Norbert Bus
email: busn@esiee.fr

Nabil H Mustafa
email: mustafan@esiee.fr

Saurabh Ray
email: saurabh.ray@nyu.edu

Geometric Hitting Sets for Disks: Theory and Practice

Keywords: Geometric Hitting Sets, Approximation Algorithms, Computational Geometry

 showed that their scheme can be implemented in near-linear time for disks in the plane. This current state-of-the-art is lacking in three ways. First, the constants in current -net constructions are large, so the approximation factor ends up being more than 40. Second, the algorithm uses sophisticated geometric tools and data structures with large resulting constants. Third, these have resulted in a lack of available software for fast computation of small hitting-sets. In this paper, we make progress on all three of these barriers: i) we prove improved bounds on sizes ofnets, ii) design hitting-set algorithms without the use of these data-structures and finally, iii) present dnet, a public source-code module that incorporates both of these improvements to compute small-sized hitting sets and -nets efficiently in practice.

Introduction

The minimum hitting set problem is one of the most fundamental combinatorial optimization problems: given a range space (P, D) consisting of a set P and a set D of subsets of P called the ranges, the task is to compute the smallest subset Q ⊆ P that has a non-empty intersection with each of the ranges in D. This problem is strongly NP-hard. If there are no restrictions on the set system D, then it is known that it is NPhard to approximate the minimum hitting set within a logarithmic factor of the optimal. The problem is NP-complete even for the case where each range has exactly two points since this problem is equivalent to the vertex cover problem which is known to be NPcomplete. A natural occurrence of the hitting set problem occurs when the range space

The work of Nabil H. Mustafa in this paper has been supported by the grant ANR SAGA (JCJC-14-CE25-0016-01).

D is derived from geometry -e.g., given a set P of n points in R 2 , and a set D of m triangles containing points of P , compute the minimum-sized subset of P that hits all the triangles in D. Unfortunately, for most natural geometric range spaces, computing the minimum-sized hitting set remains NP-hard. For example, even the (relatively) simple case where D is a set of unit disks in the plane is strongly NP-hard [START_REF] Hochbaum | Fast approximation algorithms for a nonconvex covering problem[END_REF].

Given a range space (P, D), a positive measure µ on P (e.g., the counting measure), and a parameter > 0, an -net is a subset S ⊆ P such that D ∩ S = ∅ for all D ∈ D with µ(D ∩ P) ≥ • µ(P). The -net theorem [START_REF] Haussler | Epsilon-nets and simplex range queries[END_REF] implies that for a large family of geometric hitting set systems (e.g., disks, half-spaces, k-sided polytopes, r-admissible set of regions in R d) there exists an -net of size O(d/ log d/). For certain range spaces, one can even show the existence of -nets of size O(1/) -an important case being for disks in R 2 [START_REF] Pyrga | New existence proofs for epsilon-nets[END_REF]. In 1994, Bronnimann and Goodrich [START_REF] Brönnimann | Almost optimal set covers in finite vcdimension[END_REF] proved the following interesting connection between the hitting-set problem, and -nets: if one can compute an -net of size c/ for the -net problem for (P, D) in polynomial time, then one can compute a hitting set of size at most c • OPT for (P, D), where OPT is the size of the optimal (smallest) hitting set, in polynomial time. Until very recently, the best algorithms based on this observation, referred to as rounding techniques, had running times of Ω(n 2), and it had been a long-standing open problem to compute a O(1)approximation to the hitting-set problem for disks in the plane in near-linear time. In a recent break-through, Agarwal-Pan [START_REF] Pankaj | Near-linear algorithms for geometric hitting sets and set covers[END_REF] presented the first near-linear algorithm for computing O(1)-approximations for hitting sets for disks.

The limitation of the rounding technique -that it cannot give a PTAS -was overcome using an entirely different technique: local search [START_REF] Nabil | Improved results on geometric hitting set problems[END_REF][START_REF] Pankaj | Independent set of intersection graphs of convex objects in 2d[END_REF]. It has been shown that the local search algorithm for the hitting set problem for disks in the plane gives a PTAS. Unfortunately the running time of the naive algorithm to compute a

(1 +)- approximation is O(n O(1/ 2)
). Based on local search, an Õ(n 2.34) time algorithm was proposed [START_REF] Bus | Improved local search for geometric hitting set[END_REF] yielding an (8 +)-approximation.

