes the visibility of p from the light s.

For a cluster C ⊆ S, let rep(C) denote a representative light s ∈ C. Then the radiance at p from lights in C with representative rep(C) can be approximated as:

L C (p, ω) = M rep(C) (p, ω) • G rep(C) (p) •V p (rep(C)) • ∑ s∈C I s (2) Let C = {C 1 , . . . ,C k } denote a clustering of S into k clusters.
The radiance at P from all the lights in S can be approximated as: p, all the points in each cluster behave roughly like a single point. Figure 3 illustrates this for an arbitrary point p, shaded bright green, a few of the ws-clusters of S around it. Note that as the ws-cluster's distance to p decreases, the well-separated criterion automatically ensures that the radius of the cluster decreases as well. Our goal is to compute a ws-clustering of S for each point p to be shaded during the rendering phase.

L C (p, ω) = ∑ C∈C L C (p, ω) (3
Our approach has two main components: first we propose a method to pre-compute and compactly store several wsclusterings of S. Then during rendering, we show how to quickly extract a ws-clustering for each point to be shaded using this pre-computed structure. This pre-computed clustering will then be slightly modified to fit the spatial properties of the shaded point. We sketch the main components of the system in Figure 2, and outline them below.

Pre-compute clusterings

The computation of ws-clustering for each point p is dependent on spatial properties of p, and requires individual computation during rendering for each point, an expensive task. Instead, we will do the following in a view-independent prerendering phase: compute a ws-clustering of S with respect to each light s ∈ S. In other words, for each light s in S, compute the partition of the remaining lights into clusters satisfying the well-separatedness criterion. The key to this construction will be the use of a partitioning data-structure, the well-separated pair decomposition [START_REF] Callahan | A decomposition of multidimensional point sets with applications to k-nearest-neighbors and n-body potential fields[END_REF] (henceforth denoted as WSPD). These ws-clusterings will be stored implicitly in a compact structure from which the ws-clustering for any light s ∈ S can be extracted quickly.

Well-separated clusters approximate the geometric terms of the rendering equation, but ignore visibility and material properties. To adjust for this, we will further compute two additional structures in this pre-processing phase. First, we further group the lights in each ws-cluster C into a small number of subgroups by similar light normals. This additional grouping will be used to evaluate the illumination from the cluster more precisely. Second, we introduce representative lights that approximate local visibility for each ws-cluster C as follows: sample a number of directions and compute the illumination of the lights in C reaching the boundary of the ball b(C) in the sampled directions, where b(C) is the smallest-ball containing C. This will be used to estimate the visibility of the lights in C to b(C); the visibility test from b(C) to p will be performed during the viewdependent rendering phase.

Retrieve ws-clustering

During the rendering computation, for an arbitrary point p, find the closest point in S to p (an approximate nearestneighbor is sufficient and will be used), and start with its (pre-computed) clusters as the clustering for p. Furthermore, refine each cluster by subdividing it into new clusters until they are well-separated from p. The number of clusters required to achieve this ws-clustering criteria could potentially be quite high, for two reasons: i) the clustering for the closest point in S to p could have many clusters, and ii) refinement could add many more new clusters to this initial clustering. It will be shown that refinement can only add a constant number of new clusters for any point p. This constant is provably independent of the number of lights in S or points in P. Also, under some basic assumptions on the geometry of scenes, we will show that the average size of a ws-clustering for points of p will be logarithmic in the size of S. Experimental evidence will confirm this behavior.

Calculate L(p, ω)

Let C p = {C 1 , . . . ,C k } be the final constructed ws-clustering for p ∈ P during rendering. Furthermore let {C 1 i , . . . ,C k i i } be the k i subgroups of each C i by similar light normals. From a single subgroup C j i of C i ∈ C p , we compute:

L C j i (p, ω) = M rep(C j i) (p, ω) • G rep(C j i) (p) • ∑ s∈C j i I s (4)
Then we approximate the illumination at p from the cluster C i ∈ C p as:

L C i (p, ω) = k i ∑ j=1 L C j i (p, ω) •V p (∂(b(C i))) • R(C i , p) (5)
where A well-separated cluster. We introduce a necessary condition that each cluster must satisfy when constructing a clustering of S w.r.t. a shaded point p -namely that it is well-separated from p, for a given parameter 0 ≤ ε ≤ 1 (ε will be called the separation parameter).

V p (∂(b(C i)))
Definition 5.1. A cluster of lights C is well-separated from a point p if r(C) < ε • d(p,C
), where ε is the separation parameter.

