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Introduction

Probability distributions are ubiquitous objects in computer graphics, used to encapsulate possibly uncertain information associated with arbitrary geometric domains. Examples include image histograms, geometric features, relaxations of correspondence maps, and even physical quantities like BRDFs. To compare these objects, it is important to define an adequate notion of proximity or coverage quantifying the discrepancy or, equivalently, similarity between distributions. These computations are commonly posed and analyzed within the theory of optimal transportation.

The prototypical problem in optimal transportation is the evaluation of Wasserstein (also known as Earth Mover's) distances between distributions [START_REF] Villani | Topics in Optimal Transportation[END_REF][START_REF] Rubner | The earth mover's distance as a metric for image retrieval[END_REF]]. These distances quantify the geometric discrepancy between two distributions by measuring the minimal amount of "work" needed to move all the mass contained in one distribution onto the other. Recent developments show that incorporating these distances into optimization objectives yields powerful tools for manipulating distributions for tasks like density interpolation, barycenter computation, and correspondence estimation. As a simple example, suppose we are given two delta functions δx, δy centered at x, y ∈ R 2 . While the Euclidean average (δx+δy ) /2 is bimodal at x and y, solving for the distribution that minimizes the sum of squared two-Wasserstein distances to δx and δy is a Dirac at the midpoint (x+y) /2, thus offering a geometric notion of the midpoint of two distributions.

A limiting factor in optimal transportation is the complexity of the underlying minimization problem. The usual linear program describing optimal transportation is related to minimum-cost matching, with a quadratic number of variables and time complexity scaling at least cubically in the size of the domain [START_REF] Burkard | Linear assignment problems and extensions[END_REF]. This poor complexity is largely due to the use of coupling variables representing the amount of mass transported between every pair of samples. Hence, existing large-scale methods often resort to aggressive or ad-hoc approximations that can lose connections to transportation theory or compensate with alternative formulations that apply only to restricted cases. This paper introduces a fast, scalable numerical framework for optimal transportation over geometric domains. Our work draws insight from recent advances in machine learning approximating optimal transportation distances using entropic regularization [START_REF] Cuturi | Sinkhorn distances: Lightspeed computation of optimal transportation[END_REF]]. We adapt this approach to continuous domains using faithful finite elements discretizations of the corresponding optimization problems. This yields a novel approach to optimal transportation without computing or storing pairwise distances on arbitrary shapes.

After discretization, our algorithm for approximating Wasserstein distances becomes a simple iterative scheme with linear convergence, whose iterations require convolution of vectors against discrete diffusion kernels-hence the name convolutional Wasserstein distance. We also leverage our framework to design methods for interpolation between distributions, computation of weighted barycenters of sets of distributions, and more complex distribution-valued correspon-dence problems. Each of these problems is solved with straightforward iterative methods scaling linearly in the size of the data and domain. We demonstrate the versatility of our methods with examples in image processing, shape analysis, and BRDF interpolation.

Related Work

The original formulation of optimal transportation, introduced in [START_REF] Kantorovich | On the transfer of masses (in Russian)[END_REF]], involves a linear program connecting a pair of distributions. The cost of moving density from one point to another is specified using a fixed matrix of pairwise costs. As outlined in [START_REF] Burkard | Assignment Problems[END_REF]], a variety of linear program solvers and dedicated combinatorial schemes have been devised for this problem. These methods scale up to a few thousand variables and were applied to graphics applications in [START_REF] Bonneel | Displacement interpolation using Lagrangian mass transport[END_REF] and in [START_REF] Lipman | Conformal Wasserstein distances: Comparing surfaces in polynomial time[END_REF]. They do not scale to large domains such as images with millions of pixels, however, and are not tailored for advanced problems like barycenter computation.

Specific instances of optimal transportation can be efficiently solved by leveraging tools from computational geometry. The transportation cost from continuous to pointwise measures, for instance, can be computed either via multiscale algorithms [Mérigot 2011;[START_REF] Schwartzburg | High-contrast computational caustic design[END_REF] or through Newton iterations on Euclidean spaces [START_REF] De Goes | Blue noise through optimal transport[END_REF][START_REF] Zhao | Area-preservation mapping using optimal mass transport[END_REF]. More recently, this Newton-based approach for optimal transportation was extended to discrete surfaces [START_REF] De Goes | Weighted triangulations for geometry processing[END_REF]. Transportation distances between point clouds and line segments also were approximated in 2D based on a triangulation tiling of the plane and greedy point-tosegment clustering [START_REF] De Goes | An optimal transport approach to robust reconstruction and simplification of 2d shapes[END_REF].

Another line of work proposes a dynamical formulation for optimal transportation with an additional time variable. For squared distance costs, [START_REF] Benamou | A computational fluid mechanics solution of the Monge-Kantorovich mass transfer problem[END_REF] compute transportation distances by minimizing the cost of advecting one distribution to another in time. For non-squared distance costs, Solomon et al. [2014a] solve for transportation maps as the flow of a vector field whose divergence matches the difference between the input densities.

Other methods use optimal transportation to aggregate and average information from multiple densities. Examples include barycenter computation [START_REF] Agueh | Barycenters in the Wasserstein space[END_REF], density propagation over graphs [Solomon et al. 2014b], and computation of "soft" correspondence maps [START_REF] Solomon | Soft maps between surfaces[END_REF]]. These problems are typically solved via a multi-marginal linear program [START_REF] Agueh | Barycenters in the Wasserstein space[END_REF][START_REF] Kim | Multi-marginal optimal transport on Riemannian manifolds[END_REF], which is infeasible for large-scale domains. One work-around approaches the dual of the linear program using L-BFGS with subgradient directions [START_REF] Carlier | Numerical methods for matching for teams and Wasserstein barycenters[END_REF], but this strategy suffers from poor conditioning and noisy results.