Our Contributions

All approaches towards approximating geometric hitting sets for disks have to be evaluated on the questions of computational efficiency as well as approximation quality.

In spite of all the progress, there remains a large gap -mainly due to the ugly tradeoffs between running times and approximation factors. The breakthrough algorithm of Agarwal-Pan [START_REF] Pankaj | Near-linear algorithms for geometric hitting sets and set covers[END_REF] suffers from two main problems:

-It rounds via -nets to design a Õ(n)-time algorithm, but the constant in the approximation depends on the constant in the size of -nets, which are large. For disks in the plane, the current best size of -net is at least 40/ [START_REF] Pyrga | New existence proofs for epsilon-nets[END_REF], yielding at best a 40-approximation algorithm. Furthermore, there is no implementation or software solution available that can even compute such -nets efficiently. -It uses sophisticated data-structures that have large constants in the running time.

In particular, it uses the O(log n + k)-time algorithm for range reporting for disk ranges in the plane (alternatively, for halfspaces in R 3) as well as a dynamic datastructure for maintaining approximate weighted range-counting under disk ranges in polylogarithmic time. We have not been able to find efficient implementations of any of these data-structures.

It will turn out that all ideas for an efficient practical solution for the geometric hitting set problem for disks are unified by one of the basic structures in the study of planar geometry: Delaunay triangulations. Delaunay triangulations will be the key structure for computing these improved -nets, and the Delaunay structures already computed for constructing these nets will turn out to be crucial in computing small-sized hitting sets. More precisely, our contributions are:

1. Constructing small -nets (Section 2). We show that the sample-and-refine approach of Chazelle-Friedman [START_REF] Chazelle | A deterministic view of random sampling and its use in geometry[END_REF] together with additional structural properties of Delaunay triangulation results in -nets of surprisingly low size:

Theorem 1. Given a set P of n points in R 2 , there exists an -net under disk ranges of size at most 13.4/ . Furthermore it can be computed in expected time O(n log n).

The algorithm is simple to implement. We have implemented it, and present the sizes of -nets for various real-world data-sets; the results indicate that our theoretical analysis closely tracks the actual size of the nets.

2. Engineering a hitting-set algorithm (Section 3). Together with the result of Agarwal-Pan, this immediately implies: Corollary 1. For any δ > 0, one can compute a (13.4 + δ)-approximation to the minimum hitting set for (P, D) in time Õ(n).

We then present a modification of the algorithm of Agarwal-Pan that does not use any complicated data-structures -just Delaunay triangulations, -nets and binary search (e.g., it turns out that output sensitive range reporting is not required). This comes with a price: although experimental results indicate a near-linear running time, we have been unable to theoretically prove that the algorithm runs in expected near-linear time.

3. Implementation and experimental evaluation (Section 4). We present dnet, a public source-code module that incorporates all these ideas to efficiently compute small-sized hitting sets in practice. We give detailed experimental results on both synthetic and real-world data sets, which indicates that the algorithm computes, on average, a 1.3approximation in near-linear time. This surprisingly low approximation factor compared to the proven worst case bound is the result of fine tuning the parameters of the algorithm.

Due to lack of space, most of the proofs are left for the full paper.

A Near Linear Time Algorithm for Computing -nets for Disks in the Plane

Through a more careful analysis, we present an algorithm for computing an -net of size 13.4 , running in expected near linear time. The method, shown in Algorithm 1, computes a random sample and then solves subproblems involving subsets of the points located in pairs of Delaunay disks circumscribing adjacent triangles in the Delaunay triangulation of the random sample. The key to improved bounds is i) using additional structural properties of Delaunay triangulations, and ii) new improved constructions of -nets for large values of . The presented algorithm can be extended to handle the case when the -net is with respect to a measure on the point set taking only rational values. Let ∆(abc) denote the triangle defined by the three points a, b and c. D abc denotes the disk through a, b and c, while D abc denotes the halfspace defined by a and b not containing the point c. Let c(D) denote the center of the disk D.

Let Ξ(R) be the Delaunay triangulation of a set of points R ⊆ P in the plane. We will use Ξ when R is clear from the context. For any triangle ∆ ∈ Ξ, let D ∆ be the Delaunay disk of ∆, and let P ∆ be the set of points of P contained in D ∆ . Similarly, for any edge e ∈ Ξ, let ∆ 1 e and ∆ 2 e be the two triangles in Ξ adjacent to e, and P e = P ∆

1 e P ∆ 2
e . If e is on the convex-hull, then one of the triangles is taken to be the halfspace whose boundary line is supported by e and not containing R.

