Abed Bounemoura 
  
Bassam Fayad 
email: bassam.fayad@imj-prg.fr
  
Laurent Niederman 
email: laurent.niederman@math.u-psud.fr
  
Super-exponential stability for generic real-analytic elliptic equilibrium points

We consider the dynamics in a neighborhood of an elliptic equilibrium point with a Diophantine frequency of a symplectic real analytic vector field and we prove the following result of effective stability. Generically, both in a topological and measure-theoretical sense, any solution starting sufficiently close to the equilibrium point remains close to it for an interval of time which is doubly exponentially large with respect to the inverse of the distance to the equilibrium point.

Introduction

The aim of this paper is to study the effective stability of elliptic equilibrium points of real analytic Hamiltonian systems in n degrees of freedom, for any n ∈ N * . Our main result can be stated informally as follows. The exact definitions and statements are gathered in Section 1.6 below.

Thoerem. If the frequency vector of the elliptic equilibrium is Diophantine, and under an additional open and dense condition of full Lebesgue measure on the coefficients of the power expansion of H at the equilibrium up to order [ n 2 +4 2 ], the equilibrium is doubly exponentially stable. This result will be derived from a more general effective stability result for non-resonant elliptic equilibrium points. It extends previous results of super-exponential stability that were only proved for invariant tori, and where much stronger non-generic assumptions were required. Inspired by the techniques of the current paper, we proved in the subsequent paper ( [START_REF] Bounemoura | Superexponential stability of quasiperiodic motion in Hamiltonian systems[END_REF]) that an invariant Lagrangian Diophantine torus is generically doubly exponentially stable. As we will discuss in detail in the sequel, the study of the stability of tori and that of points have some intrinsic differences. Our proofs build on the idea introduced by Giorgilli and Morbidelli in [START_REF] Morbidelli | Superexponential stability of KAM tori[END_REF] of combining averaging estimates due to Birkhoff normal forms with the Nekhororshev geometric stability theory. Before stating the exact results and giving more explanation about the proof, let us start by describing the general setting.

Stability of elliptic equilibrium points

We consider a symplectic manifold (M, Ω) of dimension 2n, n ∈ N, where Ω is an everywhere non-degenerate closed 2-form, a smooth symplectic vector field X on M (meaning that the one-form i X Ω is closed, or, equivalently, that the Lie derivative L X Ω vanishes identically) and an equilibrium point p * ∈ M , that is X(p * ) = 0. We are interested in studying whether p * is stable in the following sense (in the sense of Lyapounov): given any neighborhood U of p * , there exists a smaller neighborhood V of p * such that for any point p 0 ∈ V , the unique solution p(t) of X starting at p 0 (that is, the unique curve p(t) satisfying ṗ(t) = X(p(t)) and p(0) = p 0 ) is defined and contained in U for all time t ∈ R.

The problem being local, there are some obvious simplifications. First, by the classical theorem of Darboux, we may assume without loss of generality that (M, Ω) = (R 2n , Ω 0 ) where Ω 0 is the canonical symplectic structure of R 2n , and that p * = 0 ∈ R 2n . Then, we may also assume that the one-form i X Ω 0 is in fact exact, meaning that X is Hamiltonian: given a primitive H of i X Ω 0 and letting J 0 be the canonical complex structure of R 2n , the vector field can be simply written X = X H = J 0 ∇H, where the gradient is taken with respect to the canonical Euclidean structure of R 2n . Therefore 0 is an equilibrium point of X H if and only if it is a critical point of H, that is ∇H(0) = 0. Moreover, the Hamiltonian function H being defined only modulo a constant, it is not a restriction to impose that H(0) = 0.

Let (x, y) = (x 1 , . . . , x n , y 1 , . . . , y n ) be symplectic coordinates defined in a neighborhood of the origin 0 ∈ R 2n so that ( ẋ(t), ẏ(t)) = X H (x(t), y(t)) is equivalent to the system ẋ(t) = ∂ y H(x(t), y(t)), ẏ(t) = -∂ x H(x(t), y(t)).

Since H(0) = 0 but also ∇H(0) = 0, the Taylor expansion of H at the origin is of the form H(x, y) = H 2 (x, y) + O 3 (x, y) where H 2 is the quadratic part of H at the origin and where O 3 (x, y) contains terms of order at least 3 in (x, y). We can now define the linearized Hamiltonian vector field at the origin to be the Hamiltonian vector field associated to H 2 :

X H 2 = J 0 ∇H 2 = J 0 A
where A is the symmetric 2n × 2n matrix (corresponding, up to a factor 2, to the Hessian of H at the origin) such that H 2 (x, y) = A(x, y) • (x, y). In order to study the stability of the equilibrium point, it is useful to first study its linear stability, that is, the stability of the origin for the linearized vector field (the latter is obviously equivalent to the boundedness of all its solutions). The matrix J 0 A possesses symmetries which imply, in particular, that if λ is an eigenvalue then so is its complex conjugate λ. It follows that if J 0 A has an eigenvalue with a non zero real part, it also has an eigenvalue with positive real part and in this case one can find solutions of the linear system that converges to infinity at an exponential rate: this implies linear instability but also instability in the sense of Lyapounov. We will say that the equilibrium point is elliptic if the spectrum of the matrix J 0 A is both purely imaginary and simple. This implies linear stability, while linear stability is equivalent to J 0 A being semisimple and its spectrum purely imaginary (but the assumption that the spectrum is simple, which is already a non-resonance assumption, will be important for us in the sequel). Note that if we only assumed the spectrum to be purely imaginary, then, if the matrix J 0 A has a non-trivial Jordan block, one can find solutions for the linearized vector field converging to infinity at a polynomial rate, implying linear instability (but not necessarily instability in the sense of Lyapounov).

So from now on, 0 ∈ R 2n is assumed to be an elliptic equilibrium point of the Hamiltonian system defined by a smooth function H. Since the spectrum of the matrix JA is invariant by complex conjugation, it has necessarily the form {±iα 1 , . . . , ±iα n } for some vector α = (α 1 , . . . , α n ) ∈ R n with distinct components: this is usually called the frequency vector. By a result of linear symplectic algebra (a simple case of a theorem due to Williamson, see [START_REF] Arnold | Mathematical aspects of classical and celestial mechanics[END_REF]) one can find a linear symplectic map which puts the quadratic part into diagonal form (this result requires the components of α to be distinct): hence we can assume that H is of the form

H(x, y) = n j=1 α j (x 2 j + y 2 j )/2 + O 3 (x, y), (1.1) 
where our standing assumption from now on is that the Hamiltonian H is real-analytic, hence it can be extended as a holomorphic function on some complex neighborhood of the origin. Also, we will always assume that the frequency vector α is non-resonant, that is for any non-zero k ∈ Z n , the Euclidean scalar product k • α is non-zero.

Note that fixing such coordinates imposes a sign on the components of the vector α ∈ R n . Given a point (x, y) ∈ R 2n , let us define I(x, y) ∈ R n + by

I(x, y) = (I 1 (x 1 , y 1 ), . . . , I n (x n , y n )), I j (x j , y j ) = (x 2 j + y 2 j )/2, 1 ≤ j ≤ n
so that H can be written again as

H(x, y) = α • I(x, y) + O 3 (x, y) := h 1 (I(x, y)) + O 3 (x, y)
The linearized vector field, associated to h 1 (I(x, y)) = α • I(x, y), is easily integrated: given an initial condition (x 0 , y 0 ), the corresponding solution (x(t), y(t)) is quasi-periodic. More precisely, letting I 0 = I(x 0 , y 0 ) ∈ R n + , one obviously has I(x(t), y(t)) = I 0 for all time t ∈ R and so the set T (I 0 ) = {(x, y) ∈ R 2n | I(x, y) = I 0 } is an invariant torus, the dimension of which equals the number of strictly positive components of I 0 , and on which the flow is just a flow of translation. The same holds true in fact for an arbitrary Hamiltonian depending only on the quantity I(x, y), and such Hamiltonians will be called here integrable.

A central question in Hamiltonian dynamics is then the following.

Problem 1. For a Hamiltonian H as in (1.1), is the origin stable or unstable?

By stable we mean Lyapunov stable in the sense that points near the origin remain in a neighborhood of the origin. Other notions of stability may also be addressed as we will see below.

Perturbation of completely integrable systems.