Regularization provides a promising way to approximate solutions of transportation problems. While interior point methods long have used barrier functions to transform linear programs into strictly convex problems, entropic regularizers in the particular case of optimal transportation provide several key advantages outlined in [START_REF] Cuturi | Sinkhorn distances: Lightspeed computation of optimal transportation[END_REF]]. With entropic regularization, optimal transportation is solved using an iterative scaling method known as the iterative proportional fitting procedure (IPFP) or Sinkhorn-Knopp algorithm [START_REF] Deming | On a least squares adjustment of a sampled frequency table when the expected marginal totals are known[END_REF][START_REF] Sinkhorn | Diagonal equivalence to matrices with prescribed row and column sums[END_REF], which can be implemented in parallel GPGPU architectures and used to compute e.g. the barycenter of thousands of distributions [START_REF] Cuturi | Fast computation of Wasserstein barycenters[END_REF].

Our work leverages the efficiency of iterative scaling methods for entropy-regularized transport and related problems, principally [START_REF] Cuturi | Sinkhorn distances: Lightspeed computation of optimal transportation[END_REF][START_REF] Benamou | Iterative Bregman projections for regularized transportation problems[END_REF]. By posing regularized transport in continuous language, we couple the efficiency of these algorithms with discretization on domains like surfaces and images. This change is not simply notational but rather leads to much faster itera-tion through connection to Gaussian kernels on images and the heat kernel of a surface; these kernels can be evaluated without precomputing a matrix of pairwise distances. We demonstrate applications of the resulting methods for large-scale transport on tasks relevant to computer graphics applications.

Preliminaries

We begin with background on optimal transportation. We consider a compact, connected Riemannian manifold M rescaled to have unit volume and possibly with boundary, representing a domain like a surface or image plane. We use d : M × M → R+ to denote the geodesic distance function, so d(x, y) is the shortest distance from x to y along M . We use Prob(M ) to indicate the space of probability measures on M and Prob(M × M ) to refer to probability measures on the product space of M with itself. To avoid confusion, we will refer to elements µ0, µ1, ... ∈ Prob(M ) as marginals and to joint probabilities π0, π1, ... ∈ Prob(M × M ) as couplings.

Optimal Transportation

A source marginal µ0 can be transformed into a target marginal µ1 by means of a transportation plan π, a coupling in Prob(M ×M ) describing the amount of mass π(x, y) to be displaced from µ0 at x towards y to create µ1 in aggregate. Mass conservation laws impose that such couplings are necessarily in the set

Π(µ0, µ1) def. = {π ∈ Prob(M ×M ) : π(•, M ) = µ0, π(M, •) = µ1}.
The optimal transportation problem from µ0 to µ1 seeks a coupling π ∈ Π(µ0, µ1) with minimal cost, computed as the integral of squared distances d 2 against π. Formally, the 2-Wasserstein distance between µ0 and µ1 is thus defined as W2(µ0, µ1) def.

= inf

π∈Π(µ 0 ,µ 1 ) M ×M d(x, y) 2 dπ(x, y)

1/2
.

(1)

The 2-Wasserstein distance satisfies all metric axioms and has several attractive properties-see [START_REF] Villani | Topics in Optimal Transportation[END_REF], §7] for details.

Kullback-Leibler Divergence

The modified transportation problems we consider involve quantities from information theory, whose definitions we recall below. We refer the reader to [START_REF] Cover | Elements of Information Theory[END_REF] for detailed discussions.

A coupling π is absolutely continuous with respect to the volume measure when it admits a density function p, so that π(U ) = U p(x, y) dx dy , ∀U ⊆ M × M . To simplify notation, we will use π to indicate both the measure and its density.

The (differential) entropy of a coupling π on M ×M is defined as the concave energy

H(π) def. = - M ×M π(x, y) ln π(x, y) dx dy.
(2)

By definition, H(π) = -∞ when π is not absolutely continuous, and H(π) = 0 when π is a measure of uniform density π(x, y) ≡ 1.

Given an absolutely continuous measure π ∈ Prob(M ×M ) and a positive function K on M ×M , we define the Kullback-Leibler (KL) divergence between π and K as

KL(π|K)

def. 

Regularized Optimal Transportation

In this section, we present a modification of Wasserstein distances suitable for computation on geometric domains. In our exposition, we first assume that the pairwise distance function d(•, •) is known and then leverage heat kernels to alleviate this requirement.

Entropy-Regularized Wasserstein Distance

Following e.g. [START_REF] Cuturi | Sinkhorn distances: Lightspeed computation of optimal transportation[END_REF][START_REF] Benamou | Iterative Bregman projections for regularized transportation problems[END_REF], we modify the objective of the optimal transportation problem in (1) by adding an entropy term H(π) promoting spread-out transportation plans π. The entropy-regularized 2-Wasserstein distance is then defined as:

W 2 2,γ (µ0, µ1) def. = inf π∈Π M ×M d(x, y) 2 π(x, y)dxdy -γH(π) , (4) 
where we have used the shorter notation Π for Π(µ0, µ1). This regularized version of optimal transport is often called the "Schrödinger problem," and we refer to [Léonard 2012] for discussion of its connection to non-regularized transport, recovered as γ → 0.

When γ > 0, the solution π to ( 4) is an absolutely continuous measure, since otherwise the entropy term is indefinite. The term -H(π) also makes the objective strictly convex, and therefore a unique minimizer exists. Fig. 2 illustrates couplings π obtained using increasing values of γ, resulting in increasingly smooth solutions.

We can associate the distance d(•, •) to a kernel Kγ of the form:

Kγ(x, y) = e -d(x,y) 2 /γ , d(x, y) 2 = -γ ln Kγ(x, y).