The lights in a ws-cluster w.r.t. p are 'far enough' from p, and concentrated in a small ball (see Figure 4). This condition implies that from the point of view of p, all the lights in a ws-cluster are in a similar direction and the distances of p to the lights in C are approximately the same. Since the luminosity reaching p depends on the angle and the distance of lights in S from p (differences regarding visibility and light normals will be accounted for later in Section 6) it can be argued that treating all the lights in a ws-cluster as one point does not introduce significant error. This intuition is captured in the following theorem:

Theorem 5.1. For a point p and a ws-cluster C ⊆ S, assume that all lights in C face in the same direction and they have the same visibility from p. Then the error from representing C with any one light in C (which has the cumulative intensity summed over all the lights in C) is bounded by a function depending only on ε. In case the point to be shaded has Lambertian BRDF, it is

|L(p, ω) -L C (p, ω)| = O(ε) ∑ s∈C I s d(p, s) 2 (6)
where L(p, ω) denotes the exact illumination from lights in C.

Proof is in the Appendix.

To compute ws-clusterings efficiently, we will need to use a basic structure in the theory of geometric computing, the well-separated pair decomposition.

Well-separated pair decompositions. We first need to extend the notion of well-separatedness between a point and a cluster to that of between two clusters. Two point sets R and Q are well-separated from each other if, for a given separation parameter ε > 0, the radius of both the balls b(R)

and b(Q) is smaller than ε • d(R, Q), i.e., max(r(R), r(Q)) < ε • d(R, Q) where d(R, Q) is the distance between b(R) and b(Q).
Definition 5.2. A well-separated pair decomposition of S for a given separator parameter ε is a list of pairs of clusters

{{R 1 , Q 1 } , . . . , {R s , Q s }}, where each R i , Q i ⊆ S, and
i) for every pair of points p, q ∈ S, there is a unique index i such that p ∈ R i and q ∈ Q i , and

ii) for all i = 1 . . . s, the clusters R i and Q i are wellseparated from each other, with separation parameter ε.

Here s is called the size of the WSPD. See Figure 5 for some example pairs {R i , Q i } for a point set in two dimensions. A remarkable fact about WSPDs is that there 2.5× zoom Recall that the set of VPLs S was placed on the surface of objects by tracing random light particles from the light sources. The geometry of graphics scenes is usually such that it satisfies a technical geometric condition. Namely, that if the three-dimensional space was partitioned into equal-sized cubes of size δ, the boundary of scene objects would intersect on average O(ε -2) cubes in a ball of radius δ/ε (note that there are Θ((δ/ε) 3 δ 3) = Θ(ε -3) cubes in a ball of radius δ/ε). Figure 6 shows that, for a variety of scenes, the average number of cells containing VPLs within a ball of radius δ/ε in our octree behaves more like O(ε -2) than O(ε -3). This implies better than cubic dependency on 1/ε of WSPD sizes in three dimensions, since the proof [START_REF] Callahan | A decomposition of multidimensional point sets with applications to k-nearest-neighbors and n-body potential fields[END_REF] uses a trivial cubic upper bound for non-empty cubes of size δ within a ball of radius δ/ε. Experimental results confirm this: Figure 7 plots, for several scenes, the ratio of the WSPD size for varying separation parameter ε to WSPD size for separation parameter 1. Observe that the behavior of the WSPD is relatively unchanged from one scene to the next.

ε 5 • ε -3 25 • ε -2 Conference Museum Sibenik San Miguel
|W SPD(ε)| |W SPD(1)| ε ε -2 Conference Museum Sibenik San Miguel
Constructing well-separated pair decomposition of S. We use a compressed octree of S as an underlying data structure to compute the initial ws-clusters for S, to find approximate nearest neighbors, and for the local refinement for each point p during the rendering computation. The compressed octree is an octree where the non-branching paths are contracted into one edge. The compressed octree can be directly computed in linear time [START_REF] Samet | Spatial data structures[END_REF]. Each node corresponds to an axis-aligned bounding box. We associate with each node the set of VPLs of S contained in its bounding box. Note that each leaf of the octree contains exactly one unique point of S. For a node w, denote by R w the corresponding set of VPLs. Note that the height of the octree is linear in the worst-case, though in practice it is logarithmic. In Table 1 we show the depth of the tree for 300K VPLs, which is logarithmic for a variety of scenes. After constructing the compressed octree, Algorithm 1 computes the WSPD of S by utilizing a top down search on the tree for ws-pairs. Two nodes w, v of the octree will form a ws-pair if the corresponding sets R w , R v are wellseparated. Note that instead of simply storing all the pairs of the WSPD as a list, we directly store the WSPD structure in the octree by storing, for each node w of the octree, a list of pointers to all the other nodes with which w forms ws-pairs in the WSPD. We denote this list by pairs(w). In Figure 8 end for 13:

Tree depth

return C p 14: end function

p 2 ∈ Q. Therefore C s = {Q | {R, Q} is ws, s ∈ R} is a ws- clustering of S for s.
If the WSPD has been computed, then a ws-clustering for each point s ∈ S can be extracted from it efficiently, as follows. Consider the leaf node of the compressed octree corresponding to s. Any node w of the octree on the path from this leaf to the root has s ∈ R w , and so the ws-clustering of s is simply the union of pairs(w) for all such nodes w, and can be computed by traversing the octree from this leaf to the root. Computing ws-clusterings of P during rendering. We now show how to use the clusterings C s , pre-computed for each s ∈ S before the rendering phase, to quickly compute a ws-clustering of S with respect to any point p ∈ P.