If H is integrable, the origin is obviously stable. Now in general H is, in a small neighborhood of the origin, a small perturbation of the integrable Hamiltonian h 1 and thus classical techniques from perturbation theory (such as KAM theory, Aubry-Mather theory, Nekhoroshev estimates or Arnold diffusion) may be used to tackle the problem. However, this setting of singular perturbation theory is quite different from the usual context of a perturbation of an integrable Hamiltonian system in action-angle coordinates, that is, a Hamiltonian of the form h(I) + εf (θ, I), where ε is the small parameter and (θ,

I) ∈ T n × R n .
A first obvious difference is that for a Hamiltonian H as in (1.1), one cannot introduce action-angle coordinates on a full neighborhood of the origin: indeed, if we let I j = I j (x j , y j ), then the symplectic polar coordinates x j = 2I j cos θ j , y j = 2I j sin θ j , 1 ≤ j ≤ n are analytically well-defined only away from the axes I j = 0. This amounts to the fact that for a Hamiltonian integrable in a neighborhood of an elliptic equilibrium point, the foliation by invariant tori is singular in the sense that the dimension of each leaf is non-constant (it varies from 0 to n), whereas in action-angle coordinates this foliation is regular.

A second difference lies in the fact that for Hamiltonians of the form h(I) + εf (θ, I) the perturbation f is usually considered as arbitrary whereas in (1.1) the perturbation is more restricted as it is given by the higher order terms O 3 (x, y).

Finally, a third difference is that, under the assumption that α is non-resonant, a Hamiltonian H as in (1.1) possesses infinitely many integrable approximations h m , for any integer m ≥ 2 (given by the Birkhoff normal form, see below for more details) which are uniquely determined (once the vector α is fixed). This is in sharp contrast with a Hamiltonian of the form h(I) + εf (θ, I) which does not have, in general, further integrable approximations.

As we will see below, these differences have the following general effect: in a neighborhood of an elliptic equilibrium point, as opposed to a perturbation of an integrable system in actionangle coordinates, stability properties are stronger and instability properties are harder to exhibit.

KAM stability

Due to the classical KAM (Kolmogorov-Arnold-Moser) theory, one can prove, for any number of degrees of freedom and assuming some non-degeneracy assumption (on the higher order terms O 3 (x, y)), that the elliptic equilibrium point is KAM stable: in any sufficiently small neighborhood of the origin, there exist a positive measure set of Lagrangian invariant tori, on which the dynamics is conjugated to a linear flow, having the origin as a Lebesgue density point.

Related to the results that we will expose in the following sections, let us mention that it is sometimes possible to replace the non-degeneracy assumption in the study of stability by arithmetic conditions on the frequency vector α of the linear part of the flow at the equilibrium. Indeed, in the analytic setting, Herman conjectured the KAM stability (without the Lebesgue density requirement) of Diophantine equilibria without any non-degeneracy assumption. In ( [START_REF]Some open problems in dynamical systems[END_REF]) he made the following conjecture (in the slightly different context of symplectic maps).

Conjecture 1 (Herman). Assuming that α is Diophantine, in any sufficiently small neighborhood of the origin there exists a set of positive Lebesgue measure of Lagrangian invariant tori.

Recall that α ∈ R n is said to be Diophantine if for some constant γ > 0 and exponent

τ ≥ n -1 it holds that |k • α| ≥ γ|k| -τ 1 for all k = (k 1 , . . . , k n ) ∈ Z n \ {0}, where |k| 1 := |k 1 | + • • • + |k n |.
We then use the notation α ∈ DC(τ, γ).

Herman's conjecture is true for n = 2, even in the smooth category, as it was proved by Rüssmann (see for instance [START_REF] H; Rüssmann | Stability of elliptic fixed points of analytic area-preserving mappings under the Bruno condition[END_REF] and [START_REF] Fayad | Herman's last geometric theorem[END_REF] in the discrete case, for respectively realanalytic and smooth maps, and [START_REF] Eliasson | KAM tori near an analytic elliptic fixed point[END_REF] or [EFK15, Section 7.1] in the continuous case) but unknown in general (see [START_REF] Eliasson | KAM tori near an analytic elliptic fixed point[END_REF][START_REF]Around the stability of KAM tori[END_REF] for partial results).

Observe also that this KAM stability phenomenon without any non-degeneracy condition has no counterpart for perturbed integrable system in action-angle coordinates, since any integrable system that does not satisfy the so-called Rüssmann non-degeneracy condition can be simply perturbed so that no invariant torus survives (see [START_REF] Sevryuk | The classical KAM theory at the dawn of the Twenty-First Century[END_REF]).

Arnold's diffusion conjecture

In general, KAM stability does not have direct implications on Lyapounov stability. There are however two cases for which one knows that stability holds true for a Hamiltonian H as in (1.1).

The first case is when the quadratic part H 2 is sign-definite, or, equivalently, when the components of the vector α ∈ R n have the same sign (and this includes, as a trivial instance, the case n = 1). Indeed, the Hamiltonian function has then a strict minimum (or maximum) at the origin, and as this function is constant along the flow (it is in particular a Lyapounov function) one can construct, using standard arguments, a basis of neighborhoods of the origin which are invariant, and the latter property is obviously equivalent to stability.

The second case is when n = 2 and when the so called Arnold iso-energetic non-degeneracy condition is satisfied. Then, KAM stability occurs in every energy level passing sufficiently close to the origin, implying Lyapounov stability as the two-dimensional tori disconnect each three-dimensional energy level (see for instance [START_REF] Arnol'd | The stability of the equilibrium position of a Hamiltonian system of ordinary differential equations in the general elliptic case[END_REF] and [START_REF]On invariant curves of area-preserving mappings of an annulus[END_REF]). It is easy to see that the Arnold iso-energetic non-degeneracy condition is generic in measure and topology as a function of the coefficients of the O 4 (x, y) part of the Taylor expansion of H around the origin. Arnold conjectured that apart from these two cases (the case of a sign-definite quadratic part, and generically for n = 2), an elliptic equilibrium point is generically unstable. More precisely, in [START_REF] Arnold | Mathematical problems in classical physics, Trends and perspectives in applied mathematics[END_REF] one can find the following conjecture.

Conjecture 2 (Arnold). An elliptic equilibrium point of a generic analytic Hamiltonian system is Lyapounov unstable, provided n ≥ 3 and the quadratic part of the Hamiltonian function at the equilibrium point is not sign-definite.

This conjecture is wide open, to such an extent that under our standing assumptions (realanalyticity of the Hamiltonian and a non-resonance condition on the frequency vector), it was only recently that some particular unstable examples were introduced in [START_REF] Fayad | Lyapunov unstable elliptic equilibria[END_REF]. For instance, the Birkhoff normal form in the examples of [START_REF] Fayad | Lyapunov unstable elliptic equilibria[END_REF] are not Kolmogorov non degenerate.

If the frequency vector is resonant, it is quite easy to construct an example of unstable elliptic equilibrium point (see [START_REF] Moser | On the elimination of the irrationality condition and Birkhoff 's concept of complete stability[END_REF]). But even in this case, the genericity is still open (see [START_REF] Kaloshin | Analyse complexe, systèmes dynamiques, sommabilité des séries divergentes et théories galoisiennes[END_REF] for an announcement on some partial results).

If the Hamiltonian is smooth non-analytic, examples have been constructed by Douady-Le Calvez ([DLC83]) for n = 3 and by Douady ([Dou88]) for any n ≥ 3, but there also, genericity was out of reach with their methods.

Effective stability

The aim of this paper is to investigate the so called effective stability of an elliptic equilibrium point. More precisely, given r sufficiently small and any initial condition (x 0 , y 0 ) at a distance at most r from the origin, we are interested in the largest positive time T (r) for which the solution (x(t), y(t)), starting at (x 0 , y 0 ), stays at a distance at most 2r from the origin, for all |t| ≤ T (r). Arnold's conjecture states that for n ≥ 3, it holds generically that T (r) < ∞.

At the moment there is no other conjectural upper bound on T (r). In this paper, we will be interested in lower bound on T (r). Let us first recall some previous results.

First, without any assumptions, it is easily seen from the equations of motion that T (r) is at least of order r -1 . Then, given an integer K ≥ 4, with the assumption that H is smooth and α is non-resonant up to order K, that is

k ∈ Z n , 0 < |k| 1 ≤ K =⇒ k • α = 0
the following statement can be proved (see [START_REF] Birkhoff | Dynamical systems[END_REF] or [START_REF] Douady | Stabilité ou instabilité des points fixes elliptiques[END_REF]): there exists a symplectic transformation Φ K , well-defined in a neighborhood of the origin, such that

H • Φ K (x, y) = α • I(x, y) + h m (I(x, y)) + f K (x, y) (BNF)
where h m is a polynomial of degree m = [K/2] (the integer part of K/2) in n variables, with vanishing constant and linear terms, and f K is of higher order O K+1 (x, y). The polynomial α • I(x, y) + h m (I(x, y)) is usually called the Birkhoff normal form of H of order K. Since the term α • I(x, y) will be fixed in the sequel we will denote h m (I(x, y)) by BNF K (H).

