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On some aspects of the CNEM implementation in 3D in

order to simulate high speed machining or shearing

Lounes Illoul, Philippe Lorong

Arts et Metiers ParisTech 151 boulevard de l’Hôpital, F-75013 Paris France,
amran.illoul@orange.fr - philippe.lorong@paris.ensam.fr

Abstract

This paper deals with the implementation in 3D of the Constrained Natural
Element Method (CNEM) in order to simulate material forming involving
large strains. The CNEM is a member of the large family of mesh-free meth-
ods, but is at the same time very close to the finite element method. The
CNEM’s shape function is built using the constrained Voronöı diagram (the
dual of the constrained Delaunay tessellation) associated with a domain de-
fined by a set of nodes and a description of its border.

The use of the CNEM involves three main steps. First, the constrained
Voronoi diagram is built. Thus, for each node, a Voronoi cell is geometrically
defined, with respect of the boundary of the domain. Then, the Sibson-type
CNEM shape functions are computed. Finally, the discretization of a generic
variational formulation is defined by invoking an ”stabilized conforming nodal
integration”. In this work, we focus especially on the two last points. In or-
der to compute the Sibson shape function, five algorithms are presented,
analyzed and compared, two of them are developed. For the integration
task, a discretization strategy is proposed to handle domains with strong
non-convexities. These approaches are validated on some 3D benchmarks in
elasticity under the hypothesis of small transformations. The obtained re-
sults are compared with analytical solutions and with finite elements results.
Finally, the 3D CNEM is applied for addressing two forming processes: high
speed shearing and machining.

Keywords: Meshless methods, Natural neighbour Galerkin methods, 3D
constrained natural element method, Forming processes simulation



1. Introduction

The ”meshless” methods are alternative approaches to the finite elements
method to solve partial differential equations (PDE). As finite elements, the
meshless methods allow to approximate fields with values stored on points,
called nodes, distributed on the studied domain. With finite elements the
approximation is defined element by element, every element being defined
by all the nodes connected to it. Generally, for a same set of nodes several
meshes are possible. That leads the approximation to a mesh dependence.
With meshless methods the connectivity between nodes is only defined by
the notions of neighborhood or domains of influence. For theses approaches,
the construction of the approximation is thus not dependent any more on
an any meshing but only on the relative position of the nodes. An impor-
tant motivation of the meshless approaches is to avoid numerical problems
resulting from the mesh, for example mesh distortion when studied domain is
subjected to large strains. The meshless methods can be used advantageously
for the numerical simulation of manufacturing processes like extrusion, in-
jection, machining or blanking for example.

The finite difference method generalized for arbitrary cloud of nodes [1]
was the first step toward the meshless methods. Other methods were then
proposed: the ”Smooth Particle Hydrodynamics” (SPH) [2] (an overview of
this approach is given in [3]), the ”Diffuse Element Method” (DEM) [4] [5] [6],
the ”Element Free Galerkin Method” (EFGM) [7], the ”Reproducing Kernel
Particle Method” (RKPM) [8], the ”Natural Element Method” (NEM) [9],
and the ”Method of Finite Spheres” [10].

The NEM is based on the natural neighbor (NN) interpolant introduced
by Sibson [11]. The NN interpolant uses a geometric construction: the
Voronöı diagram associated with the cloud of nodes spread on the stud-
ied domain. Unlike the other meshless approaches: i) the support of NN
shape functions are automatically defined, ii) the value of NN shape func-
tions associated with internal nodes are null on the border of the domain.
This last property, only valid for convex domains, is particularly interesting
because it allows a direct imposition of the boundary conditions, exactly as
in the finite elements framework. To extend these property to non-convex
domains two strategies exist. The first one, based on the alpha forms [12],
propose a very simple way to describe the border of the domain if this last
one remains weakly non-convex. The second one, the Constrained Natural
Element Method (CNEM) [13], handles the case of strongly non-convex do-
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mains by building the interpolation on the Constrained Voronöı diagram,
constrained by the border of the domain. The major inconvenience of NN
shape functions is their significant calculation time.

This article has two main objectives. First of all it aims at clearing up
certain properties inherent to the Sibson’s shape functions in the 3d for possi-
bly non-convex domains. Secondly it gives a presentation and a comparison,
in term of performance and applicability, also for non-convex 3d domains,
of different needed algorithms. This paper gives also the headlines of the
implementation of the CNEM in a finite transformations context and shows
results for two kinds of cutting manufacturing processes. The modelling of
metal cutting, well known as being particularly complex [14], gives interesting
applications for the proposed approach.

2. Overview of the constrained natural neighbor (CNN) interpo-
lation

The natural neighbor interpolant is based on a geometrical construction,
the Voronöı diagram. This Voronöı diagram is associated with a cloud of
nodes distributed on the studied domain. The nodes are points of the domain
where the degrees of freedom (DOF) of the interpolation are defined. The
NN interpolation is a linear combination of NN shape functions, one for each
node. The NN shape functions are local in space and interpolating (the value
of the interpolation on a node is equal to the DOF of the node).