Consider the case for an arbitrary point p ∈ P. Compute the closest light, say s ∈ S, to p. One could use a variety of known optimal algorithms, but for us an approximation will suffice. We find the smallest node of the compressed octree containing p and return an arbitrary light contained in it. A calculation shows that for randomly shifted octrees, the expected distance from the true nearest neighbor is bounded. Point location in a compressed octree takes O(log n) time with some additional data structures, but for us the naive implementation suffices as the tree has logarithmic depth (see Table 1).

Say s is at distance d from p. Take the ws-clustering C s of s. These were pre-computed, and can be efficiently retrieved. The key idea now is to consider two types of clusters in C s separately: far clusters in C s are at distance further than d/ε from s and close clusters are those closer than d/ε from s. We show that each far cluster in C s is an approximately ws-cluster from p. For the remaining close clusters in C s , we recursively subdivide them until they are ws-clusters from p. The subdivision uses the same octree that was used for the construction of the WSPD. See Algorithm 2. Note that the above algorithm is adaptive to the local geometry of the scene: for a point p closely surrounded by VPLs, it will refine at a smaller radius.

We now prove that the clusters far from s are approximately ws-clusters from p.

Lemma 5.1. Let p be an arbitrary point and s be its nearest-neighbor with d(p, s) = d. Any ws-cluster C o ∈ C s disjoint with the ball of radius d ε around s is approximately well-separated from p, namely it is well-separated with separation parameter ε = ε 1-ε .

Proof is in the Appendix.

We next prove that the additional number of clusters added in the refinement of a cluster close to s is low. Proof is in the Appendix.

While the above theorem may be surprising at first glance, we hope the following intuition sheds some light: consider the distance of the closest point s ∈ S to p. If this distance is small, then it is not hard to argue that the clusters for the closest light provide a good approximation of the clustering for p, and so little refinement is necessary. On the other hand, if this closest distance is large, then all points of S are 'far' from p, and so any ws-cluster from s is far from p and thus approximately well-separated from p; again little refinement is needed to approximate the separation (and thus illumination). This intuition is formalized in the proof of the theorem. For empirical validation, see Cluster sizes. We have proved that the clustering stored in the WSPD can be used to retrieve clustering for arbitrary points without increasing the number of clusters more than an additive constant. It remains to argue that the initial clustering for every light s ∈ S is compact. While one can construct examples of arbitrary points where the average number of ws-clusters for a point p is linear (as a function of |S|), those are never realized in practice for the set of lights arising in geometric scenes. The spatial partitioning structures (octrees) turn out to be roughly balanced, and so the number of ws-clusters is logarithmic.

Additional structures for illumination computation

We enhance the purely geometric WSPD based clustering with the following additional structures that improve the efficiency and accuracy in calculating illumination. Recall that given a ws-clustering C p for p, for a ws-cluster C i ∈ C p , the approximation of the radiance with a single representative has the form:

M rep(C i) (p, ω) • G rep(C i) (p) •V p (rep(C i)) • ∑ s∈C i I s . (7)
Clustering refinement by direction. The WSPD data structure is able to efficiently bound angles and distances between points. However, the normals of the lights could vary widely in directions. To overcome this difficulty, the lights in each ws-cluster are grouped into a few subgroups with similar normals. For a ws-cluster C i , construct the subgroups C 1 i , . . . ,C k i i , where all the lights in each C j i , j = 1 . . . k i , will have similar normal directions. The approximation then becomes

L C i (p, ω) = k i ∑ j=1 L C j i (p, ω) •V p (rep(C i)) (8)
where c j+1 ← q, where q has largest d q value 7:

L C j i (p, ω) is defined in Equation 4.
j ← j + 1 8: largestDistance ← d q 9:
end while 10:

For each l, C l i ← {s ∈ C i |l = arg min k< j d(s, c k)} 11: end function ing the shading of a point p ∈ P, as before, visibility test will still be performed once for each ws-cluster of p. However, the radiance L C i (p, ω) for a ws-cluster C i will be calculated by summing up the radiance contributions separately for each subgroup C j i of C i , using the normal of the center light for each subgroup. The distance d(s, c j) used in the algorithm is the Euclidean distance with threshold set to 0.01, which did not result in too many subgroups on average (see Table 3). The number of subgroups is slightly higher for more complex scenes and decreases with ε since the clustering becomes more fine. As stated in Theorem 5.1, without taking into account visibility differences, a ws-clustering with a single representative and clustered normals gives a good approximation to L (as a function of ε). The visibility computation for a wscluster C i will be divided into two parts: a simple shadow test from p to the boundary of the ball of C i for the outside visibility and then shadow testing from the boundary to each light for visibility inside the ball of C i . Here again the geometric well-separated property of the ws-clustering comes in useful, as the angles from p to C i are bounded (as a function of ε). We use a new approximation for L(p, ω), to better handle visibility:

Scene

L C i (p, ω) = k i ∑ j=1 L C j i (p, ω) •V p (∂(b(C i))) • R(C i , p) (9)
R(C i , p) is the proportion of the summed intensity of the lights in C i reaching the boundary of the ball b(C i) in the direction of p from the center of b(C i).

R(C i , p) = ∑ s∈C i V p (s, ∂(b(C i))) • I s • cos φ s ∑ s∈C i I s • cos φ s (10
)
where V p (s, ∂(b(C i))) denotes the visibility from s to the boundary of the sphere in the direction from the center of b(C i) to the shaded point p and φ s is the angle between the same direction and the normal of the light. Note that as ε → 0, equation 9 converges to L(p, ω). Since computing R(C i , p) during rendering would be expensive, we do the following in the pre-processing phase. For each cluster C i and for a small uniform set of directions on ∂b(C i), R(C i , p) is pre-computed and stored in a cubemap (with a resolution of 6×6 on each side). This enables quick lookup of R(C i , p) for p. During the rendering of a point p, nearest-neighbor interpolation on the cubemap yields R(C i , p). A shadow test to ∂b(C i) gives the V p term.

High intensity clusters. To further minimize the error coming from a badly chosen representative for high inten-sity clusters we limit the radiance from each cluster (by further refining the cluster if necessary) to be less than 1% of the radiance received by a pixel. This refinement happens at the pre-processing phase only using approximate intensities between the cluster pairs.

Results and discussion

In this section we present the experimental results on several scenes of varying complexity. Timings are for a workstation equipped with two Xeon X5570 processors each with 4 cores running at 2.93GHz and with 32 GB of memory. We compare our algorithm with two well-known methods: Lightcuts [WFA * 05] and LightSlice [START_REF] Ou | Lightslice: matrix slice sampling for the many-lights problem[END_REF]. The authors of LightSlice have made their code publicly available, which also includes an implementation of Lightcuts.

In order to do fair comparisons between all three methods, we have ported their implementation of LightSlice (and Lightcuts) into the ray-tracing system INTEL EM-BREE [START_REF] Woop | Embree ray tracing kernels for cpus and the xeon phi architecture[END_REF] without modifying the core of the algorithms. Our code is also written to use Embree as its raytracing engine.

Unless otherwise stated, we run LightSlice and Lightcuts with similar parameters as used in [START_REF] Ou | Lightslice: matrix slice sampling for the many-lights problem[END_REF]: Lightcuts error bound is set to 1% and unbounded the maximum cut size. In order to compare our method to Lightcuts with the parameters set as in [WFA * 05], we include results with 2% error and maximum cut size set to 2000. We use the version with 1% error threshold as the reference for equal quality comparisons. LightSlice is run with approximately 1400 slices and 400 columns (the number of slices determines the size of the reduced light transport matrix while the number of columns determines the number of clusters used per point). For our method, the user is free to set the separation parameter ε. This parameter closely tracks both theoretically and practically the quality of the resulting image. In general, setting ε to 0.5 gives a good compromise between quality and speed.

One inherent disadvantage of the many-lights technique is the presence of certain artifacts due to the overly-high contribution of some VPLs to their neighboring points. The standard way to avoid these problems is by clamping: limiting the contribution of any one VPL within some small Euclidean distance by applying a clamping threshold. The bias introduced by this technique requires the image rendered with all VPLs to be used as our reference image and not the path traced one. Our experiments use 1 and 4 samples per pixel to compare the quality of clustering obtained by the different methods.