The polynomial BNF K (H) is uniquely defined, but, in general, this is not the case for the coordinate change function Φ K (although there is a distinguished choice of a generating function for Φ K ). An obvious consequence of (BNF) is that, in this case, T (r) is at least of order r -K+1 at the origin (naturally, the neighborhood in which the effective stability holds depends on K and may be very small depending in particular on the arithmetics of α). Thus if α is non-resonant and H is of class C ∞ , T (r) becomes larger near the origin than any power of r -1 . Observe that if α is non-resonant, one can find a formal symplectic transformation Φ ∞ and a unique formal series h ∞ in n variables such that H • Φ ∞ (x, y) = h ∞ (I(x, y)). However, the formal transformation Φ ∞ is in general divergent (see [START_REF] Siegel | On the integrals of canonical systems[END_REF]), and the convergence problem for the formal series h ∞ is still an open problem (see [START_REF] Pérez-Marco | Convergence or generic divergence of the Birkhoff normal form[END_REF] for some results). Now with the assumption that the Hamiltonian H is real-analytic, exponentially large lower bounds for T (r) have been obtained in two different contexts.

First, if α is Diophantine, α ∈ DC(τ, γ), one can prove that T (r) is at least of order exp (γr -1 ) 1 τ +1 . This is obtained by estimating the size of the remainder term f K in the Birkhoff normal form of order K, and then choosing K = K(r) as large as possible in terms of r (see [GDF + 89] or [START_REF] Delshams | Estimates on invariant tori near an elliptic equilibrium point of a Hamiltonian system[END_REF] for slightly better estimates). One should point out here that actually for any non-resonant α one can associate a function ∆ α (r) and prove that T (r) is at least of order exp ∆ α (r -1 ) (see Section 1.6 below for the definition of this function ∆ α ). In the Diophantine case one has ∆ α (x) ≥ (γx) 1 τ +1 and the classical result is thus recovered. Then, in a different direction, assuming only that α is non-resonant up to order K, for some K ≥ 4, but requiring that the quadratic form h 2 is positive definite (which implies that h 1 + h 2 , and then h 1 + h m for any m ≥ 2, is convex in a neighborhood of the origin), it has been proved that T (r) is at least of order exp r -K-3 2n : this was established independently by Niederman ([Nie98]) and Fasso-Guzzo-Benettin ( [START_REF] Fassò | Nekhoroshev-stability of elliptic equilibria of Hamiltonian systems[END_REF]) and later clarified by Pöschel ([Pös99]). The proof is based on the implementation of Nekhoroshev's estimates ([Nek77], [START_REF]An exponential estimate of the time of stability of nearly integrable Hamiltonian systems II[END_REF]): observe that in the absence of action-angle coordinates, this implementation is not straightforward and it was only conjectured by Nekhoroshev.

It is a remarkable fact that both exponential stability results under one of the two hypothesis : 1) α is Diophantine or 2) h 2 is positive definite, can be combined into a double exponential stability result if both 1) and 2) hold. This was first done by Giorgilli and Morbidelli in [START_REF] Morbidelli | Superexponential stability of KAM tori[END_REF] in the context of a quasi-periodic invariant Lagrangian torus. In our context of an elliptic equilibrium, the result of [START_REF] Morbidelli | Superexponential stability of KAM tori[END_REF] would amount to double exponential stability of a Diophantine equilibrium provided h 2 is positive definite, or more precisely that T (r) is at least of order exp (exp((γr -1 )

1 1+τ )) 1 2n
. Even though the condition that h 2 is positive definite is open, it is far from being generic in any sense and recently some efforts have been made to improve this result, especially in [START_REF] Bounemoura | Generic super-exponential stability of invariant tori[END_REF] and [START_REF]Generic super-exponential stability of elliptic equilibrium positions for symplectic vector fields[END_REF]. In [START_REF] Bounemoura | Generic super-exponential stability of invariant tori[END_REF], using results from [START_REF]Prevalence of exponential stability among nearly integrable Hamiltonian systems[END_REF] and [START_REF] Bounemoura | Generic Nekhoroshev theory without small divisors[END_REF], it was proved that under a certain condition on the formal Birkhoff series h ∞ , the double exponential stability holds true. This condition, which includes the condition that h 2 is positive definite as a particular case, was proved to be prevalent (a possible generalization of "full measure" in infinite dimensional spaces) in the space of all formal series. This result has at least two drawbacks. First, although this condition can be termed generic in a measure-theoretical sense, it is far from being generic in a topological sense. Secondly, this condition was only formulated in the space of formal series, and it was unclear whether prevalent Hamiltonians have formal Birkhoff series satisfying this condition. This second issue was partially solved in [START_REF]Generic super-exponential stability of elliptic equilibrium positions for symplectic vector fields[END_REF]: it is proved there that a prevalent Hamiltonian has a formal Birkhoff series satisfying a condition close to the one introduced in [Bou11], yielding a result which is only intermediate between exponential and double exponential stability.

The aim of this paper is to improve those results by establishing that generically, and in a strong sense, the double exponential stability holds true.

Main results

We start by some reminders and notations that will be useful in our statements. Let H be a real analytic Hamiltonian on R 2n having an elliptic equilibrium point at the origin with a non-resonant frequency vector α, that is H is as in (1.1).

• For vectors in C 2n , . denotes the norm defined as

z := max 1≤j≤n |z j | 2 + |z n+j | 2 , z = (z 1 , . . . , z n , z n+1 , . . . , z 2n ) (1.2)
and for vectors in C n , . denotes the usual Euclidean norm

I := |I 1 | 2 + • • • + |I n | 2 , I = (I 1 , . . . , I n , ). (1.
3)

It will be more convenient to use these different norms for vectors in C 2n or in C n , and we hope that this abuse of notations will not confuse the reader.

• We suppose that the radius of convergence of H is strictly larger than some R > 0 and let H R be the sup norm of H in the open complex ball in C 2n centered at the origin of radius R that we denote by

B R := {z ∈ C 2n | z < R}. (1.4)
We also define the real ball B R := B R ∩ R 2n .

• We denote by P (n, m) the set of polynomials of degree m in n variables. We let P 2 (n, m) ⊂ P (n, m) be the subspace of polynomials with a vanishing affine part, and P 3 (n, m) ⊂ P (n, m) the subset of polynomials that have a vanishing affine and quadratic part.

• We denote by Hm ∈ P 3 (2n, m) the part of the power expansion of H that contains the terms of degree between 3 and m included.

• Having fixed the number of degrees of freedom n, in all the sequel, we let

K 0 = K 0 (n) := n 2 + 4, m 0 = m 0 (n) := [K 0 (n)/2].
• The vector α is supposed to be non-resonant: this means that for any integer K ≥ 1,

Ψ α (K) = max{|k • α| -1 | k ∈ Z n , 0 < |k| 1 = |k 1 | + • • • |k n | ≤ K} < +∞. (1.5)
We define, as in [START_REF]Optimal stability and instability for near-linear Hamiltonians[END_REF], the function

∆ α (x) = sup{K ≥ 1 | KΨ α (K) ≤ x}. Observe that if α ∈ DC(τ, γ), then Ψ α (K) ≤ γ -1 K τ and hence ∆ α (x) ≥ (γx) 1 1+τ
(1.6)

• Recall that for H as in (1.1), there exists for every integer K ≥ 4 a real analytic symplectic transformation Φ K defined in the neighborhood of the origin such that

H • Φ K (x, y) = α • I(x, y) + h m (I(x, y)) + f K (x, y)
where h m is a polynomial of degree m = [K/2] (the integer part of K/2) in n variables, with vanishing constant and linear terms, and f K is of higher order O K+1 (x, y). We denoted h m by BNF K (H). By uniqueness of the Birkhoff normal form we have for K = 2m ≥ 4, a well defined map

BNF K : P 3 (2n, K) -→ P 2 (n, m) HK -→ h m = BNF K ( HK ) = BNF K (H).
Our main result is the following.

Theorem A. Let H be a real analytic Hamiltonian on R 2n having an elliptic equilibrium point at the origin with a non-resonant frequency vector α.

There exists an open and dense set of full Lebesgue measure N n (α) ∈ P 3 (2n, K 0 ) such that if HK 0 ∈ N n (α), then there exists r * , c, c ′ , c ′′ > 0 that depend only on n, R, H R , α and HK 0 such that if r ≤ r * , then

T (r) ≥ exp cr -2 exp c ′ ∆ α c ′′ r -1 . If α ∈ DC(τ, γ),
there exists an open and dense set of full Lebesgue measure N n (α) ∈ P 3 (2n, K 0 ) such that if HK 0 ∈ N n (α), then there exists r * and C that depend only on n, R, H R , α, and HK 0 such that if r ≤ r * , then

T (r) ≥ exp exp Cr -1 τ +1
.