Algorithm 1: Compute -nets

Data: Compute -net, given P : set of n points in R 2 , > 0 and c0. 16 Return e Re ∪ R.

In order to prove that the algorithm gives the desired result, the following lemma regarding the size of an -net will be useful. Let f () be the upper bound of the size of the smallest -net for any set P of points in R 2 under disk ranges.

Lemma 1. For 2 3 < < 1, f () ≤ 2, and for 1 2 < ≤ 2 3 , f () ≤ 10. In both cases the -net can be computed in O(n log n) time.
Call a tuple ({p, q}, {r, s}), where p, q, r, s ∈ P , a Delaunay quadruple if int(∆(pqr))∩ int(∆(pqs)) = ∅ where int(•) denotes the interior of a set. Define its weight, denoted W ({p,q},{r,s}) , to be the number of points of P in D pqr ∪D pqs . Let T ≤k be the set of Delaunay quadruples of P of weight at most k and similarly T k denotes the set of Delaunay quadruples of weight exactly k. Similarly, a Delaunay triple is given by ({p, q}, {r}), where p, q, r ∈ P . Define its weight, denoted W ({p,q},{r}) , to be the number of points of P in D pqr ∪ D pqr . Let S ≤k be the set of Delaunay triples of P of weight at most k, and S k denotes the set of Delaunay triples of weight exactly k. One can upper bound the size of T ≤k , S ≤k and using it, we derive an upper bound on the expected number of sub-problems with a certain number of points. For the expected size, clearly, if n < 13 then the returned set is an -net of size 13 . Otherwise we can calculate the expected number of points added to the -net during solving the sub-problems. We simply group them by the number of points in them. Set

Lemma 2. If n ≥ 13, E |{e ∈ Ξ | k 1 n ≤ |P e | ≤ k 2 n}| ≤ (3.1)c 3 0 e k 1 c 0 (k 3 1 c 0 + 3.7k 2
E i = {e | 2 i n ≤ |P e | < 2 i+1 n},
and let us denote the size of the -net returned by our algorithm with f (). Then

E [f ()] = E[|R|] + E | e∈Ξ R e | = c 0 + E[|{e | n ≤ |P e | < 3 n/2}|] • f (2/3) +E[|{e | 3 n/2 ≤ |P e | < 2 n}|] • f 1 2 + i=1 E e∈Ei f n |P e | . (1)
Noting that

E[e∈Ei f (n |Pe|) | |E i | = t] ≤ tE[f (1/2 i+1)],
we get

E e∈Ei f n |P e | = E E[e∈Ei f n |P e | |E i] ≤ E |E i | • E[f (1/2 i+1)] = E[|E i |] • E[f (1/2 i+1)] (2)
as 4 . Then by using Lemma 1 and 2

|E i | and f (•) are independent. As = n |Pe| > , by induction, assume E[f ()] ≤ 13.
E [f ()] ≤ c 0 + (3.1) • c 3 0 (c 0 + 8.34) e c0 • 2 + (3.1) • c 3 0 ((3/2) 3 c 0 + 14.8) e 3c0/2 • 10 + i (3.1) • c 3 0 (2 3i c 0 + 3.7 • 2 2i+2) e c02 i • 13.4 • 2 i+1 ≤ 13.4 (3)
by setting c 0 = 12.

Lemma 4. Algorithm COMPUTE -NET runs in expected time O(n log n).

We have shown that the expected size of the returned -net is 13.4/ . Furthermore, by Markov's inequality and repeatedly running the algorithm, an -net of size (1 + δ) • 13.4/ is returned in exptected time O(n/δ • log n) for any constant δ > 0. Setting δ small enough finishes the proof of Theorem 1.

Engineering the Agarwal-Pan Algorithm

The Agarwal-Pan (AP) algorithm (shown in Algorithm 2) uses an iterative reweighing strategy, where the idea is to assign a weight w(•) to each p ∈ P such that the total weight of points contained in each D ∈ D is relatively high. It starts by setting w(p) = 1 for each p ∈ P . If there exists a disk D with small weight, it increases the weight of the points in D until their total weight exceeds a threshold of cW/OPT, where c is some constant and W = p∈P w(p) is the current total weight. If after any iteration, all disks have weight above the threshold cW 2eOPT , return a c 2eOPT -net with respect to these weights, ensuring that every disk is hit.