Scenes. We test the algorithms on standard collection of scenes with only moderately glossy materials. The Museum has specular materials like the bones of the dinosaur and the canvas on its stand. Most of the primary lights are facing the ceiling to ensure that the scene is mainly lit by indirect illumination. In Sibenik, the light sources are facing upwards in the dome such that the scene is again lit by indirect illumination, and is made up of purely diffuse materials. The big uniformly colored surfaces in the Conference are challenging since the clustering methods have to be spatially consistent, with moderately shiny materials. The outdoor scene San Miguel is our largest scene consisting of 10M triangles lit by an environment map of sunset. This is our most challenging scene since the area under the tree and in the corridors is mostly lit by indirect illumination with lots of smooth shadows.

Performance. The images are rendered at a 1024 × 1024 resolution with 1 sample per pixel (spp) and with approximately 500K VPLs. We provide the running times for the pre-processing and the rendering phase along with the average number of shadow rays per pixel. We provide three different error metrics. Denote by F(x, y, c) the value of a color channel c in the image at coordinate (x, y) and by F(x, y, c) the same value in the reference image. The number of pixels multiplied by the number of color channels is m = 3 • 1024 • 1024 and each value of F and F is between 0 and 1.

• The normalized RMSE provides numerical difference against the VPL reference image:

RMSE = ∑ (F(x, y, c) -F(x, y, c)) 2 m
where the summation is over all pixels and color channels of the images.

• The LMSE represents the average squared difference of the gradients between the rendered image and the reference [START_REF] Silva | Quantifying image similarity using measure of enhancement by entropy[END_REF]:

LMSE = ∑(∇F(x, y, c) -∇ F(x, y, c)) 2 ∑ ∇F(x, y, c)
where ∇F(x, y, c) = F(x + 1, y, c) + F(x -1, y, c) + F(x, y + 1, c) + F(x, y -1, c) -4F(x, y, c). A high LMSE error implies sharp discontinuities (e.g., sharp error edges), identifying more noticeable errors.

• Average relative error is given by: y,c) .

Rel. Error = 100 m • ∑ |F(x, y, c) -F(x, y, c)| F(x,
The error images are calculated by taking the channel-wise Euclidean distance between the image, and the VPL reference image, and multiplying it by a factor of 32.

Table 4 shows the results with all these statistics. In general, we find that with ε = 0.25, the quality of our results is similar to Lightcuts with around 3× speedup (the last row in Table 4). The average number of shadow rays for WSPD can be larger than that of Lightcuts; however, as proved earlier, almost no other computation except visibility testing is done by the WSPD algorithm. The WSPD method solely relies on the pre-computed pairs which results in a shorter rendering time since there is no additional work done. Lightcuts, on the other hand, has to descend the tree, maintaining an expensive heap data structure during this traversal. The cost of calculating upper bounds during rendering is also significant. Bounding the maximum cut size can result in significant loss of quality unless the ideal cut size is known a priori (e.g., as in San Miguel). Considering this run as a reference for equal quality comparison, our method with ε = 0.5 still shows similar or even better quality with around 3 times speed-up (e.g., as in Museum).

LightSlice is able to explore the structure of VPLs and adapt to it more efficiently than Lightcuts, but dividing the image into slices results in visually disturbing blocking artifacts if the error is not low enough. This is captured by the high errors (especially the LMSE) of LightSlice compared with WSPD ε in all the scenes. The WSPD method locally adjusts the cluster radius based on the well-separated criteria. Thus the errors in the resulting image are smoothly distributed, with visually minimal artifacts. The value of the parameter ε closely tracks the quality; for scenes with complex shadows like San Miguel, ε has to be set lower (0.1) for comparable quality to Lightcuts. LightSlice relies also on a fixed parameter (number of columns, set to 400). For San Miguel it is unable to adapt to the complexity of the shadows with such a low number of columns, resulting in faster running times with high errors.

Scalability. See Table 5 for the total memory (GB) used by the three methods. Lightcuts is the most efficient on memory consumption, followed by WSPD. LightSlice, due to the light transport matrix storage, has prohibitively high memory consumption. In Figure 9 we plot the rendering times of the three methods with varying number of VPLs in the Museum scene. Note how our algorithm consistently outperforms Lightcuts even with 3M VPLs and both of them scale sub-linearly in the number of lights. LightSlice is only usable as long as it does not allocate more memory than the system has.

Trade-off: In Figure 10 we plot the relative error and the rendering time against ε in the Museum scene. The curve is not strictly monotonic since our algorithm is not deterministic (e.g., approximate nearest neighbor).

Blocking artifacts. In contrast to LightSlice, our method and Lightcuts currently do not take advantage of using different representative lights for each sample per pixel. We have found that increasing the number of samples increases the quality of the images rendered with LightSlice. Table 6 shows some results with 4 samples per pixel. Note that our algorithm still matches LightSlice in performance. See Figure 11 for the effect of multiple samples per pixel on the Museum scene. Our method has no visible artifacts (nor does Lightcuts) even with ε = 0.9 and 1 sample per pixel.