Observe that since c ′ and c ′′ will not depend on α (see (3.8)), it follows from (1.6) that the constant C that appears under the double exponential in the Diophantine case is actually of the form C = γ 1 τ +1 C ′ where C ′ does not depend on α. Theorem A improves all previous results contained in [START_REF] Morbidelli | Superexponential stability of KAM tori[END_REF], [START_REF] Bounemoura | Generic super-exponential stability of invariant tori[END_REF] and [START_REF]Generic super-exponential stability of elliptic equilibrium positions for symplectic vector fields[END_REF]. In the course of its proof, we will also have to extend the results on exponential stability contained in [START_REF] Niederman | Nonlinear stability around an elliptic equilibrium point in a Hamiltonian system[END_REF], [START_REF] Fassò | Nekhoroshev-stability of elliptic equilibria of Hamiltonian systems[END_REF] and [START_REF] Pöschel | On Nekhoroshev's estimate at an elliptic equilibrium[END_REF].

Remark 1.1. Observe that even though ∆ α (r -1 ) goes to infinity as r goes to zero, the speed of convergence can be arbitrarily slow but the statement implies that T (r) is always at least of order exp(cr -2 ). From the proof of the theorem, one can easily obtain the following statement: fixing k ∈ N * , k ≥ 2, and allowing the constants r * k and c k to depend also on k, one has

T (r) ≥ exp c k r -k exp c ′ ∆ α c ′′ r -1
which is always at least of order exp(c k r -k ). As a matter of fact, the weaker estimate

T (r) ≥ exp c k r -k
can be obtained if one only assumes α to be non-resonant up to a sufficiently high order depending on k and n.

Remark 1.2. The Diophantine condition α ∈ DC(τ, γ) is sometimes called an asymptotic Diophantine condition. A strictly weaker condition, called uniform Diophantine condition, requires the existence of an increasing sequence

K j ∈ N, K j → ∞, such that |k • α| ≥ γK -τ j for every k ∈ Z n \ {0} with |k| 1 ≤ K j .
This gives Ψ α (K j ) ≤ γK τ j and Theorem A would then imply that there exists a sequence r j → 0 such that

T (r j ) ≥ exp exp Cr -1 τ +1 j .
The notion of stably steep polynomials, which can be implicitly found in the work of Nekhoroshev ([Nek73]), will be important in the proof of Theorem A.

Definition 1 (Stably steep polynomials). A polynomial P 0 ∈ P 2 (n, m) is called stably steep if there exist a neighborhood V of P 0 in P 2 (n, m) and positive constants C, δ such that for any integer l ∈ [1, n -1], any P ∈ V and any vector subspace Λ ⊆ R n of dimension l, letting P Λ be the restriction of P to Λ, the inequality

max 0≤η≤ξ min ||x||=η, x∈Λ ||∇P Λ (x)|| > Cξ m-1
holds true for all 0 < ξ ≤ δ, where || . || is the usual Euclidean norm defined in (1.3).

The set of stably steep polynomials in P 2 (n, m) will be denoted by SS(n, m). Theorem A will clearly follow from the combination of the following two statements, Theorems B and C, with the set N n (α) being defined as N n (α) := BNF -1 K 0 (SS(n, m 0 )). Our first statement is that the set of Hamiltonians with stably steep BNF of order K 0 have doubly exponentially stable equilibria.

Theorem B. Let H be a real analytic Hamiltonian on R 2n having an elliptic equilibrium point at the origin with a non-resonant frequency vector α. If

BNF K 0 (H) = h m 0 ∈ SS(n, m 0 )
then the conclusions of Theorem A hold.

The second statement shows that the condition BNF K 0 (H) = BNF K 0 ( HK 0 ) ∈ SS(n, m 0 ) is generic in a strong sense.

Theorem C. For any non-resonant α ∈ R n , the complement of BNF -1 K 0 (SS(n, m 0 )) in P 3 (2n, K 0 ) is contained in a semi-algebraic subset of positive codimension. In particular, BNF -1 K 0 (SS(n, m 0 )) is a dense open subset of P 3 (2n, K 0 ) of full Lebesgue measure. Proof of Theorem A. Putting together Theorem B and C immediately yields Theorem A if we take N n (α) = BNF -1 K 0 (SS(n, m 0 )).

To prove Theorem C, we will show that the complement of SS(n, m 0 ) in P 2 (n, m 0 ) is contained in a semi-algebraic subset of codimension at least one. This will be done in Sections 3.1, 3.2 and Appendix A.

Theorem B will follow (see Section 3.4) from a version of the Nekhoroshev exponential stability result adapted to our singular perturbation setting, which will be stated in Section 2 and proved in a companion paper [START_REF]Nekhoroshev exponential stability for a steep elliptic equilibrium[END_REF].

Comments, open questions and prospects

It is natural to ask whether our main result, Theorem A, can be improved, and so we can ask the following two questions.

Question 1. What can one say about the effective stability of an equilibrium as in (1.1) if no assumption is made on the Birkhoff normal form?

As mentioned earlier, the sole fact that α ∈ DC(τ, γ), implies that T (r) is at least of order exp (γr -1 )

1 τ +1
(see [GDF + 89] or [START_REF] Delshams | Estimates on invariant tori near an elliptic equilibrium point of a Hamiltonian system[END_REF] for slightly better estimates). In [START_REF] Farré | Instabilities of analytic quasi-periodic tori[END_REF], for d ≥ 3 and any τ > d and any ε > 0, a real analytic Hamiltonian H : T d × R d → R was constructed that has an invariant quasi-periodic Lagrangian trous with frequency α ∈ DC(τ ), for which the diffusion time satisfies T (r) ≤ 1 r exp Cr -1 τ +1-ε . No such example is known to exist for Diophantine equilibria.

Question 2. Is the estimate on the time T (r) in Theorem A essentially optimal?

A main difficulty in these questions is related to the fact that the construction of an unstable elliptic equilibrium point in the analytic category is a wide open problem as we emphasized in the Introduction. Concerning the second question, let us just mention that it may be possible to give an answer in the Gevrey category (a regularity which is intermediate between smooth and analytic). Indeed, on the one hand, one should expect that the statement of Theorem A holds true for Gevrey Hamiltonians, with only different constants. On the other hand, elaborating on the methods of [START_REF] Herman | Sur les courbes invariantes par les difféomorphismes de l'anneau, volume 1, with an appendix by a. fathi[END_REF] and [START_REF] Marco | Stability and instability for Gevrey quasi-convex nearintegrable Hamiltonian systems[END_REF], an example showing the optimality of double exponential stability for invariant tori in Gevrey class and in the quasi-convex case, was announced in [START_REF] Fayad | Kam tori are no more than sticky[END_REF].

Moreover, it is also natural to ask whether our result holds true for a quasi-periodic invariant Lagrangian torus, or more generally, for a quasi-periodic normally elliptic and reducible invariant torus (which includes both elliptic equilibrium points and quasi-periodic invariant Lagrangian tori as particular cases). This general case is described by a Hamiltonian of the form H(θ, J, x, y) = β • J + α • I(x, y) + F (θ, I, x, y)

where (θ, J) ∈ T m × R m are action-angle coordinates, (x, y) symplectic coordinates around the origin in R 2n and F is at least of order 2 in I and 3 in (x, y). The set {(J, x, y) = 0} = {(J, x, y) | J = 0, I(x, y) = 0} is a normally elliptic torus of dimension n in a n + m degrees of freedom Hamiltonian, and the question is as follows.

Question 3. Assuming that the vector (β, α) ∈ R m+n is Diophantine, does the conclusion of Theorem A hold for a generic real-analytic function F : if (J(0), I(x(0), y(0))) is at a distance r of zero in R n+m , with r sufficiently small, is it true that (J(t), I(x(t), y(t))) stays at a distance 2r from 0 for a time T (r) which is doubly exponentially large with respect to r -1/(τ +1) (where τ is the exponent of the Diophantine condition on the vector (β, α))?

In a subsequent paper ([BFN17]), we answered positively the above question in the case of an invariant Lagrangian Diophantine torus that is of particular interest in the study of perturbed integrable systems. Indeed, by KAM theory, it is well-known that invariant Lagrangian Diophantine tori appear for arbitrary small perturbations of generic integrable Hamiltonian systems in action-angle coordinates. Furthermore, these tori are not isolated and appear as a family parametrized by some Cantor set of positive Lebesgue measure (tending to full measure as the size of the perturbation goes to zero). The goal of [START_REF] Bounemoura | Superexponential stability of quasiperiodic motion in Hamiltonian systems[END_REF] is to prove that under an additional generic assumption on the integrable Hamiltonian, most of the KAM tori are doubly exponentially stable.

Nekhoroshev exponential stability for a steep elliptic equilibrium

To state precisely the result, let us introduce further notations.

• For vectors in C n , it will be convenient to also • We define . r to be the sup norm for functions defined on B r or on D r . Extending the norm . initially defined for vectors in C n and C 2n (respectively in (1.2) and in (1.3)) to tensors in C n and C 2n , we extend the sup norm . r for tensor-valued functions defined on B r or on D r . The same notation . r will be used also for the real domains B r and D r : this will not cause confusion as it will be clear from the context if it is the complex or the real domains that are considered.

