Coarse modules spaces

Seddik Gmira USMBA 0. Introduction

In this paper we try to understand the surfaces as a whole. This is the birth of the moduli "space" First, we show the existence of a modular invariant function on the half-plane, noted j, such as the field of meromorphic functions, invariant under the action of the modular group coincide with the field ℂ(j)≌ ℂ 𝑧 . This leads us to conclude that for a subgroup Г of finite index, the field ℳ(Г) of meromorphic functions is a finite extension of ℂ (j), and Galois if and only if Г is a normal subgroup.

From there, we know that two algebraic curves are birationally equivalent if the associated Riemann surfaces are biholomorphic.

The choice of equation F (x, y) = 0 in a birational equivalence class allows to define an extension of the field ℂ(x) (field of rational functions on the curve). In algebraic terms two curves are birationally equivalent if their fields of rational functions are isomorphic as extensions of ℂ. Then, it is natural to consider the problem of modules of Riemann surfaces of genus g. Riemann proposes two methods for calculating the number of modules. The first is valid for g> 1, the second for g = 1; this number equals 3g-3. For g=0, it is known that all Riemann surfaces are isomorphic to ℂℙ 1 .

In both methods, Riemann considers surfaces provided with some additional structures: a meromorphic function with a numbering of its critical values, or a basis of homology

The general problem of the modules is to build such structures, reflecting the considered structures on the considered objects: for example if one looks compact Riemann surfaces as algebraic curves, one can ask whether there is a moduli space, which is itself an algebraic variety? We will see that this is in fact the case 𝐻𝑎𝑀𝑜 .

From this we want to know if such Riemann surface isomorphisms of genus g can be equipped with additional structures: for example, do they have a topologcal structure? If it is possible, then we can speak of moduli space. The introduction of a Riemannian metric allows to ask questions of continuity. We show That, the space of Riemannian metrics is indeed naturally endowed with a topology.

Modular forms

We note H the upper half plane of ℂ. Let SL(2, ℝ) be the group of matrices

𝑎 𝑏 𝑐 𝑑

with real coefficients such as 𝑎𝑑 -𝑏𝑐 = 1. It follows that H is stable by the action of SL(2, ℝ). It should be noted that the element -1 = -1 0 0 -1 operates trivially on H, we can therefore consider the projective group G=𝑃𝑆𝐿(2, ℝ),/ ±1 which operates faithfully.

One can even show that this is the group of all analytic automorphisms of H.

fundamental area D

Let S and T be the elements of G defined respectively by 1 1 0 1 and 0 -1 1 0 , we have: Sz=-1/z,𝑆 2 = 1, Tz=z+1, (𝑆𝑇) 3 = 1. On the other hand, the set consisting of the points z such as 𝑧 ≥ 1, and 𝑅𝑒 𝑧 ≤ 1/2. The last figure represents the transformation of the area D by the set {1, 𝑇, 𝑇𝑆, 𝑆𝑇 -1 𝑆, 𝑆𝑇 -1 , 𝑆, 𝑆𝑇, 𝑆𝑇𝑆, 𝑇 -1 𝑆, 𝑇 -1 } Theorem1 The canonic map D → H /G is surjective

Theorem2

The group G is generated by S and T

Remark1

It can be shown that <S, T, 𝑆 2 , (𝑆𝑇) 3 > is a presentation of G

Elliptic curves

An elliptic curve is given by a lattice of ℂ. A marked lattice is given by an additive discrete subgroup (ℂ,+) of rank 2, and a basis (ω 1 ,ω 2 )∈ ℂ * × ℂ * of this lattice such that Im(ω 1 ,/ω 2 )>0. The set of marked lattices 

ℛ= ω 1 , ω 2 ∈ ℂ * × ℂ * : ω 1 ,/ω 2 ∈
) (𝑐𝜏 + 𝑑) -2𝑘
The integer k is called the weight of the function f.