On the other hand LightSlice has visible blocks on the image due to the clustering of the shaded points. These errors can be reduced by increasing the number of columns for LightSlice but this results in a higher running time. If one increases the number of samples then LightSlice becomes competitive, although some artifacts remain even with 9 samples per pixel.

Refinement. This method ensures that the final clustering used for a point satisfies our theoretical criteria. However, with a high number of VPLs the approximate nearest neighbor search is very accurate therefore our refinement method has less importance. If the density of the VPLs is low in an area its usage becomes more important in order to avoid blocking artifacts. We demonstrate this in Figure 12, by rendering the scene with and without refinement.

Limitation and future work

We have showed that the WSPD structure is suitable for compactly storing clustering information and for providing fast extraction of clusters during render time. We showed theoretical bounds on the error for diffuse materials. The data structure proposed in this paper gives a new perspective on how to efficiently store and retrieve a view-independent clustering for scenes. This framework is very flexible and leaves several possibilities for improving and enhancing the current solution.

One of the main limitations of our method is that it is suited towards diffuse surfaces, and the quality decreases with highly glossy surfaces. The upper-bound proved in Theorem 5.1 increases as a function of glossiness, and so higher glossiness requires smaller values of ε in the WSPD construction for similar error upper-bounds. One can compensate for it with decreasing ε, at the loss of efficiency. In order to demonstrate this, we have replaced the Phong BRDFs in the Conference scene with Blinn microfacet BRDFs. This BRDF results in a very significant contribution from the direction of the reflected view ray. See Figure 13 for the results with 1 sample per pixel. The most prominent error is around the shadows of the chairs on the highly glossy floor where the exponent for the Blinn microfacet BRDF is set to 100. Lightcuts can more efficiently adapt to highly glossy materials than our method.

A similar problem is the need to use a small ε for scenes with highly varying visibility properties since in this case the number of clusters increases globally without only refining the clustering where it is necessary. To overcome these • Currently our definition of well-separatedness is purely geometric, without taking into account the visibility properties of the clusters. It would be interesting if the pre-processing phase can use visibility queries to adaptatively guide the construction of cluster pairs.

• One of the strengths of our approach is that the preprocessing phase already computes pairs of clusters, which are then modified in a limited manner during the rendering phase. Furthermore this computation is view-independent. This opens up the possibility of reusing this computation with changing camera position, towards animations, interactive rendering, or even the goal of real-time global illumination.

Theorem 5.1. First we show ε-dependent bounds of the changes of angles and distances between p and the lights in a ws-cluster C. See Figure 14 for the interaction of p with two lights s, r in C where r denotes the light chosen as the representative of the cluster. Estimating the change in the distances follows immediately from the ws property:

d(p, s) ≤ d(p, r) + 2r(C) ≤ d(p, r) + 2εd(p, s) (11)
For bounding the change of angles ∆θ, it is clear that the angle between the two tangents of the circle from p is the upper bound. The center of the circle, p and the point on tangency form a right angle triangle:

sin ∆θ 2 = r(C) d(p,C) + r(C) ≤ εd(p,C) d(p,C) ≤ ε (12)
Hence using the approximation for the sine function with Taylor series we have ∆θ = O(ε).

In the following we approximate the error for one cluster using the previous results. We assume that the visibility is always 1 (the case of 0 is trivial). Therefore the error is: In other words, the error is proportional to the complete intensity received by a pixel. Note that this does not account for visibility difference of course, which we address with other methods.

|L(p,
Remark: In the case of Phong BRDF the M s (p, ω) function becomes k s (p)cos n β s cos θ s where β s is the angle between ω and the direction of sp reflected on the surface normal (the subscript of k now refers to the word specular). In this case the above calculations are as follows: One could upper bound this error but the subtrahend converges to 0 as n → ∞ hence in this case one could only give a weak bound which depends on n as well. If we were to set ε according to such a bound one would have to build a too fine WSPD which would result in a prohibitively big runtime. We remark that this could be possibly overcome by refining the WSPD with a smaller epsilon during the rendering phase but only for those clusters that have a high value for M r (p, ω). However we have not experimented with this approach. Theorem 5.2. The second statement of the proof comes from Lemma 5.1. Take a cluster C i ∈ C s lying inside the ball of radius d/ε around s. If it is not ws-separated from p, partition the bounding-box of C i into 8 equal-volume bounding boxes (the children of the node in the octree), and recursively check the ws-separated property of these new refined clusters with p. Eventually when a newly refined cluster is finally a ws-cluster from p, add it to C . To count the total number of new ws-clusters added to C , consider a cluster C ∈ C . It exists because its parent, say cluster D, was not a ws-cluster with p. i.e., r(D) > εd p , where d p is the distance of the ball of D to p. Because s is the nearest neighbor of p we know that no other point is in the small ball of radius d around p; in particular it cannot completely contain the ball of D and hence r(D)/ε ≥ d p ≥ d -2r(D), which implies that r(D) ≥ d 2+ε -1 . So each cluster added to C has a parent with radius at least the above value. Grouping the parents by size (higher level parents are the same size but multiplied by some power of two) we can give an upper bound on their number by a simple packing argument since parents with the same size are disjoint (since octree nodes can either contain each other or be disjoint):