• We consider a Hamiltonian H of the form

H(z) = h(I(z)) + f (z), h : D r → C, f : B r → C ( * )
which is real analytic and such that

∇h r ≤ E, ∇ 2 h r ≤ F, X f r ≤ ε (2.2)
where X f is the Hamiltonian vector field associated to f

• The integrable Hamiltonian h is supposed to be steep on the domain D r , as defined below.

Definition 2. A differentiable function h : D r → R is steep if there exist positive constants C, δ, p l , for any integer l ∈ [1, n -1], and κ such that for all I ∈ D r , we have ||∇h(I)|| ≥ κ and, for all integer l ∈ [1, n -1], for all vector space Λ ∈ R n of dimension l, letting λ = I + Λ the associated affine subspace passing through I and h λ the restriction of h to λ, the inequality

max 0≤η≤ξ min ||I ′ -I||=η, I ′ ∈λ∩Dr ||∇h λ (I ′ ) -∇h λ (I)|| > Cξ p l
holds true for all 0 < ξ ≤ δ. We say that h is (r, κ, C, δ, (p l ) l=1,...,n-1 )-steep and, if all the p i = p, we say that h is (r, κ, C, δ, p)-steep.

Let us point out that the definition of steepness that we use is not exactly the one given by Nekhoroshev but it is obviously equivalent to it (see [START_REF] Nekhoroshev | Stable lower estimates for smooth mappings and for the gradients of smooth functions[END_REF] or [START_REF]An exponential estimate of the time of stability of nearly integrable Hamiltonian systems[END_REF]). Indeed, Nekhoroshev only requires steepness for subspaces Λ which are orthogonal to ∇h(I), in which case ∇h λ (I) = 0; for subspaces Λ such that ∇h λ (I) = 0, the inequality in Definition 2 is clearly satisfied (and one may even set p l = 0 in this case). Here's the main result of [START_REF]Nekhoroshev exponential stability for a steep elliptic equilibrium[END_REF].

Theorem 2.1 (Bounemoura-Fayad-Niederman). Let H(z) = h(I(z)) + f (z) be as in ( * ) satisfying (2.2), such that h is (r, κ, C, δ, (p l ) l=1,...,n-1 )-steep. Then there exist r * , c, c′ > 0, which depend only on n, E, F , κ, C and p l for 1 ≤ l ≤ n -1 such that if r ≤ r * , rε ≤ c min δ 2na , r 4na

(2.3)

where a := 1 + p 1 + p 1 p 2 + • • • + p 1 p 2 . . . p n-1 ,
then for any solution z(t) of the Hamiltonian flow ( * ) with z(0) = z 0 ∈ B r/2 we have

|I(z(t)) -I(z 0 )| ≤ c′ (rε) 1 2na , |t| ≤ exp (rε) -1 2na .

Genericity of steepness and Birkhoff normal forms

The aim of this section is to give a proof of Theorem B and Theorem C; we recall that this two statements together imply our main result Theorem A. The proof of Theorem C will be given in Section 3.2, while the proof of Theorem B will be given in Section 3.4 and will use Theorem 2.1 (which was just stated above).

Genericity of steepness

In Appendix A we will prove a general result on genericity of stably steep polynomials.

Theorem 3.1. The complement of SS(n, m 0 ) in P 2 (n, m 0 ) is contained in a semi-algebraic subset Υ(n, m 0 ) of codimension at least one.

Theorem 3.1 has an immediate consequence on the genericity of steep functions as will be shown in the following Theorem 3.2.

Given p ∈ N, p ≥ 3 and ρ > 0, let C p (D ρ ) be the set of functions p times continuously differentiable on D ρ , and let

||∇ 2 h|| p,ρ = max 2≤j≤p ∇ j h ρ < ∞
where . ρ is the sup norm on D ρ of the tensor-valued function ∇ j h, and where we recall that by definition, D ρ is the (real) open ball of radius ρ 2 /2 with respect to the sup norm | . |. Given h ∈ C p (D ρ ), we denote by T p-1 h(I) ∈ P (n, p -1) the Taylor expansion of h of order p -1 at I ∈ D ρ (or the p -1-jet at I). We have the following statement (that will be used later with the value p = m 0 + 1).

Theorem 3.2. Let h ∈ C p (D ρ ) be such that ∇h(0) := ̟ and P p-1 := T p-1 h(0) -T 1 h(0) -T 0 h(0) ∈ SS(n, p -1). Then, there exists positive numbers µ * , δ * and C that depend only on ̟, P p-1 , ||∇ 2 h|| p,ρ and n such that h is (µ, κ, C, δ, p -2)-steep, with

µ := min{ρ/2, µ * }, κ := ̟/2, δ := min{ρ 2 /4, δ * }. Proof of Theorem 3.2. Let M := ||∇ 2 h|| p,ρ . Observe first that if µ 2 ≤ ̟/M then the condi- tion ∇h(I) ≥ κ = ̟/2 is satisfied for any I ∈ D µ .
Fix an arbitrary I ∈ D µ , and define H I = T p-1 h(I) -T 1 h(I) -T 0 h(I) ∈ P 2 (n, p -1). Since H 0 = T p-1 h(0) -T 1 h(0) -T 0 h(I) = P p-1 is stably steep, we have the existence of μ that depends on M , P p-1 , and n such that if µ ≤ μ, H I is sufficiently close to P p-1 so that for all integer l ∈ [1, n -1], for all vector subspace Λ ⊆ R n of dimension l, letting H I,Λ be the restriction of H I to Λ, the inequality

max 0≤η≤ξ min ||x||=η, x∈Λ ||∇H I,Λ (x)|| > C 0 ξ p-2
holds true for all 0 < ξ ≤ δ 0 , where δ 0 and C 0 are the steepness constant related to P p-1 . Now, we get by the Taylor formula (applied to ∇h at the order p -1) that

∇h(I + x) -∇h(I) -∇H I (x) ≤ M (p -1)! x p-1 provided I + x ∈ D ρ , which is satisfied if µ ≤ ρ/2 and |x| ≤ x ≤ ρ 2 /4. So for x ≤ ξ ≤ δ, with δ := min{C 0 (2M (p -1)!) -1 , ρ 2 /4}, we have ∇h(I + x) -∇h(I) -∇H I (x) ≤ (C 0 /2)ξ p-2
and then, letting λ = I + Λ,

∇h λ (I + x) -∇h λ (I) -∇H I,Λ (x) ≤ (C 0 /2)ξ p-2 .
From this we eventually obtain 

Generic steepness of the BNF.

The proof of Theorem C will be an easy consequence of Theorem 3.1 and the following two lemmas on the map BNF K .

Lemma 3.3. The map BNF K is algebraic.

Proof. This follows by construction of the Birkhoff normal form, and we refer to [START_REF] Pérez-Marco | Convergence or generic divergence of the Birkhoff normal form[END_REF] for more details.

Now given a polynomial

Q = Q 2 + • • • + Q m ∈ P 2 (n, m),
where each Q j is homogeneous of degree j, it can be identified to a polynomial Q ∈ P 3 (2n, K) by setting Q(ξ) := Q(I(ξ)). For K ≥ 4, we can define a map by

F K : P 2 (n, m) -→ P 2 (n, m) Q -→ BNF K ( HK + Q).
Lemma 3.4. The map F K preserves Lebesgue measure.

Proof. This also follows by construction of the Birkhoff normal form. More precisely, it can be shown that decomposing the map F K as F K = (F K 2 , . . . , F K m ), where F K j is the component with respect to homogeneous polynomials of degree j, then we have

F K 2 (Q) = Q 2 +BNF 4 ( H4 ) = Q 2 +h 2 , and for 3 ≤ j ≤ K, we have F K j (Q) = Q j +F K j ( H2j , Q 2 , . . . , Q j-1
) where F K j is an algebraic map (see [START_REF]Generic super-exponential stability of elliptic equilibrium positions for symplectic vector fields[END_REF], where this property has already been used). This expression clearly implies that F K is smooth with Jacobian one, therefore it preserves Lebesgue measure.

Proof of Theorem C. Our aim is to show that the complement of BNF -1 K 0 (SS(n, m 0 )) in P 3 (2n, K 0 ) is contained in a semi-algebraic subset of positive codimension. Since the inverse image of a semi-algebraic subset by an algebraic map is semi-algebraic, from Theorem 3.1 and Lemma 3.3, it follows that the complement of BNF -1 K 0 (SS(n, m 0 )) in P 3 (2n, K 0 ) is contained in a semi-algebraic subset. It remains to prove that this set has positive codimension, or equivalently, zero Lebesgue measure in P 3 (2n, K 0 ). By Lemma 3.3, for any HK 0 ∈ P 3 (2n, K 0 ), the Lebesgue measure in P 2 (n, m 0 ) of the set

{Q ∈ P 2 (n, m 0 ) | HK 0 + Q / ∈ BNF -1 K 0 (SS(n, m 0 ))}
is zero. By Fubini-Tonelli theorem, this implies that the complement of BNF -1 K 0 (SS(n, m 0 )) in P 3 (2n, K 0 ) has zero Lebesgue measure, and this concludes the proof.