Among automorphic forms, should be distinguished more subsets. First we note ℳ Г = 𝑀 0 the set of automorphic forms of weight 0, which is identified to the field of meromorphic functions of 𝐻 Г . Next we consider the set 𝑀 𝑘 of forms of weight k, holomorphic on H and holomorphic at each point of Г. Provided with the product, the following direct sum is a graded ℂ-algebra:

𝑀 Г =⊕ 𝑘∈ℤ 𝑀 𝑘 Г
Now, consider the case Г(1) = SL(2, ℤ).

For k >2. For all ω 1 , ω 2 ∈ ℛ, we consider the Eisenstein series of index k:

𝐺 ω 1 , ω 2 = 1 ℷ 2𝑘 𝜆∈∧ *
Where ∧ * is the set of nonzero vectors of the lattice ∧= ℤω 1 ⊕ℤω 2 (convergence is ensured by the fact that k>2). By construction, 𝐺 ω 1 , ω 2 is homogeneous of degree k and SL(2,ℤ)-invariant. A normal convergence argument in a fundamental area of SL(2,ℤ) shows that 𝐺 𝜏, 1 is holomorphic on H and also on the tip ∞ 𝑆𝑒𝑟 . It is also known that the algebra of modular forms for SL(2,ℤ) is polynomial, generated by 𝐺 2 and 𝐺 3 of respective weights 2, 3 and the Einstein series of lowest weight are 𝐺 2 and 𝐺 3 𝑆𝑒𝑟 .

𝐴ccrding to the theory of elliptic curves, it is appropriate to write The function j is called invariant modular function, holomorphic on H and admits a simple pole(of residue equal to1) to infinity. By passing to the quotient, it induces an isomorphism of H(1) onto ℂℙ 1 .

𝑔 2 = 60𝐺 2 and 𝑔 3 = 140𝐺 3 So M(SL(2,ℤ))=ℂ 𝑔 2 , 𝑔 3 ≌ ℂ 𝑋, 𝑌 With 
For reasons of symmetry (Eisenstein series) yields 𝑔 3 𝑖 = 0, 𝑔 2 𝜌 =0 for ρ= (1+i 3)/2, with the special values: j(i)= 12 3 and j(ρ)=0

Finally the field of meromorphic functions SL(2,ℤ)-invariant coincides with ℂ(j), which is isomorphic to the field of rational functions in one variable over ℂ. For all subgroup Г ⊂ SL(2, ℤ) of finite index, the field of meromorphic functions ℳ(Г) is a finite extension of ℂ(j), and is Galois if and only if Г is a normal subgroup of SL 2, ℤ .

Modules with higher genus

The choice of an equation F(x,y) = 0 in a birational equivalence class and the choice of one of two variables y which is expressed as an algebraic function of the other allows to define a finite extension of the field ℂ 𝑥 . This is the field of rational functions on the curve defined by F(x,y) = 0(which can be thought as a field of meromorphic functions on the Riemann surface associated). In algebraic terms, two algebraic curves are birationally equivalent, if their fields of rational functions are isomorphic as extensions of ℂ. From here, it is natural to consider the problem of modules for Riemann surfaces of genus g. This is once fixed topological type and study the birational equivalence classes whose Riemann surfaces that have this topological type. Riemann proposes two methods for calculating the number of modules. In the first one, he considered all meromorphic functions having μ poles (μ >1 counted with multiplicity) on X. In other words, the space of holomorphic maps from X onto ℂℙ 1 of degree μ. For the second method he considered integral attributes of holomorphic forms on X. It inferred from these methods that, there are 3g-3 available branching values that form a complete system modules

Moduli space

For example, if we look at the compact Riemann surfaces as algebraic curves, one wonders if there is a moduli space that it is even a complex algebraic variety. We know that this is indeed the case Proposition2: 𝐻𝑎𝑀𝑜 There is a quasi-projective variety irreducibly complex (in particular connected) which is a coarse moduli space for compact smooth complex algebraic curves of genus g

In fact, one can easily define the concept of a family of algebraic curves of genus g: it is an algebraic morphism 𝜋 ∶ X→ B such that the fibers 𝜋 -1 (𝑏) are curves of genus g. This produces a family of curves "parametered" by the basis B. Our space ℳ 𝑔 is characterized by the fact that for each family of this type, there is a unique algebraic map 𝛾: B → ℳ 𝑔 such that for all b ∈B the curve 𝜋 -1 𝑏 belongs to the isomorphism class represented by point 𝛾(𝑏) ∈ ℳ 𝑔 . In particular we see that the points of ℳ 𝑔 has a geometric structure on this set of modules.