(5)

By combining (3), ( 4) and ( 5) algebraically, the entropy-regularized Wasserstein distance can be computed from the smallest KL divergence from a coupling π ∈ Π to the kernel Kγ:

W 2 2,γ (µ0, µ1) = γ 1 + min π∈Π KL(π|Kγ) . ( 6 
)
This minimization is convex, due to the convexity of KL on the first argument π, with linear equality constraints induced by the marginals µ0 and µ1. As observed in the discrete case [START_REF] Cuturi | Sinkhorn distances: Lightspeed computation of optimal transportation[END_REF][START_REF] Benamou | Iterative Bregman projections for regularized transportation problems[END_REF], it provides a new interpretation for the regularized transportation problem: the optimal plan π is the projection of the distance-based kernel Kγ onto Π, enforcing marginals while minimizing the loss of information quantified by KL divergence.

Wasserstein Distance via Heat Kernel

So far, our method requires a distance function d(•, •) to construct Kγ. This assumption is adequate for domains with analytical and fast algorithms for convolution against Kγ, like the image plane. It becomes cumbersome, however, for arbitrary manifolds, since precomputing pairwise distances requires quadratic space and considerable computation time. Instead, we propose an alternative to the distance-based kernel Kγ making our method suitable for arbitrary domains.

Define Ht(x, y) to be the heat kernel determining diffusion between x, y ∈ M after time t; in particular, Ht solves the heat equation ∂tft = ∆ft with initial condition f0 through the map ft(x) = M f0(y)Ht(x, y) dy.

Similar to [START_REF] Crane | Geodesics in heat: A new approach to computing distance based on heat flow[END_REF], we associate the heat kernel Ht to the geodesic distance function d(•, •) based on the Varadhan's formula [1967], which states that the distance d(x, y) can be recovered by transferring heat from x to y over a short time interval:

d(x, y) 2 = lim t→0 [-2t ln Ht(x, y)] . (7) 
Setting t def.

= γ /2 in (7), we approximate the kernel Kγ as:

Kγ(x, y) ≈ H γ/2 (x, y),
and, as an implication, we can replace the convolution of an arbitrary function f against Kγ by the solution of the diffusion equation for a time step t = γ /2 and with f as the initial condition. We thus denote W2,H t as the diffusion-based approximation of W 2 2,γ , i.e.:

W 2 2,Hγ /2 (µ0, µ1) def. = γ 1 + min π∈Π KL(π|Hγ /2 ) . (8) 
Developing conditions for convergence of W 2 2,Hγ /2 as γ → 0 is a challenging topic for future research. Note that while derivatives of distances from ( 7) can diverge near the cut locus [START_REF] Malliavin | Short time behavior of the heat kernel and its logarithmic derivatives[END_REF], distance values are valid everywhere on M provided M is connected and compact; divergence of derivatives is not problematic for our method.

Although W2,H and W2,γ are symmetric in µ0 and µ1, the selfdistances W2,H(µ, µ) and W 2 2,γ (µ, µ) are never exactly zero for a given µ. We also observe that these values only satisfy the triangle inequalities approximately, notably for small γ (see [Cuturi 2013, Theorem 1]). Hence, as in [START_REF] Crane | Geodesics in heat: A new approach to computing distance based on heat flow[END_REF], the regularized quantities we manipulate are not distances, strictly speaking. These approximations are, however, a very small price to pay to obtain algorithms scaling near-linearly with the size of the mesh.

Convolutional Wasserstein Distance

We now detail our numerical framework to carry out regularized optimal transportation on discretized domains. Our method computes regularized Wasserstein distances by constructing optimal transportation plans through iterative kernel convolutions-we thus name the results convolutional Wasserstein distances. In what follows, we use ⊘ and ⊗ to indicate elementwise division and multiplication.

Requirements for computing convolutional distances are minimal:

• The domain M , discretized into n elements, with functions and densities represented as vectors f ∈ R n .

• A vector a ∈ R n + of "area weights," with a ⊤ 1 = 1, defined so that

M f (x) dx ≈ a ⊤ f . • A symmetric matrix Ht discretizing the kernel Ht such that M f (y)Ht(•, y)dy ≈ Ht(a ⊗ f ).
It is sufficient to know how to apply Ht to vectors, rather than storing it explicitly as a matrix in R n×n +, * .

For images, the natural discretization is an n1 ×n2 grid of pixels (so n = n1n2). In this case, a def.

= 1/n1n2 and Ht is the operator convolving images with a Gaussian of standard deviation σ 2 = γ. Notice that Varadhan's theorem is not needed in this domain, since the heat kernel of the plane is exactly a Gaussian in distance.

For triangle meshes, we take n to be the number of vertices and the area vector a as lumped areas proportional to the sum of triangle areas adjacent to a given vertex. Given the cotangent Laplacian L ∈ R n×n [MacNeal 1949] and a diagonal area matrix Da (Dv denotes the diagonal matrix with elements in vector v), we discretize the heat kernel by solving the diffusion equation via an implicit Euler integration [START_REF] Desbrun | Implicit fairing of irregular meshes using diffusion and curvature flow[END_REF]] with time step t = γ /2, i.e.,

w = Ht(a ⊗ v) ⇐⇒ (Da + γ /2L) w = a ⊗ v.
Da + γ /2L can be pre-factored before distance computation, rendering heat kernel convolution equivalent to a near-linear time backsubstitution. This feature is particularly valuable since we apply the heat kernel repeatedly. Our implementation uses a sparse Cholesky factorization [START_REF] Davis | Direct Methods for Sparse Linear Systems[END_REF]] with γ proportional to the maximum edge length [START_REF] Crane | Geodesics in heat: A new approach to computing distance based on heat flow[END_REF]; higher accuracy can be obtained via substeps. Our discretization generalizes to geometric domains like point clouds, tetrahedral meshes, graphs, and polygonal surfaces with well-established discrete Laplacians (and therefore heat kernels).