Birkhoff normal forms with estimates

For a real analytic Hamiltonian with an elliptic equilibrium point, as in (1.1), it is known that the estimates on the Birkhoff normal form are given by the arithmetic properties of α and the analytic norm of H. We summarize in the following Proposition 3.5 the estimates on the BNF that will be useful for us in the sequel. The proof of Proposition 3.5 is relatively standard, we include it in Appendix B following [START_REF] Delshams | Estimates on invariant tori near an elliptic equilibrium point of a Hamiltonian system[END_REF].

Here it will be more convenient to perform a linear change of complex canonical coordinates z = S(ξ), where S : C 2n → C 2n is defined by

z j = 1 √ 2 (ξ j + iξ n+j ), z n+j = i √ 2 (ξ j -iξ n+j ).
It is easy to check that this linear transformation S and its inverse S -1 have unit norm (with respect to the norm || . || defined in (1.2)), hence H and H • S have the same radius of convergence around the origin and ||H • S|| R = ||H|| R . Abusing notations, we will still write H instead of H • S to denote the Hamiltonian in these new coordinates. Observe that

H 2 (ξ) = h 1 (I(ξ)) = α • I(ξ) = i n j=1 α j ξ j ξ n+j where I(ξ) = (I 1 (ξ), . . . , I n (ξ)), I j (ξ) = iξ j ξ n+j , 1 ≤ j ≤ n.
Recall the definition of Ψ α given in Section 1.6 and define also for any integer j ≥ 3,

ψ j α := j i=3 Ψ α (i). For K ≥ 1, define ρ K := (548ncdKΨ(K)) -1 , (3.1) 
where the positive constants c and d depend only on n, R and ||H|| R and are defined in (B.3).

Proposition 3.5. Let H be as in (1.1) with α as in (1.5), and fix integers p ≥ 2, K ≥ 2p and 0 ≤ q ≤ K -4. There exist constants b(p) and b(q) that depend respectively on p, n, R, H R , ψ 2p-1 α and on q, n, R, H R , ψ q+2 α such that if we assume

0 < ρ ≤ ρ K /e, (3.2) 
then there exists a real-analytic symplectic transformation

Φ K = Id + O(ξ 2 ) defined on B ρ K such that H • Φ K (ξ) = α • I(ξ) + h m (I(ξ)) + f K (ξ), with f K = O(ξ K+1
) and the following estimates hold

||∇ 2 h m || p,ρ = max 2≤j≤p ||∇ j h m || ρ ≤ b(p) (3.3) ||∇f K || ρ ≤ b(q)ρ q e -K .
(3.4)

From Nekhoroshev stability to double exponential stability

In this section we prove that Theorem 2.1 implies Theorem B. As a corollary of Proposition 3.5 and Theorem 3.2 we get the following Proposition 3.6. Let H be as in (1.1) with α as in (1.5), and such that

BNF K 0 ( HK 0 ) = h m 0 ∈ SS(n, m 0 ).
There exists C > 0 and K * ≥ 4 that depend only on n, R, H R , h m 0 , ||α|| and

ψ 2m 0 +1 α such that if K ≥ K * , 0 < ρ ≤ ρ K /e,
then there exists a real-analytic symplectic transformation

Φ K = Id + O(ξ 2 ) defined on B ρ K such that H • Φ K (ξ) = α • I(ξ) + h m (I(ξ)) + f K (ξ) := h(I(ξ)) + f K (ξ) (3.5) with f K = O(ξ K+1 ) and ||∇ 2 h m || m 0 +1,ρ = max 2≤j≤m 0 +1 ||∇ j h m || ρ ≤ b(m 0 + 1) (3.6) ||∇f K || ρ ≤ b(q)ρ q e -K , 0 ≤ q ≤ K -4, (3.7) 
and such that h is (ρ/2, ||α||/2, C, ρ 2 /4, m 0 -1)-steep.

Proof of Proposition 3.6. For K ≥ K * ≥ 2(m 0 +1) apply Proposition 3.5 with p = m 0 +1 and q ≤ K -4 and get (3.5) with estimates (3.6) and (3.7). We want to apply Theorem 3.2 with p = m 0 + 1 and

̟ = ||α||. Observe first that T m 0 h(0) -T 1 h(0) -T 0 h(0) = h m 0 ∈ SS(n, m 0 ).
Then observe also that ∇ 2 h = ∇ 2 h m and that by (3.6), we have the bound

||∇ 2 h|| m 0 +1,ρ = ||∇ 2 h m || m 0 +1,ρ ≤ b(m 0 + 1)
which is independent of ρ, hence the constants C, µ * and δ * in the statement of Theorem 3.2 do not depend on ρ, and choosing K * sufficiently large, ρ K and then ρ become sufficiently small so that ρ/2 ≤ µ * and ρ 2 /4 ≤ δ * therefore h is (ρ/2, ||α||/2, C, ρ 2 /4, m 0 -1)-steep.

We now use Proposition 3.6 and Theorem 2.1 to give the Proof of Theorem B. Let H be as in (1.1) with α as in (1.5) and

BNF K 0 ( HK 0 ) = h m 0 ∈ SS(n, m 0 ).
For r > 0 we define K = ∆ α ((1644encdr) -1 ) so that ρ K /e ≥ 3r, and observe that K ≥ K * is satisfied (with K * given by Proposition 3.6) provided r ≤ r * for some sufficiently small r * > 0. Hence we can apply the latter proposition with our choice of K and with ρ = 3r. Next we want to apply Theorem 2.1 to (3.5). First observe that Theorem 2.1 is stated and proved in the z variables whereas the estimate of Proposition 3.6 are given in the ξ variables: however since z = S(ξ) with S and S -1 of unit norm, Theorem 2.1 also holds true, with the same estimates, if one uses the ξ variables.

From Proposition 3.6 and our choice of ρ, the function h is (3r/2, ||α||/2, C, 9r 2 /4, m 0 -1)steep and (2.2) is satisfied with

E := 3/2||α||, F := b(2), ε := b(q)ρ q e -K
for some 0 ≤ q ≤ K -4 yet to be chosen. Up to taking r * smaller one easily checks that (2.3) (with r replaced by ρ = 3r) is satisfied provided we choose q = 4na -1. Thus Theorem 2.1 can be applied and we obtain the following statement: given an arbitrary solution ξ(t) of the system associated to

H • Φ K in (3.5), if || ξ(0)|| = ||z(0)|| ≤ ρ/2 = 3r/2, then |I(z(t)) -I(z(0))| ≤ c′ (ρε) 1 2na , |t| ≤ exp (ρε) -1 2na .
For r sufficiently small, this implies in particular that || ξ(t)|| = ||z(t)|| < 7r/4 for times

|t| ≤ exp (3rε) -1 2na .
Recalling the definition of ε and with our choices of q and K, the previous estimate implies that || ξ(t)|| = ||z(t)|| < 7r/4 for times

|t| ≤ exp(cr -2 exp(c ′ ∆ α (c ′′ r -1 ))) with c := 3 -2 b(4na -1) -1 2na , c ′ := (2na) -1 , c ′′ := 1644encd. (3.8)
To conclude, observe that H is related to (3.5) by a symplectic transformation Φ K = Id + O(ξ 2 ), which can be made close enough to the identity (as well as its inverse) by taking r small enough. Hence, given any solution ξ(t) of the system associated to H with ||ξ(t)|| = ||z(t)|| ≤ r, the corresponding solution ξ(t) of (3.5) satisfy || ξ(0)|| = ||z(0)|| ≤ 3r/2 for r small enough, and therefore || ξ(t)|| = ||z(t)|| < 7r/4, and also ||ξ(t)|| = ||z(t)|| < 2r, for times |t| ≤ exp(cr -2 exp(c ′ ∆ α (c ′′ r -1 ))).

We eventually arrives at the estimate

T (r) ≥ exp(cr -2 exp(c ′ ∆ α (c ′′ r -1 )))
and this concludes the proof of the lower bound on T (r) in the general case. The estimate in the Diophantine case follows from the general case and from (1.6).

A Proof of generic steepness

The aim of this section is to give the proof of Theorem 3.1. The latter will be an immediate consequence of Propositions A.2 and A.3 below. We shall use in the proof of these propositions basic results concerning semi-algebraic subsets; for proofs and more information we refer to [START_REF] Bochnak | Real algebraic geometry[END_REF]. Our main ingredient to prove Theorem 3.1 is a result of Nekhoroshev on stably expanding polynomials that we will now state.

Let us first recall that P (n, m) denotes the space of polynomials of degree m in n variables with real coefficients, and P 2 (n, m) the subspace of P (n, m) consisting of polynomials with vanishing homogeneous parts of order zero and one. The following definition, which is related to the definition of stably steep polynomials, is due to Nekhoroshev ([Nek73]).