For the purpose of analysis, Agarwal and Pan conceptually divide the reweighings into O(log n) phases, where each phase (except perhaps the last) performs Θ(OPT) reweighings. The implementation of the AP algorithm requires two ingredients: A) a range reporting data structure and B) a dynamic approximate range counting data structure. The former is used to construct the set of points to be reweighed and the latter is required for figuring out whether a disk needs reweighing. As a pre-processing step, the AP algorithm first computes a 1/OPT-net Q to be returned as part of the hitting set. This ensures that the remaining disks not hit by Q contain less than n/OPT points. Additionally they observe that in any iteration, if less than OPT disks are reweighed, then all disks have weight more than cW 2eOPT .

Algorithm 2: AP algorithm for computing hitting sets The AP algorithm is simple and has a clever theoretical analysis. Its main drawback is that the two data structures it uses are sophisticated with large constants in the running time. This unfortunately renders the AP algorithm impractical. Our goal is to find a method that avoids these sophisticated data structures and to develop additional heuristics which lead to not only a fast implementation but also one that generally gives an approximation ratio smaller than that guaranteed by the theoretical analysis of the AP algorithm. As part of the algorithm, we use the algorithm for constructing -nets described in the previous section, which already reduces the approximation factor significantly.

Removing A). Just as Agarwal and Pan do, we start by picking a c 1 /OPT-net, for some constant c 1 . The idea for getting rid of range-reporting data-structure is to observe that the very fact that a disk D is not hit by Q, when Q is an -net, makes it possible to use Q in a simple way to efficiently enumerate the points in D. We will show that D lies in the union of two Delaunay disks in the Delaunay triangulation of Q, which, as we show later, can be found by a simple binary search. The resulting algorithm still has worst-case near-linear running time.

Removing B). Our approach towards removing the dependence on dynamic approximate range counting data structure is the following: at the beginning of each phase we pick a c 2 /OPT-net R, for some constant c 2 . The set of disks that are not hit by R are then guaranteed to have weight at most c 2 W/OPT, which we can then reweigh during that phase. While this avoids having to use data-structure B), there are two problems with this: a) disks with small weight hit by R are not reweighed, and b) a disk whose initial weight was less than c 2 W/OPT could have its current weight more than c 2 W/OPT in the middle of a phase, and so it is erroneously reweighed.

Towards solving these problems, the idea is to maintain an additional set S which is empty at the start of each phase. When a disk D is reweighed, we add a random point of D (sampled according to the probability distribution induced by w(•)) to S. Additionally we maintain a nearest-neighbor structure for S, enabling us to only reweigh D if it is not hit by R ∪ S. Now, if during a phase, there are Ω(OPT) reweighings, then as in the Agarwal-Pan algorithm, we move on to the next phase, and a) is not a problem. Otherwise, there have been less than OPT reweighings, which implies that less than OPT disks were not hit by R. Then we can return R together with the set S consisting of one point from each of these disks. This will still be a hitting set.

To remedy b), before reweighing a disk, we compute the set of points inside D, and only reweigh if the total weight is at most c 2 W/OPT. Consequently we sometimes waste O(n/OPT) time to compute this list of points inside D without performing a reweighing. Due to this, the worst-case running time increases to O(n 2 /OPT). In practice, this does not happen for the following reason: in contrast to the AP algorithm, our algorithm reweighs any disk at most once during a phase. Therefore if the weight of any disk D increases significantly, and yet D is not hit by S, the increase must have been due to the increase in weight of many disks intersected by D which were reweighed before D and for which the picked points (added to S) did not hit D. Reweighing in a random order makes these events very unlikely (in fact we suspect this gives an expected linear-time algorithm, though we have not been able to prove it).