An important point is that ℳ 𝑔 is no basis for any algebraic morphism 𝜋 ∶ X→ ℳ 𝑔 , such that for every b ∈ ℳ 𝑔 , the fiber 𝜋 -1 𝑏 is in the isomorphism class represented by b: for this reason we say that ℳ 𝑔 is only a coarse moduli space.

We see in both methods proposed by Riemann that, Riemann surfaces were considered with some additional structures: a meromorphic function with a numbering of its critical values, or a homology basis. It is important to ask the question of the existence of moduli spaces for such Riemann surfaces "enriched". The advantage of this approach is that rewarding enough structure is obtained without automorphisms and this facilitates the study of the problem of the modules. For example it can show that ℳ 𝑔 is in fact the quotient of a smooth algebraic variety by a finite group.

Let X be a Riemann surface Proposition3 X can be provided with a Riemannian metric g, compatible with the complex structure: that is to say it defines the same angle measurement

Proof In a local holomorphic coordinate z=x+iy the metric g must be written 

Remark2

The conformal class of g is uniquely determined by the X-Riemann structure.

The complex structure of X also induces an orientation of (X, g), obtained from the standard orientation of ℂ. Indeed, changes in cards are biholomorphisms between open sets of ℂ and maintain the standard orientation.

Dependence modules

Let S be compact Riemann surfaces, equipped with a Compatible Riemannian metric h. Local parameters of the moduli space of complex curves of genus g> 1 have been defined. Here we are interested in those of the second kind which are "periods" of a holomorphic 1-form ω on S.

The introduction of a Riemannian metric allows to land on these modules, questions of continuity. The space of the Riemannian metrics is indeed naturally endowed with a topology (the compact-open topology).

Each metric h defines a Riemannian structure denoted 𝑆 𝑐 (h). We can therefore ask how these modules vary. More precisely, the purpose of this section is to show the following proposition.

Proposition3

The map

𝑀𝑒𝑡(𝑆) → ℳ 𝑔 → 𝑆 ℂ (h)
is continuous for the topology "defined" by Riemann on the space ℳ 𝑔 Proof Each Riemannian metric can be associated to a subspace of dimension 2g, of the space of real differential 1-forms: the space of harmonic forms 𝐻𝑎𝑟𝑚 1 (S, ℝ). We see this last space as the kernel of the Laplace map, associated with the metric h

∆ =d𝑑 * +𝑑 * d
This operator varies continuously with the metric h and it is an elliptic operator.

The theory of Fredholm allows to prove the following theorem 𝐻𝑜𝑑 Theorem3(Hodge) Let (S, h) be a Riemannian surface (compact, oriented, without boundary) of genus g. So in the space Ω 1 (S, ℝ) of 𝐶 ∞ 1-forms on S, the subspace 𝐻𝑎𝑟𝑚 1 (S,ℝ) of harmonic forms is of dimension 2g and varies continuously with the metric h.

To show that 𝑆 ℂ (h) depends continuously on h, we first note that the star Hodge map * defines a complex structure on 𝐻𝑎𝑟𝑚 1 (S, ℝ) since ( * ) 2 = -𝐼𝑑. Morevor, the Star Hodge map commutes with the Laplace operator. Thus, the eigenspace of holomorphic forms Remark1 According to a theorem of Torelli, the 𝜋 𝑗𝑘 (h) determine the complex curve

  the zeta function of Riemann ζ, we have: 𝑔 2 (∞) = 120 ζ(4), 𝑔 2 (∞) = 280 ζ(6∞) = 0. In other words ∆ is a parabolic form of weight 12To construct a meromorphic function onto H, that is SL(2, ℤ)-invariant and not constant, we consider the first homogeneous component of M(SL(2, ℤ)) of dimension at least 2. So as to form the quotient of two modular forms, linearly independent of even weight. It can be shown 𝑆𝑒𝑟 that this first component is the form 𝑀 6 , containing ∆= 𝑔 2 and j= 12 3 𝐽