We encode a distribution µ ∈ Prob(M ) as a vector µ ∈ R n + with a ⊤ µ = 1 and a distribution π ∈ Prob(M × M ) as π ∈ R n×n + with a ⊤ πa = 1. The discrete KL divergence between a discrete distribution π and an arbitrary H ∈ R n×n +, * is then defined as

KL(π|H) def. = ij πijaiaj ln πij Hij -1 . (9) 
Given discrete distributions µ 0 and µ 1 , we model plans π ∈ Π(µ 0 , µ 1 ) as matrices π ∈ R n×n + with πa = µ 0 and π ⊤ a = µ 1 . Finally, the convolutional Wasserstein distance is computed via

W 2 2,H t (µ 0 , µ 1 ) def. = γ 1 + min π∈Π KL(π|Ht) . ( 10 
)
Similarly to the continuous case, the minimization in ( 10) is convex with linear constraints on π. Its complexity is tied to the variable π, which scales quadratically in n. As shown in the supplemental document, we overcome this issue using the following result:

Proposition 1. The transportation plan π ∈ Π(µ 0 , µ 1 ) mini- mizing (10) is of the form π = DvHtDw, with unique vectors v, w ∈ R n satisfying DvHtDwa = µ 0 , DwHtDva = µ 1 . (11) 
Therefore, rather than computing a matrix π, we can instead compute a pair of vectors (v, w), reducing the number of unknowns to 2n. This proposition generalizes a result in [START_REF] Cuturi | Sinkhorn distances: Lightspeed computation of optimal transportation[END_REF]] with the introduction of area weights a. We can find (v, w) by alternating projections onto the linear marginal constraints via an area-weighted version of Sinkhorn's algorithm [1964], detailed in Algorithm 1.

As in [Solomon et al. 2014a], W 2 2,H t between distributions centered at individual vertices can be used as point-to-point distances. Fig. 3 shows one example computed using our algorithm. The resulting pointwise distance squared is exactly the logarithm of Ht. Since [START_REF] Crane | Geodesics in heat: A new approach to computing distance based on heat flow[END_REF] previously proposed a specialized algorithm function CONVOLUTIONAL-WASSERSTEIN(µ 0 , µ 1 ; Ht, a) using the heat kernel for pointwise distances via this approximation, we instead will focus on more general problems involving optimal transportation not considered in their work.

// Sinkhorn iterations v, w ← 1 for i = 1, 2, 3, . . . v ← µ 0 ⊘ Ht(a ⊗ w) w ← µ 1 ⊘ Ht(a ⊗ v) // KL divergence return γ a ⊤ [(µ 0 ⊗ ln v) + (µ 1 ⊗ ln w)]
Timing & numerics. To evaluate efficiency, we compare three approaches to approximating W2: a linear program discretizing (1), regularized distances with a full distance-based kernel [START_REF] Cuturi | Sinkhorn distances: Lightspeed computation of optimal transportation[END_REF]], and convolutional Wasserstein distances W 2 2,H t . The linear program is solved using state-of-the-art parallel optimization [MOSEK ApS 2014], with all-pairs distances along mesh edges from an O(n 2 log n) algorithm [START_REF] Johnson | Efficient algorithms for shortest paths in sparse networks[END_REF]]. [START_REF] Cuturi | Sinkhorn distances: Lightspeed computation of optimal transportation[END_REF]] and our convolutional distances are implemented in Matlab, the former using the all-pairs distance matrix converted to a kernel and the latter using pre-factored Cholesky decomposition. All tests were run with tolerance 10 -5 on a 2.40GHz Intel Xeon processor with 23.5GB RAM; for this test, γ is chosen as 1% of the median transport cost.

Table 1 shows results of this experiment on meshes of the same shape with varying density. Both regularized approximations of W2 outperform the linear program by a significant margin that grows with the size of the problem. Our method also outperforms [START_REF] Cuturi | Sinkhorn distances: Lightspeed computation of optimal transportation[END_REF]] with a dense kernel matrix, both by avoiding explicit pairwise distance computation and via the pre-factored diffusion operator; the difference is particularly notable on large meshes for which the kernel takes a large amount of memory. The one exception is the smallest mesh, for which our method took longer to converge due to numerical issues from the discretized heat equation.

The Sinkhorn algorithm is known to converge at a linear rate [START_REF] Franklin | On the scaling of multidimensional matrices[END_REF][START_REF] Knight | The Sinkhorn-Knopp algorithm: Convergence and applications[END_REF], and similar guarantees exist for alternating projection methods [START_REF] Escalante | Alternating Projection Methods[END_REF]. These bounds give a rough indicator of the number of iterations needed to compute convolutional distances and derived quantities used in §6. In practice, the convergence rate depends on the sharpness of the kernel and of the distributions µ 0 and µ 1 . The experiments reported in Table 1 show that the time to convergence is reasonable for challenging cases; most distance computations converge within 10-20 iterations when γ was chosen on the order of the average edge length, with faster convergence as γ is increased. Finally, we point out that numerical issues may appear when γ is smaller than the resolution of the domain, since the kernel operator may become ill-conditioned. 

Optimization Over Distances

An advantage of convolutional Wasserstein distances is the variety of optimizations into which they can be incorporated. Then, the goal is not to evaluate Wasserstein distances but rather to optimize for distributions minimizing an objective constructed out of them.

Wasserstein Barycenters

The Wasserstein barycenter problem attempts to summarize a collection (µi) k i=1 of probability distributions by taking their weighted average with respect to the Wasserstein distance. Following [START_REF] Agueh | Barycenters in the Wasserstein space[END_REF], given a set of weights α = (αi) k i=1 ∈ R k + , it is defined as the following convex problem over the space of measures

minµ k i=1 αiW 2 2 (µ, µi). (12) 
After discretization, we can pose the barycenter problem as

minµ k i=1 αiW 2 2,H t (µ, µ i ). (13) 
Substituting transportation plans yields an equivalent problem:

min {π i } k i=1 αiKL(πi|Ht) s.t. π ⊤ i a = µ i ∀i ∈ {1, . . . , k} πia = π1a ∀i ∈ {1, . .