Algorithm 3: Algorithm for computing small-sized hitting sets. Data: A point set P , a set of disks D, and the size of the optimal hitting set OPT. 1 Compute a (c1/OPT)-net Q of P and the Delaunay triangulation Proof. By construction, if the algorithm terminates, then Q ∪ R ∪ S is a hitting-set. Set c 1 = 13.4 • 3/δ, c 2 = 1/(1 + δ/(13.4 • 3)), c 3 = δ/10000 and c 4 = δ/3. By the standard reweighing argument, we know that after t reweighings, we have:

Ξ(Q) of Q. 2 foreach q ∈ Q do construct Ψ (Q)(q).
OPT (1 + c 3) t OPT ≤ n • (1 + c 2 c 3 OPT) t (4

Implementation and Experimental Evaluation

In this section we present experimental results for our algorithms implemented in C++ and running on a machine equipped with an Intel Core i7 870 processor (2.93 GHz) and with 16 GB main memory. All our implementations are single-threaded, but we note that our hitting set algorithm can be easily multi-threaded. The source code can be obtained from the authors' website 1 . For nearest-neighbors and Delaunay triangulations, we use CGAL. It computes Delaunay triangulations in expected O(n log n) time. To calculate the optimal solution for the hitting set problem we use the IP solver SCIP (with the linear solver SoPlex). Creating the linear program is carried out efficiently by using the Delaunay triangulation of the points for efficient range searching.

Datasets. In order to empirically validate our algorithms we have utilized several real-world point sets. All our experiments' point sets are scaled to a unit square. The World dataset [START_REF]Geographic Names Database, maintained by the National Geospatial-Intelligence Agency[END_REF] contains locations of cities on Earth (except for the US) having around 10M records. For our experiments we use only the locations of cities in China having 1M records (the coordinates have been obtained from latitude and longitude data by applying the Miller cylindrical projection). The dataset ForestFire contains 700K locations of wildfire occurrences in the United States [START_REF]Federal Wildland Fire Occurence Data[END_REF]. The KDDCUP04Bio dataset [START_REF]Clustering datasets[END_REF] (KDDCU for short) contains the first 2 dimensions of a protein dataset with 145K entries. We have also created a random data set Gauss9 with 90K points sampled from 9 different Gaussian distributions with random mean and covariance matrices. Sizes of -nets. Setting the probability for random sampling to 12 •n results in approximately 12 sized nets for nearly all datasets, as expected by our analysis. We note however, that in practice setting c 0 to 7 gives smaller size -nets, of size around 9 . See Figure 1 for the dependency of the net size on c 0 for = 0.01. It also includes an -net calculated with our algorithm for a subset of the World data (red points denote the -net and each pixel's color is the logarithm of the number of disks it is contained in). See Table 1 for the -net sizes for different values of while c 0 is set to 7 and 12. This table also includes the size of the first random sample (R), which shows that the number of subproblems to solve increases as the random sample is more sparse. Approximate hitting sets. For evaluating the practical usability of our approximate hitting set algorithm we compare it to the optimal solution. Our algorithm needs a guess for OPT, and so we run it with O(log n) guesses for the value of OP T . The parameters are set as follows: c 0 = 10, c 1 = 30, c 2 = 12, c 3 = 2 and c 4 = 0.6.

Our datasets only contain points and in order to create disks for the hitting set problem we have utilized two different strategies. In the first approach we create uniformly distributed disks in the unit square with uniformly distributed radius within the range [0, r]. Let us denote this test case as RN D(r). In the second approach we added disks centered at each point of the dataset with a fixed radius of 0.001. Let us denote this test case by F IX(0.001). The results are shown in Table 2 for two values r = 0.1 and r = 0.01. Our algorithm provides a 1.3 approximation on average. With small radius the solver seems to outperform our algorithm but this is most likely due to the fact that the problems become relatively simpler and various branch-and-bound heuristics become efficient. With bigger radius and therefore more complex constraint matrix our algorithm clearly outperforms the IP solver. Our method obtains a hitting set for all point sets, while in some of the cases the IP solver was unable to compute a solution in reasonable time (we terminate the solver after 1 hour). In Table 3 we have included the memory consumption of both methods and statistics for range reporting. It is clear that the IP solver requires significantly more memory than our method. The statistics for range reporting includes the total number of range reportings (calculating the points inside a disk) and the number of range reportings when the algorithm doubles the weight of the points inside a disk (the doubling column in the table). It can be seen that only a fraction of the computations are wasted since the number of doublings is almost as high as the total number or range reportings. This in fact shows that the running time of our algorithm is near-linear in n. In order to test the scalability of our method compared to the IP solver we have used the ForestFire and China dataset with limiting the number of points to 10K, 20K, 30K. . . and repeating exactly the same experiments as above (while increasing the number of disks in a similar manner). In Figure 2 we plot the running time of the methods. The solid lines represent the case RN D(0.1) while the dashed ones denote RN D(0.01). One can see that as the number of points and disks increases our method becomes more efficient even though for small instances this might not hold. It can be seen that for the China dataset and RN D(0.01) the IP solver is faster than our method but after 500K points our method becomes faster. In Figure 2 the dotted line represents the running time of our algorithm for F IX(0.001). In this case the IP running time is not shown because the solver was only able to solve the problem with 10K points within a reasonable time (for 20K and 30K points it took 15 and 21 hours respectively). We have varied the radius of the disks for the fixed radius case to see how the algorithms behave. See Figure 3. With bigger radius the IP solver becomes very quickly unable to solve the problem (for radius 0.002 it was unable to finish within a day), showing that our method is more robust. In order to test the extremes of our algorithm we have taken the World dataset containing 10M records. Our algorithm was able to calculate the solution of the F IX(0.001) problem of size around 100K in 3.5 hours showing that the algorithm has the potential to calculate results even for extremely big datasets with a more optimized (e.g., multithreaded) implementation.