Definition 3. Let 1 ≤ l ≤ n -1. A polynomial Q 0 ∈ P 2 (l, m) is called stably expanding if there exist a neighborhood U l of Q 0 in P 2 (l, m) and positive constants C ′ l , δ ′ l such that for any Q ∈ U l , the inequality max 0≤η≤ξ min ||y||=η ||∇Q(y)|| > C ′ l ξ m-1
holds true for all 0 < ξ ≤ δ ′ l .

The set of stably expanding polynomials in P 2 (l, m) will be denoted by SE(l, m).

Theorem A.1 (Nekhoroshev). Let 1 ≤ l ≤ n -1. The complement of SE(l, m) in P 2 (l, m) is contained in a closed semi-algebraic subset Σ(l, m) of codimension [m/2].
Let us denote by L(n, l) the space of rectangular matrices with n rows and l columns, with real coefficients, and by L 1 (n, l) the open subset of L(n, l) consisting of matrices of maximal rank. Any A ∈ L(n, l) induces a linear map A : R l → R n , hence given P ∈ P (n, m), we can define P A ∈ P (l, m) by setting P A (x) = P (Ax), x ∈ R l . Moreover, if P ∈ P 2 (n, m), then P A ∈ P 2 (l, m). Let us define the set

Θ(l, n, m 0 ) = {(P, A, Q) ∈ P 2 (n, m 0 ) × L 1 (n, l) × Σ(l, m 0 ) | P A = Q}.
Then we define Υ(l, n, m 0 ) to be the projection of Θ(l, n, m 0 ) on the first factor P 2 (n, m 0 ), and finally

Υ(n, m 0 ) = n-1 l=1 Υ(l, n, m 0 ).
Theorem 3.1 is a straightforward consequence of the following two properties of the set Υ(n, m 0 ).

Proposition A.2. The set Υ(n, m 0 ) is a semi-algebraic subset of P 2 (n, m 0 ) of codimension at least one.

Proposition A.3. The complement of SS(n, m 0 ) in P 2 (n, m 0 ) is contained in Υ(n, m 0 ).
The second proposition is true for any m ≥ 2 and not just for m = m 0 , but this will not be needed.

Let us now give the proof of Proposition A.2 and Proposition A.3, following the arguments in [START_REF] Nekhoroshev | Stable lower estimates for smooth mappings and for the gradients of smooth functions[END_REF].

Proof of Proposition A.2. The set P 2 (n, m 0 ) is a real vector space hence it is algebraic, L 1 (n, l) is obviously an algebraic subset of L(n, l) whereas, by Theorem A.1, Σ(l, m 0 ) is a semialgebraic subset of P 2 (l, m 0 ). Moreover, for (P, A, Q) ∈ P 2 (n, m 0 ) × L 1 (n, l) × Σ(l, m 0 ), the equality P A = Q corresponds to a system of algebraic equations in the coefficients of P , A and Q. This implies that Θ(l, n, m 0 ) is a semi-algebraic subset of P 2 (n, m 0 ) × L(n, l) × P 2 (l, m 0 ). Now since the projection of a semi-algebraic subset is a semi-algebraic subset, Υ(l, n, m 0 ) is a semi-algebraic subset of P 2 (n, m 0 ). Then, as a finite union of semi-algebraic subsets is semi-algebraic, Υ(n, m 0 ) is a semi-algebraic subset of P 2 (n, m 0 ). We need to prove that the codimension of Υ(n, m 0 ) in P 2 (n, m 0 ) is at least one; to do this it is sufficient to prove that the codimension of Υ(l, n, m 0 ) in P 2 (n, m 0 ) is at least one for any 1 ≤ l ≤ n -1. So let us fix 1 ≤ l ≤ n -1. Given (A, Q) ∈ L(n, l) × P 2 (l, m 0 ), we define Θ A,Q (l, n, m 0 ) to be the intersection of Θ(l, n, m 0 ) with the set

{(P ′ , A ′ , Q ′ ) ∈ P 2 (n, m 0 ) × L(n, l) × P 2 (l, m 0 ) | A ′ = A, Q ′ = Q}. If (A, Q) ∈ L 1 (n, l) × Σ(l, m 0 ), it is easy to see that dimΘ A,Q (l, n, m 0 ) = dimP 2 (n, m 0 ) -dimP 2 (l, m 0 ) and therefore dimΘ(l, n, m 0 ) = dimΘ A,Q (l, n, m 0 ) + dimL 1 (n, l) + dimΣ(l, m 0 ) = dimP 2 (n, m 0 ) -dimP 2 (l, m 0 ) + dimL 1 (n, l) + dimΣ(l, m 0 ) = dimP 2 (n, m 0 ) + dimL 1 (n, l) -codimΣ(l, m 0 ) = dimP 2 (n, m 0 ) + nl -[m 0 /2]
where in the last equality we used the fact that dimL 1 (n, l) = dimL(n, l) = nl and Theorem A.1. Now given P ∈ P 2 (n, m 0 ), we define Θ P (l, n, m 0 ) to be the intersection of Θ(l, n, m 0 ) with the set

{(P ′ , A ′ , Q ′ ) ∈ P 2 (n, m 0 ) × L(n, l) × P 2 (l, m 0 ) | P ′ = P }.
Recall that if GL(l) denotes the group of square invertible matrix of size l, with real coefficients, then GL(l) acts freely on L 1 (n, l) (the quotient space is nothing but the Grassmannian G(l, n), that is, the space of all l-dimensional subspaces of R n ). It is then easy to see that GL(l) acts freely on Θ P (l, n, m 0 ), therefore the dimension of an orbit of this action equals the dimension of GL(l), which is l 2 , and hence, dimΘ P (l, n, m 0 ) = l 2 .

Since Υ(l, n, m 0 ) is the projection of Θ(l, n, m 0 ) on the first factor P 2 (n, m 0 ), we have

dimΥ(l, n, m 0 ) ≤ dimΘ(l, n, m 0 ) -l 2 ≤ dimP 2 (n, m 0 ) + nl -[m 0 /2] -l 2 ≤ dimP 2 (n, m 0 ) -[m 0 /2] + l(n -l) ≤ dimP 2 (n, m 0 ) -[m 0 /2] + [n 2 /4] ≤ dimP 2 (n, m 0 ) -1
where the last inequality follows from the definition of m 0 . This proves that Υ(l, n, m 0 ) has codimension at least one in P (n, m 0 ) for any 1 ≤ l ≤ n-1, therefore Υ(n, m 0 ) has codimension at least one in P (n, m 0 ) and this concludes the proof.

Proof of Proposition A.3. To prove that the complement of SS(n, m 0 ) in P 2 (n, m 0 ) is contained in Υ(n, m 0 ), we will prove that the complement of Υ(n, m 0 ) in P 2 (n, m 0 ) is contained in SS(n, m 0 ). So we fix P 0 ∈ P 2 (n, m 0 ) \ Υ(n, m 0 ) and 1 ≤ l ≤ n -1. We denote by O(n, l) the subset of L 1 (n, l) consisting of matrices whose columns are orthonormal vectors for the Euclidean scalar product. Recalling that the Grassmannian G(l, n) is the quotient of L 1 (n, l) by GL(l), it is also the quotient of O(n, l) by the group O(l) of orthogonal matrices of R l . Therefore given any Λ 0 ∈ G(l, n), there exist an open neighborhood B Λ 0 of Λ 0 in G(l, n) and a continuous map Ψ : B Λ 0 → O(n, l) such that, if π : O(n, l) → G(l, n) denotes the canonical projection, then π • Ψ is the identity. Let us now consider the continuous map

F : P 2 (n, m 0 ) × B Λ 0 → P 2 (l, m 0 ), F (P, Λ) = P Ψ(Λ) .
Since P 0 does not belong to Υ(n, m 0 ), by definition of the latter set it comes that F (P 0 , Λ) does not belong to Σ(l, m 0 ) and therefore, by Theorem A.1, F (P 0 , Λ) ∈ SE(l, m 0 ) for any Λ ∈ B Λ 0 . Hence, by definition of SE(l, m 0 ), there exist a neighborhood U l of F (P 0 , Λ) in P 2 (l, m) and positive constants C ′ l , δ ′ l such that for any Q ∈ U l , the inequality

max 0≤η≤ξ min ||y||=η ||∇Q(y)|| > C ′ l ξ m 0 -1
holds true for all 0 < ξ ≤ δ ′ l . Now by continuity of F , we can find a neighborhood V l of P 0 in P 2 (n, m 0 ) and an open neighborhood where Π Λ is the orthogonal projection onto Λ, and P Λ is the restriction of P to Λ. Therefore, for any P ∈ V l and any Λ ∈ B ′ Λ 0 , we have

B ′ Λ 0 ⊆ B Λ 0 of Λ 0 in G(l, n) such that F (V l × B ′ Λ 0 ) is contained in U l .
max 0≤η≤ξ min ||x||=η, x∈Λ ||∇P Λ (x)|| > C ′ l ξ m 0 -1 for all 0 < ξ ≤ δ ′ l .
To conclude, since the Grassmannian G(l, n) is compact, it can be covered by a finite number of neighborhoods of the form B ′ Λ 0 , Λ 0 ∈ G(l, n), and hence one can certainly find positive constants C l , δ l such that for any P ∈ V l and any Λ ∈ G(l, n), the inequality holds true for all 0 < ξ ≤ δ l . This means that P 0 ∈ SS(n, m 0 ), and this finishes the proof.