. , k}

The first constraint enforces that πi marginalizes to µ i in one direction, and the second constraint enforces that all the πi's marginalize to the same µ in the opposite direction.

As suggested by [START_REF] Benamou | Iterative Bregman projections for regularized transportation problems[END_REF], the expanded problem can be viewed as a projection with respect to KL divergence from Ht (repeated k times) onto the constraint set C1 ∩ C2, where

C1 def. = {(πi) k i=1 : π ⊤ i a = µ i ∀i ∈ {1, . . . , k}} C2 def. = {(πi) k i=1 : πia = πja ∀i, j ∈ {1, . . . , k}}.
Problems of this form can be minimized using iterated Bregman projection [START_REF] Bregman | The relaxation method of finding the common point of convex sets and its application to the solution of problems in convex programming[END_REF]], which initializes all the πi's to Ht and then cyclically projects the current iterate onto one Ci at a time. Unlike the full optimization, projections onto C1 and C2 individually can be written in closed form, as explained in the following propositions:

Proposition 2. The KL projection of (πi) k i=1 onto C1 satisfies proj C 1 πi = πiD µ i ⊘π ⊤ i a for each i ∈ {1, . . . k}. Proposition 3. The KL projection of (πi) k i=1 onto C2 satisfies proj C 2 πi = D µ⊘d i πi for each i ∈ {1, . . . k}, where di = πia and µ = i d

α i / ℓ α ℓ i .
The propositions, originally presented without area weights in [START_REF] Benamou | Iterative Bregman projections for regularized transportation problems[END_REF]] and proved similarly in our supplemental function WASSERSTEIN-BARYCENTER({µ i }, {αi}; Ht, a) // Initialization v1, . . . , v k ← 1 w1, . . . , w k ← 1 // Iterate over Ci's for j = 1, 2, 3, . . .

µ ← 1 for i = 1, . . . , k // Project onto C1 wi ← µ i ⊘ Ht(a ⊗ vi) di ← vi ⊗ Ht(a ⊗ wi) µ ← µ ⊗ d α i i // Optional µ ← ENTROPIC-SHARPENING(µ, H0; a) // Project onto C2 for i = 1, . . . , k vi ← vi ⊗ µ ⊘ di return µ
Algorithm 2: Wasserstein barycenter using iterated Bregman projection. Both of the inner for loops can be parallelized over i. document, show that the necessary Bregman projections can be carried out via pre-or post-multiplication by diagonal matrices. Hence, we can store and update vectors vi, wi ∈ R n so that πi = Dv i HtDw i . If M is represented using n samples, this reduces storage and algorithmic runtime by a factor of n.

Algorithm 2 documents the barycenter method. It initializes all the πi's to Ht by taking vi = wi = 1 for all i and then alternatingly projects using the formulas above. The only operations needed are applications of Ht and elementwise arithmetic. We never need to store the matrix of Ht explicitly and instead apply it iteratively; this structure is key when Ht represents a heat kernel obtained by solving a linear system or convolution over an image. Entropic Sharpening. Barycenters computed using Algorithm 2 have similar qualitative structure to barycenters with respect to the true Wasserstein distance W2 but may be smoothed thanks to entropic regularization. This can create approximations of the barycenter that qualitatively appear too diffuse.

We introduce a simple modification of the projection method counteracting this phenomenon. Define the entropy of µ to be

H(µ) def. = - i aiµ i ln µ i .
We expect the non-regularized Wasserstein barycenter of a set of distributions to have entropy bounded by that of the input distributions (µ i ) k i=1 . Hence, take H0

def.

= maxi H(µ i ) (or a user-specified bound). Then, we can modify the barycenter problem slightly:

minµ k i=1 αiW 2 2,H t (µ, µ i ) s.t. H(µ) ≤ H0. ( 14 
)
That is, we wish to find a distribution with bounded entropy that minimizes the sum of transportation distances.

The problem in ( 14) is not convex, but we apply Bregman projections nonetheless. We augment C2 with an entropy constraint:

C2 def. = C2∩{(πi) k i=1 : H(πia)+a ⊤ πia ≤ H0+1 ∀i ∈ {1, . . . , k}} function ENTROPIC-SHARPENING(µ, H0; a) if H(µ) + a ⊤ µ > H0 + 1 then β ← FIND-ROOT(a ⊤ µ β + H(µ β ) -(1 + H0); β ≥ 0) else β ← 1 return µ β
Algorithm 3: Entropic sharpening method; we default to β = 1 when no root exists but rarely encounter this problem in practice. = max{H(µ 1 ), H(µ 2 )} ≈ -2.569.

p0 p1 ∞ H + 2 H + 1 H H 0
The a ⊤ πia term is for algebraic convenience in proving the proposition below; at convergence, a ⊤ πia = 1 and this term cancels with the 1 on the right-hand side of the inequality. Remarkably, despite the nonconvexity, KL projection onto C2 can be carried out efficiently, as proved in the supplemental document: Proposition 4. There exists β ∈ R such that the KL projection of (πi) k i=1 onto C2 satisfies proj C 2 πi = D µ⊘d i πi for all i ∈ {1, . . . , k}, where di = πia and µ

= i d α i i β .
That is, the entropy-constrained projection step takes the result of the unconstrained projection to the β power to achieve the entropy bound. The exponent β can be computed using single-variable root-finding (e.g. bisection or Newton's method), as shown in Algorithm 3. Empirically, the Bregman algorithm converges to a near-barycenter with limited entropy when using this new projection step as long as H0 is on the order of the entropy of the µ i 's. For difficult test cases, higher-quality barycenters can be recovered by first solving the problem without an entropy constraint and then iteratively introducing entropic sharpening with tightening bounds.