1 if n < 13 then 2 Return P 3 6

 23 Pick each point p ∈ P into R independently with probability c 0 n . 4 if |R| ≤ c0/2 then 5 restart algorithm. Compute the Delaunay triangulation Ξ of R. 7 for triangles ∆ ∈ Ξ do 8 Compute the set of points P∆ ⊆ P in Delaunay disk D∆ of ∆.

9 for edges e ∈ Ξ do 10 Let ∆ 1 e and ∆ 2 e 11 Let

 10211 be the two triangles adjacent to e, Pe = P ∆ 1 e ∪ P ∆ 2 e . = (n |Pe|) and compute an -net Re for Pe depending on the cases below:

2). Lemma 3 .

 23 Algorithm COMPUTE -NET computes an -net of expected size 13.4/ .Proof. First we show that the algorithm computes an -net. Take any disk D with center c containing n points of P , and not hit by the initial random sample R. Increase its radius while keeping its center c fixed until it passes through a point, say p 1 of R. Now further expand the disk by moving c in the direction p 1 c until its boundary passes through a second point p 2 of R. The edge e defined by p 1 and p 2 belongs to Ξ, and the two extreme disks in the pencil of empty disks through p 1 and p 2 are the disks D ∆ 1 e and D ∆ 2 e . Their union covers D, and so D contains n points out of the set P e . Then the net R e computed for P e must hit D, as n = (n/|P e |) • |P e |.

7 flag = false 8 foreach D ∈ D do 9 if

 789 Data: A point set P , a set of disks D, a fixed constant c, and the value of OPT. 1 Compute a (1/OPT)-net, Q, of P and remove disks hit by Q 2 Set w(p) = 1 for all p ∈ P 3 repeat 4 foreach D ∈ D do 5 if w(D) ≤ cW/OPT then 6 reweigh D repeatedly until the weight w(D) exceeds cW/OPT w(D) < (c/2e) • W/OPT then flag = true 10 until flag = true 11 return Q along with a (c/2eOPT)-net of P with respect to w(•)

8

 8 3 foreach D ∈ D do 4 if D not hit by Q then add D to D1. // using Ξ(Q) 5 P1 = P \ Q. 6 foreach p ∈ P1 do set w(p) = 1. 7 repeat Compute a (c2/OPT)-net, R, of P1 and the Delaunay triangulation Ξ(R) of R. 9 Set S = ∅, Ξ(S) = ∅. 10 foreach D ∈ D1 in a random order do 11 if D not hit by R ∪ S then // using Ξ(R) and Ξ(S) 12 foreach p ∈ D do set w(p) = w(p) + c3w(p). // using Ψ (Q) 13 Add a random point in D to S; update Ξ(S).

Lemma 5 .

 5 14 until |S| ≤ c4OPT 15 return {Q ∪ R ∪ S} See Algorithm 3 for the new algorithm (the data-structure Ψ (Q) will be defined later). The algorithm terminates, Q ∪ R ∪ S is a hitting set, of size at most (13.4 + δ) • OPT, for any δ > 0.

Lemma 6 .