∞ ∑ i=0 d/ε 2 i (d 2+ε -1) 3 = O(1 ε 6) (24)
Since we have bounded the number of parents and each of them can have at most 8 children, this finishes the proof.

Figure 1 :

 1 Figure 1: WSPD Clustering for Sibenik cathedral. The bottom half shows the rendered model and the top half the Euclidean error multiplied by 32 with color mapping.

Figure 3 :

 3 Figure 3: The Museum scene with the well-separated clusters (represented by their enclosing spheres) around a shaded point, shown as a bright green square in the middle of the image. For visualization purposes we only included a quarter of the clusters.

 denotes the visibility from p to the boundary of the sphere b(C i) enclosing cluster C i ; this is computed by a shadow ray with the Embree raytracing kernel. R(C i , p) is the proportion of the summed intensity of the lights in C i reaching the boundary of the ball b(C i) in the direction from the center of b(C i) to p; see Section 6 for its precise definition and computation.5 Constructing ws-clusteringsFor a cluster C ⊆ S, define b(C) to be the smallest-enclosing ball of the points in C. Let r(C) be the radius of the ball b(C). For any point p, d(p,C) denotes the Euclidean distance of p to b(C).

Figure 4 :

 4 Figure 4: For ε = 0.5, C is ws from p. In other words, we have d(p,C) > 2 • r(C).

Figure 5 :

 5 Figure 5: Each red edge represents a pair {R i , Q i }, where the sets R i , Q i are enclosed in green circles.

Figure

 Figure 6: A geometric condition.

Figure 7 :

 7 Figure 7: WSPD size ratios for some graphical scenes.

Figure 8 :s

 8 Figure 8: The compressed octree and the WSPD for a set of points.

Theorem 5. 2 .

 2 Let p be an arbitrary point and s be its nearest neighbor with d(p, s) = d. After refining the clusters in the set C * ⊆ C s which intersect the ball with radius d ε around s, there are at most O(1 ε 6) new ws-clusters C created. The resulting set C s \C * ∪ C is a partition of S into ws-clusters around p, with separation parameter ε/(1ε).

 The subgroups are constructed by first picking a center c j ∈ C i for each subgroup C j i , and then assigning each VPL s ∈ C j to the subgroups with most similar center. see Algorithm 3. Dur-Algorithm 3 Computing subgroups of a given cluster C i 1: function CLUSTERNORMALS(C i) 2: j ← 1; c 1 ← random light in C i 3: largestDistance ← ∞ 4: while largestDistance ≥ threshold do 5: For each s ∈ C i , d s ← min k≤ j d(s, c k) 6:

Figure 9 :Figure 10 :Figure 11 :

 91011 Figure 9: Varying number of VPLs for the Museum scene.

Figure 12 :

 12 Figure 12: Error images for the Museum with 10K VPLS, rendered with refinement (left) and without refinement (right), for ε = 0.25.

Figure 13 :

 13 Figure 13: Part of the Conference scene with highly glossy floor using 1 sample per pixel.

Figure 14 :

 14 Figure 14: Changes in the angles and distances are bounded by a function of ε.

cos θ s cos φ s r 2 s -

 s ω) -L C (p, ω)| = (13) = | ∑ s∈C V p (s)I s M s (p, ω)G s (p) -V p (r)M r (p, ω)G r (p) |M s (p, ω)G s (p) -M r (p, ω)G r (p)| (15)The above formula has the important property that the M s and G s functions are dependent on the cosines of angles and distances which are closely bounded because of the ws property. This result intuitively means that the error cannot be too big for a BRDF that relies on distances and angles. In the case of the diffuse BRDF, M s (p, ω) = k d (p) cos θ s where k d (p) is the diffuse reflection coefficient and θ s is the angle between the surface normal at p and sp. Denote by φ s the angle between the light normal ands and for brevity denote d(p, s) by r s , then the formula becomes:∑ s∈C I s k d (p) cos θ s cos φ s r 2 s -k d (p) cos θ r cos φ r r cos(θ s + ∆θ s) cos(φ s + ∆φ s) (r s + ∆r s) 2(17) We omit a complete analysis and just minimize the subtrahend assuming that ∆θ, ∆φ, ∆r ≥ 0 (the other cases are similar). Using the ws property and that cos(θ + ∆θ) ≥ cos θ -∆θ,≤ k d (p) ∑ s∈C I s cos θ s cos φ s r 2 s -(cos θ s -∆θ s)(cos φ s -∆φ s) (1 + 2ε) 2 r 2 s (18) Using that cos x ≤ 1 and the bound on ∆θ ≤ k d (p) ∑ s∈C I s (4ε + 4ε 2 + ∆θ s + ∆φ s -∆θ s ∆φ s) (1 + 2ε) 2 r 2 s (19) = O(ε)k d (p) ∑