Fig. 4 illustrates the effect of the bound H0 on the barycenter of two distributions. As H0 decreases, the barycenter becomes sharply peaked about its modes, counteracting the aggressive regularization.

Displacement Interpolation

The 2-Wasserstein distance W2 has a distinguishing displacement interpolation property [START_REF] Mccann | A convexity principle for interacting gases[END_REF]]. W2(µ0, µ1) is the length of a geodesic µt : [0, 1] → Prob(M ) in Prob(M ) with respect to a metric induced by squared geodesic distances on M . The time-varying sequence of distributions µt transitions from µ0 to µ1, moving mass continuously along geodesic paths on M . As a point of comparison, Solomon et al. [2014a] use flows along M to evaluate the 1-Wasserstein distance W1; the resulting interpolation, however, is given by the trivial formula µt = (1 -t)µ0 + tµ1. [START_REF] Agueh | Barycenters in the Wasserstein space[END_REF] prove under suitable regularity that the interpolating path µt from µ0 to µ1 satisfies

µt = inf µ∈Prob(M ) (1 -t)W 2 2 (µ0, µ) + tW 2 2 (µ, µ1) , (15) 
for all t ∈ [0, 1]. This formula provides a means to compute µt directly rather than optimizing an entire path in probability space.

In the discrete case, given µ 0 , µ 1 ∈ Prob(M ) we wish to find a time-varying µ t interpolating between the two. To do so, we define

v ∈ V0 w ∈ V0 v ∈ V0 w ∈ V0 Barycenter Displacement interpolation
µ t def.
= min

µ∈Prob(M ) (1 -t)W 2 2,H t (µ 0 , µ) + tW 2 2,H t (µ, µ 1 ) .
(16) This can be minimized using Algorithm 2 with α = (1 -t, t).

Fig. 6 shows displacement interpolation between two multi-peaked distributions on a triangle mesh, with and without entropic sharpening. Again, sharpening avoids entropy introduced by the regularizer.

As an example, as proposed in [START_REF] Solomon | Soft maps between surfaces[END_REF]], suppose we are given two meshes and wish to find a map from vertices of one to vertices of the other. We can relax this problem by instead constructing maps to probability distributions over vertices of the second mesh. Given ground-truth correspondences for a few vertices, the optimization above fills in missing data.

Propagation can be modeled using convolutional distances as

minµ v (v,w)∈E α (v,w) W 2 2,H t (µ v , µ w ) s.t. µ v fixed ∀v ∈ V0. ( 17 
)
Following the optimizations in previous sections, we instead optimize over transportation matrices πe for each e ∈ E:

minπ e e∈E α (v,w) KL(πe|Ht) s.t. πea = µ v ∀e = (v, w) π ⊤ e a = µ w ∀e = (v, w) µ v fixed ∀v ∈ V0.
The interpolated µ's will be distributions because they must have the same integrals as the µ's in V0. Algorithm 4 uses iterated Bregman projection to solve this problem by iterating over one vertex in V at a time, projecting onto constraints fixing all marginals for that vertex. Applying Propositions 2 and 3, we can write πe = Dv e HtDw e and update the ve's and we's using simple rules.

Propagation encapsulates many other optimizations in Wasserstein space. Fig. 5 illustrates two examples. The convolutional barycenter problem ( §6.1) is exactly propagation where G is a star graph, with vertices in V0 on the spokes and the unknown distribution µ associated with the center. An alternative model for displacement interpolation ( §6.2) discretizes t ∈ [0, 1] as a line graph, with two vertices in V0 at the ends of the interval. This model is different from (15), which directly predicts the interpolation result at time t rather than computing the entire interpolation simultaneously.

Applications

Equipped with the machinery of convolutional transportation, we now describe several graphics applications directly benefiting from these distances and related optimization problems.

Shape interpolation.

A straightforward application of Wasserstein barycenters is shape interpolation.

We represent k shapes

(Si) k i=1 ⊂ [-1, 1] 2 using normalized indicator functions (χ(Si)/vol(Si)) k i=1 ∈ Prob([-1, 1] 2 ).
Given weights (αi) k i=1 , we compute the (near-)indicator function of an averaged shape as the minimizer µ ∈ Prob([-1, 1] 2 ) of i αiW 2 2,H t (µ, χi); this indicator easily can be sharpened if a true binary function is desired. Fig. 12 shows barycenters between four shapes with bilinear weights. Unlike the mean i αiχi(Si)/vol(Si), shapes obtained using Wasserstein machinery smoothly transition between the inputs, creating plausible intermediate shapes. Fig. 13 provides a 1D interpolation example, with simple post-processing (thresholding and coloring) to recover boundaries. Figs. 1,7,[START_REF]The four corner shapes are represented using normalized indicator functions on a 60×60×60 volumetric grid[END_REF] show analogous examples in three dimensions. We represent a surface volumetrically using the normalized indicator function of its interior. We interpolate the resulting distributions using convolutional barycenters and extract the level set corresponding to the half the maximum probability value. This volumetric approach can handle topological changes, e.g. interpolating between a shape with two components (lower left) and three singly-connected shapes (remainder). BRDF design. The BRDF f (ω i , ωo) of a material defines how much light it reflects from each incoming direction ω i to each outgoing direction ωo. If ω i is fixed, all the outgoing directions fall on a hemisphere defined by the surface normal. After scaling, the BRDF values for ωo form a probability distribution over the hemisphere. Hence, displacement interpolation can be applied to interpolate between materials, as in [START_REF] Bonneel | Displacement interpolation using Lagrangian mass transport[END_REF]].

We use convolutional barycenters to combine more than two distributions at a time. For each incoming direction in the sampled BRDF, the values associated to the outgoing directions are organized in a 2D grid by spherical angle. We use weighted Wasserstein barycenters to interpolate this data. The spherical heat kernel Ht is approximated by the fast approximate Gaussian convolution from [START_REF] Deriche | Recursively implementing the Gaussian and its derivatives[END_REF]]. Spherical geometry is accounted for by modulating the width of this separable filter. We render images using the interpolated BRDFs using PBRT [START_REF] Pharr | Physically Based Rendering, Second Edition: From Theory To Implementation[END_REF].