B Birkhoff normal forms with estimates

The goal of this section is to give the proof of Proposition 3. ). Recall that we also defined for any integer j ≥ 3, ψ j α = j i=3 Ψ α (i) and for convenience, we set ψ 2 α := 1. We can finally state the main technical proposition of [START_REF] Delshams | Estimates on invariant tori near an elliptic equilibrium point of a Hamiltonian system[END_REF].

Proposition B.1 (Delshams-Gutiérrez). Let H be as in (1.1) with α as in (1.5) and consider an integer K ≥ 4. If we define ρ K := (548ncdKΨ(K)) -1 , then there exists a real-analytic symplectic transformation Φ K = Id + O(ξ 2 ) defined on B ρ K such that H • Φ K is in Birkhoff normal form up to order K, that is

H • Φ K (ξ) = α • I(ξ) + k even, 4≤k≤K h k (I(ξ)) + k≥K+1 f k (ξ)
where h k is a homogeneous polynomial of degree k/2 in I(ξ), f k a homogeneous polynomial of degree k in ξ, with the following estimates:

||h k || ≤ 6 -1 (6cd) k-2 (k -2)!ψ k-1 α , k even, 4 ≤ k ≤ K; ||f k || ≤ 20d 2 (20cd) k-2 (K -3)!(K -2) k-K+2 ψ K-1 α Ψ α (K) k-K+2 , k ≥ K + 1.
This is exactly the statement of Proposition 1 in [START_REF] Delshams | Estimates on invariant tori near an elliptic equilibrium point of a Hamiltonian system[END_REF], to which we refer for the proof. We will now arrange these estimates in a way that will be more convenient for us. and, given an integer 0 ≤ q ≤ K -4, we have

||f k || ≤ β(q)ρ -(k-q-1) K , k ≥ K + 1. (B.8)
where β(q) := c -1 d(20cd) q (q + 2)!ψ q+2 α .

The proof of Proposition B.2 is straightforward from Proposition B.1. Now from these estimates on the homogeneous parts of h m and f K , we will deduce the estimates of Proposition 3.5. where each h k is homogeneous of degree k/2. For p ≥ 2 and k ≥ 2p, ∇ p h k is a tensor-valued homogeneous polynomial of degree (k -2p)/2 and one can easily check (see [START_REF] Delshams | Estimates on invariant tori near an elliptic equilibrium point of a Hamiltonian system[END_REF] ≤ β(q) k≥K ρ -(k-q-1) K ρ k-1 ≤ β(q)ρ q k≥K (ρ/ρ K ) k-q-1 ≤ b(q)ρ q e K .

This concludes the proof.

Comment. The preprint "Double exponential stability for generic real-analytic elliptic equilibrium points" was first submitted to the Arxiv in August 2015; in order to make it more accessible, we decided to withdraw this preprint and split it into two parts. This corresponds to the second part, the first part being [START_REF]Nekhoroshev exponential stability for a steep elliptic equilibrium[END_REF]. Note that the results of [START_REF] Bounemoura | Superexponential stability of quasiperiodic motion in Hamiltonian systems[END_REF], which were published in 2017, are applications of the ideas developed in this paper.

  use the sup norm | . | defined as |I| := max{|I 1 |, . . . , |I n |}, I = (I 1 , . . . , I n ). (2.1) This norm allows an easier comparison between I(z) ∈ C n and z ∈ C 2n : indeed, we have |I(z)| ≤ z 2 /2 and the equality holds true if z ∈ R 2n . • Given r > 0, we define the domain D r to be the open ball centered at the origin in C n of radius r 2 /2 with respect to the norm | . |: D r := {I ∈ C n | |I| < r 2 /2} and we let D r := D r ∩ R n . This choice is motivated by the fact that if I : z ∈ C 2n → I(z) ∈ C n , then I(B r ) ⊆ D r and I(B r ) = D r ∩ R n + , where B r and B r have been defined in (1.4).

  ||∇h λ (I + x) -∇h λ (I)|| > (C 0 /2)ξ p-2and letting I ′ = I + x, C := C 0 /2, δ * := C 0 (2M (p -1)!) -1 and µ * := min{μ, ̟/M }, the steepness of f is thus established with the constants given in the statement.

  So for any P ∈ V l and any Λ ∈ B ′ Λ 0 , we have max 0≤η≤ξ min ||y||=η ||∇F (P, Λ)(y)|| > C ′ l ξ m 0 -1 for all 0 < ξ ≤ δ ′ l . Now since the columns of the matrix Ψ(Λ) form an orthonormal basis of Λ, setting x = Ψ(Λ)y, x ∈ Λ, ||x|| = ||y|| and hence min ||y||=η ||∇F (P, Λ)(y)|| = min ||x||=η, x∈Λ ||Π Λ ∇P (x)|| = min ||x||=η, x∈Λ ||∇P Λ (x)||

  max 0≤η≤ξ min ||x||=η, x∈Λ ||∇P Λ (x)|| > C l ξ m 0 -1

  5 using the work of Delshams and Gutiérrez ([DG96]).Given l ∈ N and P a homogeneous polynomial in ξ of degree l, if P (ξ) = |ν|=l P ν ξ ν , we define the norm||P || := |ν|=l |P ν |. (B.1)By our analyticity assumption on the Hamiltonian H in (1.1), we have the following expansion at the originH(ξ) = l≥2 H l (ξ) = i n j=1 α j ξ j ξ n+j + l≥3 H l (ξ)and there exist positive constants c and d, which depends only on n, R and ||H|| R such that for any integer l ≥ 2,||H l || ≤ c l-2 d. (B.2)Using Cauchy formula one easily proves that||H l || ≤ (2R) -l (e(2n + 1)) l ||H|| Rand therefore one can choose c := (2R) -1 e(2n + 1), d := (2R) -2 (e(2n + 1)) 2 ||H|| R . (B.3) Given any function f that can be written as f = k P k , with each P k homogeneous of degree k in ξ, one easily check that sup ξ∈Bρ |f (ξ)| ≤ k ||P k ||ρ k , (B.4) and, if g = k, k even Q k , with each Q k homogeneous of degree k/2 in I(ξ), then sup I∈Dρ |g(I)| ≤ k, k even ||Q k ||(ρ 2 /2) k/2 . (B.5) Moreover, the above estimates hold true if f is replaced by a tensor-valued function. Recall the definition of Ψ α given in (1.5

  Proposition B.2. Let H be as in (1.1) with α as in (1.5). Given an integer p ≥ 2 and K ≥ 2p, we have the following estimates on the homogeneous polynomials of Proposition B.1:||h k || ≤ β(p)ρ -(k-2p) K , 2p ≤ k ≤ K; (B.6) where β(p) := 6 -1 (6cd) 2p-2 (2p -2)!ψ 2p-1

  Proof of Proposition 3.5. Recall thath m (I(ξ)) = k even, 4≤k≤K h k (I(ξ))

  (k/2) p (1/2) (k-2p)/2 (ρ/ρ K ) k-2p ≤ b(p)since the sum can be bounded by the corresponding series which is convergent. The same bound applies to ||∇ j h m || ρ for any j such that 2 ≤ j ≤ p, hence||∇ 2 h m || p,ρ = max 2≤j≤p ||∇ j h m || ρ ≤ b(p). Concerning f K (ξ) = k≥K+1 f k (ξ),since ∇f k is a vector-valued homogeneous polynomial of degree k -1, we have||∇f k || ≤ k||f k ||and so, using this inequality together with inequality (B.4) and the estimate (B.8) we obtain||∇f K || ρ ≤ k≥K ||∇f k ||ρ k-1 ≤ k≥K k||f k ||ρ k-1

  , estimates (24)), that ||∇ p h k || ≤ (k/2) p ||h k ||. Using this inequality, inequality (B.5) and the estimate (B.6) we get ||∇ p h m || ρ ≤

		k even, 2p≤k≤K	||∇ p h k ||(ρ 2 /2) (k-2p)/2
	≤	k even, 2p≤k≤K	(k/2) p ||h k ||(ρ 2 /2) (k-2p)/2
	≤ β(p)	k even, 2p≤k≤K	(k/2) p ρ -(k-2p) K	(ρ 2 /2) (k-2p)/2
	≤ β(p)		

k even, 2p≤k≤K
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