 6) which solves to t = O(OPT log n δ). Each iteration of the repeat loop, except the last one, does at least c 4 OPT reweighings. Then the repeat loop can run for at most O(OPT log n c4OPTδ) = O(log n/δ) times. By Theorem 1, |Q| ≤ (13.4/c 1)OPT, |R| ≤ (13.4/c 2)OPT, and |S| ≤ c 4 OPT. Thus the overall size is 13.4OPT • 1/c 1 + 1/c 2 + c 4 /13.4 ≤ (13.4 + δ) • OPT. Algorithmic details. Computing an -net takes O(n log n) time using Theorem 1. Checking if a disk D is hit by an -net (Q, R, or S) reduces to finding the closest point in the set to the center of D, again accomplished in O(log n) time using point-location in Delaunay/Voronoi diagrams Ξ(•). It remains to show how to compute, for a given disk D ∈ D 1 , the set of points of P contained in D: Given a disk D ∈ D 1 , the set of points of P contained in D can be reported in time O(n/OPT log n).

Fig. 1 .

 1 Fig. 1. -net size multiplied by for the datasets, = 0.01 (left) and a subset of the -net for the World dataset (right).

Fig. 2 .

 2 Fig. 2. Different point set sizes for the ForestFire (left) and China (right) datasets.

Fig. 3 .

 3 Fig. 3. Different radii settings for the KDDCU (left) and China (right) datasets.

Table 1 .

 1 The size of the -net multiplied by (left value in a column for a fixed) and the size of R, the first random sample multiplied by (right value in a column) for various point sets with c0 = 7 or 12. China 7.8 6.[START_REF] Brönnimann | Almost optimal set covers in finite vcdimension[END_REF] 8.3 6.1 8.28 6.80 8.426 7.090 14.2 14.2 10.6 10.6 12.33 12.33 12.152 12.138 ForestFire 7.4 7.4 8.3 7.3 8.46 7.46 8.522 6.892 13 13 11.6 11.6 12.01 12.01 12.103 12.077 KDDCU 7.4 7.4 8.4 7.4 8.31 7.29 8.343 6.989 10.2 10.2 9.8 9.8 11.65 11.57 12.006 11.978 Gauss9 7.4 5.8 7.8 7.6 8.00 7.18 8.100 6.882 9.8 9.8 12.0 12.0 11.61 11.43 11.969 11.965

			c0 = 7				c0 = 12	
	0.2	0.1	0.01	0.001	0.2	0.1	0.01	0.001

Table 2 .

 2 Hitting sets. From top to bottom, RN D(0.1), RN D(0.01).

		# of	# of	Q	R	S	# of	IP	dnet	ap-	IP	dnet
		points	disks	size	size	size	phases	solution	solution	prox.	time(s)	time(s)
	China	50K 50K 367 809 604	11 1185 1780 1.5	60	12
	ForestFire 50K 16K 43 85 224	11	267	352 1.3 54.3	6.9
	KDDCU 50K 22K 171 228 786	11	838 1185 1.4 40.9	9.8
	Gauss9	50K 35K 322 724 1035	11 1493 2081 1.4 52.5 11.7
	China	50K 49K 673 1145 4048	11 4732 5862 1.2	4.5 14.5
	ForestFire 50K 25K 162 268 1021	11 1115 1451 1.3	6.2	9.5
	KDDCU 50K 102K 1326 2492 6833	11 8604 10651 1.2 12.5 22.2
	Gauss9	50K 185K 2737 6636 9867	11 15847 19239 1.2 22.4 36.0

Table 3 .

 3 Memory usage in MB (left) and range reporting statistics (right).

	RND(0.01) RND(0.1) FIX(0.001)		RND(0.01)	RND(0.1)	FIX(0.001)
	IP dnet IP dnet IP dnet		total doubling total doubling	total doubling
	China 243	21 4282 19 434	20	China	44014 43713 9406	9184 96335 95846
	ForesFire 524	28 3059 18 5470	24	ForesFire 11167 11086 2767	2728 15648 15020
	KDDCU 458	30 2999 23 175	22	KDDCU 75448 75016 8485	8364 173147 173044
	Gauss9 569	33 3435 24 158	24	Gauss9 121168 120651 14133 13906 217048 217019

http://perso.esiee.fr/ ˜busn/#hittingsetApplication