Fig. 8 shows interpolation between four BRDFs using our technique, yielding continuously-moving highlights. The corner BRDFs are sampled from closed-form materials [START_REF] Blinn | Models of light reflection for computer synthesized pictures[END_REF][START_REF] Ashikhmin | An anisotropic Phong BRDF model[END_REF]; the remaining BRDFs are interpolated.

Color histogram manipulation.

In image processing, optimal transportation has proven useful for color palette manipulations like contrast adjustment [START_REF] Delon | Movie and video scale-time equalization application to flicker reduction[END_REF]] and color transfer [Pitié et al. 2007] via 1D transportation. Previous methods for this task avoid carrying out multi-dimensional transport, e.g. using 1D sliced approximations or cumulative axis-aligned transport [Pitié et al. 2007;[START_REF] Bonneel | Sliced and Radon Wasserstein barycenters of measures[END_REF][START_REF] Papadakis | A variational model for histogram transfer of color images[END_REF] or can support only coarse histograms [START_REF] Ferradans | Regularized discrete optimal transport[END_REF]. Convolutional transport, however, handles large-scale 2D chrominance histograms directly.

We transfer color over the CIE-Lab domain by modifying the onedimensional L (luminance) and two-dimensional ab (chrominance) channels independently, where luminance takes values in [1,100] and chrominance takes values in M = [-128, 128] 2 . Remapping L requires 1D transport, which is computable in closed form [START_REF] Villani | Topics in Optimal Transportation[END_REF]]; we describe the processing of the ab channel below.

Suppose we express the ab components of k images as a set of functions (fi) k i=1 , where fi : [0, 1] 2 → M takes a point on the image plane and returns an ab chrominance value. The chrominance histogram µi associated to fi is the push-forward of the uniform measure U on [0, 1] 2 by the map fi, satisfying µi(A) = U (f -1 i (A)) for A ⊂ M . It is approximated numerically by a discrete histogram µ i on an uniform rectangular grid over M .

For a given set of weights α ∈ R k + , we solve the barycenter problem (12) using Algorithm 2. This provides the weighted barycenter µ ∈ Prob(M ), discretized as a vector µ. The algorithm further- more provides the scaling factors (vi, wi) for each i = 1, . . . , k, which define the transport maps πi = Dv i KDw i between each input histogram µ i and the barycenter µ. This discrete coupling πi should be understood as a discretization of a continuous coupling πi(x, y) between each µi and µ.

t = 0 t = 1 /4 t = 1 /2 t = 3 /4 t = 1 t = 0 t = 1 /4 t = 1 /2 t = 3 /4 t = 1 H 0 =∞ H 0 =max{H(µ 0 ),H(µ 1 )}
For each i, we introduce a map Ti : M → M , defined on the support of µi (i.e. the set of x ∈ M such that µi(x) > 0), by ∀x ∈ M, Ti(x) = 1 µ i (x) M πi(x, y)y dy.

This integral is computed numerically as a sum over the grid, where πi is used in place of πi.

The rationale behind this definition is that as γ → 0, the regularized coupling πi converges to a measure supported on the graph of the optimal matching between µi and the barycenter; this phenomenon is highlighted in Fig. 2. Thus, as γ → 0, Ti converges to the optimal transport map. It can thus be used to define a corrected image f α i def.

= Ti • fi whose chrominance histogram matches µ. Fig. 11 shows an application of the method to k = 2 input images.

Skeleton layout. Suppose we are given a triangle mesh M ⊂ R 3 and a skeleton graph G = (V, E) representing the topology of its interior. For instance, if M is a human body shape, then G might have "stick figure" topology. To relate G directly to the geometry of M , we might wish to find a map V → R 3 embedding the vertices of the graph into the interior of the surface.

We can approach this problem using Wasserstein propagation ( §6.3). We take as input the positions of vertices in a small subset V0 ⊆ V . As suggested by Solomon et al. [2014a], we express the position of each v ∈ V0 as a distribution µ v ∈ Prob(M ) using barycentric coordinates computed using the algorithm by [START_REF] Ju | Mean value coordinates for closed triangular meshes[END_REF]. Distributions µ v ∈ Prob(M ) can be interpolated along G to the remaining v ∈ V0 via Wasserstein propagation with uniform edge weights. The computed µ v 's serve as barycentric coordinates to embed the unlabeled vertices. Thanks to displacement interpolation, the constructed embedding conforms to the geometry of the surface; Fig. 9 shows sample embeddings generated using this strategy.

Soft maps.

A relaxation of the point-to-point correspondence problem replaces the unknown from a map φ : M0 → M to a measure-valued map µx : M0 → Prob(M ). [START_REF] Solomon | Dirichlet energy for analysis and synthesis of soft maps[END_REF] generalize the Dirichlet energy of a map to the measure-valued case, but their discussion is limited to analysis rather than computation of maps because their discretization scales poorly.

Suppose M0 and M are triangle meshes and Ht is the heat kernel matrix of M . A regularized discretization of the measure-valued map Dirichlet energy is provided by the Wasserstein propagation objective (17) from M0 viewed as a graph M0 = (V, E) to distributions on M , with weights proportional to inverse squared edge lengths. Coupled with pointwise constraints, Algorithm 4 provides a way to recover a map minimizing the resulting energy; convergence can be slow, however, when the constraints are far apart.