  𝐻 1,0 (h)= Ker * +i.Id ⊂ 𝐻𝑎𝑟𝑚 1 (S, ℝ)varies continuously with the metric h. Now fix a basis (𝐴 𝑗 ,𝐵 𝑗 ) of the space of homology 𝐻 1 (S). The forms 𝜔 𝑗 defined by∫ 𝐴 𝑗 𝜔 𝑘 ()=𝛿 𝑗𝑘 1≤ 𝑗, 𝑘 ≤ 𝑔are the intersection of the space of holomorphic forms with affine hyperplanes. They therefore vary continuously with h.In particular the periods∫ 𝐵 𝑗 𝜔 𝑘 (h) = 𝜋 𝑗𝑘 (h) 1≤ 𝑗, 𝑘 ≤ 𝑔are continuous as well as the zeros 𝑃 𝑗 (h) of 𝜔 𝑗 (h) or of their linear combination ω(h). And therefore also the integrals

  

  The operation of SL(2, ℝ) on ℂ = ℂ ∪ {∞} is given by:

	If g=	𝑎 𝑏 𝑐 𝑑	∈ SL(2, ℝ), and z ∈ ℂ we put 𝑔𝑧 =	𝑎𝑧 +𝑏 𝑐𝑧 +𝑑	, and we have easily
	formula:			
			𝐼𝑚 𝑔𝑧 =	𝐼𝑚(𝑧) 𝑐𝑧 + 𝑑 2

  𝐻is stable by the natural action of SL(2,ℤ) onto ℂ 2 and the quotient SL(2,ℤ)/ℛ is identified with the set of lattices of ℂ 𝑆𝑒𝑟 . This action induces the action of SL(2,ℤ) onto ℝ by homography: that two lattices ∧ 1 and ∧ 2 are homothetic (∃𝑘 ∈ ℂ * , 𝑘 ∧ 1 =∧ 2 ) if and only if j( ∧ 1 )= j( ∧ 2 ), where ∧ 𝑖 denotes the homothety class of the lattice ∧ 𝑖 𝑆𝑒𝑟 .

		𝑎 𝑏 𝑐 𝑑	𝜏 =	𝑎𝜏+𝑏 𝑐𝜏+𝑑
	Let's show the existence of a function, invariant under the action of 𝑆𝐿 2, ℤ ,
			j:H→ℂ
	So for (𝜏 ∈ 𝐻, 𝑎 𝑏 𝑐 𝑑	∈ Г) the function f verifies in particular
		f(𝜏)= f(	𝑎𝜏 +𝑏 𝑐𝜏 +𝑑

such

Let Г be a subgroup of PSL(2,ℤ) with finite index, f a homogeneous function of degree -2k, invariant under the action of Г Notation ℳ is the field of merpmorphic functions on H Definition1 An automorphic form on H with respect to Г is a function f: H→ℂ such that f(𝜏)=𝑓 𝜏, 1 , where 𝑓 :ℳ → ℂ is a homogeneous function of degree -2k, Г-invariant and meromorphic on H.

  𝑒 𝑢(𝑥,𝑦) 𝑑𝑥 2 + 𝑑𝑦 2 where, u is a smooth function. It is not difficult to construct such a metric. Just cover X by open subsets 𝑈 𝑗 , equipped with holomorphic maps 𝑧 𝑗 : 𝑈 𝑗 → ℂ and consider a partition of unity (𝜌 𝑗 ) subordinate to recovery (𝑈 𝑗 ). We can then

	consider the metric			
	g =	𝑗	𝜌 𝑗 . 𝑧 𝑗 *	( 𝑑𝑥 2 + 𝑑𝑦 2 )