 p) cos n β s cos θ s cos φ s r 2 s -k s (p) cos n β r cos θ r cos φ r r 2 r (21) = k s (p) ∑ s∈C I s cos n β s cos θ s cos φ s r 2 s cos n (β s + ∆β s) cos(θ s + ∆θ s) cos(φ s + ∆φ s) (r s + ∆r s) 2 (22) ≤ k s (p) ∑ s∈C I s cos n β s cos θ s cos φ s r 2 s -(cos β s -∆β s) n (cos θ s -∆θ s)(cos φ s -∆φ s) (1 + 2ε) 2 r 2 s (23)

Figure 15 :

 15 Figure 15: A close ws-cluster C i and a far ws-cluster C o from s.

)

	Algorithm workflow		
			VPL	Compute	Additional
	Pre-processing		generation	ws-clusterings	structures
	BVH for	Pre-compute		
	geometry	clusterings		
	Render each pixel p ∈ P	Extract initial clustering C	Refine clusters in C	Embree raytracing kernel
	Retrieve ws-	Calculate		
	clustering C	L C (p, ω)		
	Figure 2: Overview of the system building blocks. The Embree framework (in purple) has been augmented by our
	algorithms (in green). Details of each block follow in Sections 4, 5 and 6.	
			4 Our Approach
			For a point p ∈ P to be shaded, consider a clustering of
			the set of VPLs S into k clusters C 1 , . . . ,C k such that the
			radius of the smallest-ball containing each cluster is much
			smaller than the distance of that ball to p (this will be for-
			mulated precisely in Section 5). Call such a cluster well-
			separated, or a ws-cluster for brevity, from p, and the clus-
			tering {C 1 , . . . ,C k } a well-separated clustering, or a ws-
			clustering, for p. Intuitively, from the point of view of

Table 1 :

 1 Octree depths with 320K VPLs, both with and without compression.

	Scene	Octree Compressed
	Conference	19	14
	Sibenik	20	14
	Museum	18	15
	San Miguel	22	14

Table 2 :

 2 Table 2 for the maximum number of new clusters added per point for a number of scenes with varying values of ε. Maximum number, over all p ∈ P, of added clusters during refinement with 320K VPLs.

		Refined clusters for varying ε
	Scene	0.9 0.7 0.5 0.3	0.1
	Conference 58	75 114 227 1401
	Sibenik	57	74 109 219 1505
	Museum	81 103 159 326 2350
	San Miguel 80 108 167 370 3411

Table 3 :

 3 Average number of subgroups per cluster.Visibility testing. Visibility differences within a cluster can cause errors with a fixed representative light. Consider for example a flat object with VPLs on both sides. Since the representative light is either on one side or the other, visibility queries falsely return occlusion if the pixel is on the other side of the object. To overcome this problem we propose to augment our ws-clusters with additional visibility information.

		Average number of subgroups
	ε	0.9	0.7	0.5	0.3
	Conference	8.3	8.1	6.7	5.3
	Sibenik	9.5	9.3	8.0	5.9
	Museum	23.3 21.2 16.8	11.4
	San Miguel 44.72 39.6 31.2	18.5

Table 4 :

 4 Rendering statistics and images for the three different methods, Lightcuts, LightSlice and the WSPD algorithm.

Table 5 :

 5 Memory requirements for the Museum scene (GB).

	# VPLs:	75K 115K 200K 375K 776K
	Lightcuts	0.59	0.6	0.63	0.74	0.84
	LightSlice 4.53 6.31	9.85 18.81 36.58
	WSPD 0.5 1.14 1.40	1.98	3.38	6.17

Table 6 :

 6 Rendering statistics and images for 4 samples per pixel.

	Reference	Lightcuts	WSPD 0.1

Acknowledgments

We thank the following people for the models. Greg Ward for the Conference scene, Alvaro Luna Bautista and Joel Andersdon for the Museum scene, Guillermo M. Leal Llaguno for the San Miguel scene and Marko Dabrovic for the Sibenik Cathedral scene.