To relax dependence on pointwise constraints and accelerate convergence, we introduce a compatibility function c(x, y) : M0 × M → R+ expressing the geometric compatibility of x ∈ M0 and y ∈ M ; small c(x, y) indicates that the geometry of M0 near x is similar to that of M near y. Discretely, take cv to sample the compatibility function c(v, •) on M associated with v ∈ M0. We modify the objective (17) as follows: This matrix is a diagonal rescaling of Ht, so we can still efficiently optimize (18) using Algorithm 4, slightly adjusted to use a different kernel on each edge. Fig. 10 shows maps between a pair of surfaces computed using this technique. Because the models are nearly isometric, we use the wave kernel signature (WKS) [START_REF] Aubry | The wave kernel signature: A quantum mechanical approach to shape analysis[END_REF] to determine the compatibility function c(x, y). This signature is unable to distinguish between the orientation-preserving and left/right flipped maps between the two surfaces. Wasserstein propagation guided by this choice of c(x, y) paired with a sparse set of fixed correspondences breaking the symmetry is enough to recover both maps. The resulting soft map matrices are of size 1024 × 1024, an order of magnitude larger than the maps generated in [START_REF] Solomon | Soft maps between surfaces[END_REF], computed in less than a minute using similar hardware.

  (v,w)∈E 1 ℓ 2 (v,w) W 2 2,H t (µ v , µ w )   + τ v∈V ωva ⊤ (µ v ⊗ cv) . (18) 

Discussion and Conclusion

Although optimal transportation has long been an attractive potential technique for graphics applications, optimization challenges hampered efforts to include it as part of the standard toolbox. Convolutional Wasserstein distances comprise a large step toward closing the gap between theory and practice. They are easily computable via the heat kernel-a well-studied and widely-implemented operator in graphics-and through the iterated projection algorithm can be incorporated into modeling problems with transportation terms.

We have demonstrated the breadth of applications enabled by this framework, from rendering to image processing to geometry. Modeling via probability distributions is natural for these and other problems, and we foresee applications across several additional disciplines. Having reduced the cost of experimenting with transportation models, future studies now may incorporate transportation into graphics applications including processing of volumetric data, caustic design, dimensionality reduction, and simulation.

Several theoretical and numerical problems remain open. The regularization in convolutional transport enables scalable computation but introduces smoothing; imaging applications like those in [START_REF] Zhu | AverageExplorer: Interactive exploration and alignment of visual data collections[END_REF]] require sharp edges that can get lost. As it stands now, while our technique outperforms existing methods for transportation in graphics, numerics degrade if γ is too small, similar to the heat kernel approximation in [START_REF] Crane | Geodesics in heat: A new approach to computing distance based on heat flow[END_REF]; this is the primary drawback of our transport approximation. Modeling with "true" quadratic Euclidean barycenter Wasserstein barycenter Wasserstein distances remains a challenge on images and triangle meshes, and large-scale discretizations of flow models proposed by [START_REF] Benamou | A computational fluid mechanics solution of the Monge-Kantorovich mass transfer problem[END_REF] remain to be formulated. Closer to the current discussion, the algorithm for propagation in §6.3 might benefit from preconditioners spreading information non-locally in each iteration; this would alleviate the need to iterate |V | times to guarantee "communication" between every pair of vertices.

Optimal transportation provides an intuitive, foundational approach to geometric problems over many domains. Practical, easilyimplemented optimization tools like the ones introduced here will enable its incorporation into graphics pipelines for countless tasks.
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 1 Figure 3: W 2 2,H t between δ distributions (a) as a vertex-to-vertex distance (b; computed with γ = 10 -5 -slight smoothing).

Figure 4 :

 4 Figure 4: Barycenters with different levels of entropic sharpening, controlled by H0. Here, H def.
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 5 Figure 5: Wasserstein propagation can be used to model barycenter problems and displacement interpolation. Here, we show the corresponding graph G = (V, E); vertices in V0 have solid shading.
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 7 Figure 7: Shape interpolation in 3D, expanded from Fig. 1.
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 6 Figure 6: Displacement interpolation without (left) and with (right) entropy limits. The optimization implicitly matches the two peaks at t = 0 and t = 1 and moves mass smoothly from one distribution to the other.
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 9 Figure 9: Embeddings of skeletons computed using Wasserstein propagation; the positions of the blue vertices are computed automatically using the fixed green vertices and topology of the graph.

  right flip) Figure 10: Soft maps: Colored points on the source are mapped to the colored distributions on the target, where black points are fixed input correspondences. Our method is able to extract two maps from the left-right symmetric descriptor c(x, y), depending on whether the fixed correspondences preserve orientation or are flipped. This objective favors distributions µ v with low compatibility cost; the weight ωv is the area weight of v ∈ M0. Take N (v) to be the valence of v ∈ V . In terms of transportation plans, (18) equals (v,w)∈E W 2 2,H t (µ v , µ w )/ℓ 2 (v,w) , where Ht def.= diag exp -ℓ 2 e τ ωvcv γN (v) Htdiag exp -ℓ 2 e τ ωwcw γN (w) .
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 12 Figure 12: Interpolating indicators using linear combinations (left) is ineffective for shape interpolation, but convolutional Wasserstein barycenters (right) move features by matching mass of the underlying distributions.

Figure 13 :

 13 Figure13: "Generalized Mahjong:" Linear (top) and displacement (middle) interpolation between two images; while it is less sharp, the displacement interpolation result can be post-processed using simple image filters to generate a nontrivial interpolation (bottom; see e.g. the tip of the "9" character rotating outward).
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Wasserstein Propagation

Generalizing the barycenter problem, we consider the "Wasserstein propagation" problem posed by Solomon et al. [2014b]. Suppose G = (V, E) is a graph with edge weights α : E → R+; take |V | = m. With each vertex v ∈ V , we associate a label µv ∈ Prob(M ), whose value is a distribution over another domain M . Given fixed labels µv on a subset of vertices V0 ⊆ V , we interpolate to the remaining vertices in V \V0 by solving min

subject to the constraint that µv is fixed for all v ∈ V0.

Algorithm 4: Wasserstein propagation via Bregman projection.