The Voronöı diagram is the dual of the Delaunay tessellation associated
with the same cloud of nodes. However, unlike to shape functions whose
construction are based on a tessellation, the NN shape functions only depend
on the space distribution of the nodes. Figure 1 illustrates this aspect for a
fixed nodal distribution and at a given point x. In this figure, the value of
the shape function associated with each node is proportional to the diameter
of the red disk. For the NN shape functions, the neighbors of x (nodes of the
domain for whom the associated shape functions are not equal to zero) are
the closest nodes to x, nodes j, h, k, and g. For this interpolation, the more
a node is close to x, the more his influence (the associated value of the shape
function) is important. We can note that the value of the shape functions
associated with the neighbors of x are almost identical, because, for this
example, x is roughly at the same distance from them. This is not the same
for the finite elements linear shape functions. For a Delaunay tessellation
represented in Figure1 (on the right), the neighbors of x are only j, g and
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k (for k the associated shape function value is practically zero). For this
tesselation h is not a neighbor of x although h being at a similar distance
from x.
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Figure 1: Values of neighbors Sibson NN shape functions (left) - Finite elements linear
shape functions(right)

Compared with other meshless shape functions, the NN shape functions
have a significant advantage. On the domain border, the value of the in-
terpolated field by NN shape functions depends only on the value of this
field on border node, and linearly (figure 2). In other words, the internal
nodes have no influence on border of the domain, the associated shape func-
tions vanished on the border. This property is only valid for convex domain.
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Figure 2: Values of neighbors Sibson NN shape functions close to convex border

For a non-convex domain, on or close to a non-convex border, the in-
terpolated field may not only depend on internal nodes but also on nodes
being located on the other side of this border (figure 3 on the left). The
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Figure 3: Sibson shape function close to a non-convex border: NN (left) / CNN (right)

constrained natural neighbor shape functions CNN [15] were introduced to
cure this gap. The CNN shape functions are an extension of the NN shape
functions for a non-convex domain: the calculation of NN shape functions
is based on the Voronöı diagram, the calculation of CNN shape functions
is based on the Constrained Voronöı diagram. The constrained Voronöı di-
agram is contrained by the border of the domain. Figure 3 illustrates the
contribution of the CNN shape functions close to a non-convex border (on
the left) comparatively to the NN shape functions (on the right).

3. Computation of CNN shape functions

In this section, for convenience reasons, we often refer to the two-dimen-
sional case (n = 2), followed in italic by a generalization to the three-
dimensional case (n = 3) or more (n > 3). We consider a domain Ω from Rn

the border of which is denoted Γ. We also consider a set, S, of nodes spread
over Ω and its border Γ.

3.1. Voronöı diagram and Delaunay tessellation
Let p be a node of S. The Voronöı domain [16] associated with p, noted

V orS(p), is the set of points of Rn closer to p than any others node q of S or
equal distance:

V orS(p) = {x ∈ Rn : d(x, p) ≤ d(x, q), ∀Q ∈ S, q 6= p} (1)

where d(., .) is the Euclidean distance between two points. The Voronöı
diagram is the dual of the Delaunay tessellation [17]. The circumcircle (cir-
cumsphere, circum-hyper-sphere) of each triangle (tetrahedron, simplex) does
not contain any node inside itself.
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Let us define some vocabulary:

• Voronöı vertex: center of the circle (sphere, hyper-sphere) which cir-
cumscribes a Delaunay triangle (tetrahedron, simplex). This vertex is
thus associated with three generator nodes ((n+1) in nd), it is in con-
nection with three other vertices ((n+1) in nd), those associated with
adjacent Delaunay triangles (tetrahedron, simplex).

• Voronöı edge: segment connecting two adjacent vertices. Each edge is
associated with two geneartor nodes (n in nd)

• Voronöı face: median plan (hyper-plan) between two neighboring nodes
(generator nodes).

• Voronöı cell: area of Voronöı.

3.2. Constrained Voronöı diagram and constrained Delaunay tessellation

The definition of constrained Voronöı diagram is based on the visibility
criterion [18]: a node q is known as visible from another node p, and recip-
rocally, if, and only if, the segment [p, q] do not pass through the domain
border Γ of Ω, and is not outside this last.

In Figure 4, the segments [a, b], [a, c], and [a, d] pass through Γ. The
nodes b, c, and d are thus not visible from a and reciprocally. In addition,
the segment [e, c] is outside the domain, the nodes e and c are thus not visible
from each other.
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a 

Figure 4: The visibility criterion

The definition of the constrained Voronöı area associated with node p,
V orcΓS (p), found classically in the literature [19], is as follow:
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V orcΓS (p) = {x ∈ Rn : d(x, p) ≤ d(x, q),∀q ∈ S, q 6= p, x visible from p and q}
(2)

This definition restricts V orcΓS (p) to its internal domain part. In order
to be able to compute shape functions thereafter, this area should not be
truncated by the domain border.

A more extended definition is:

V orcΓS (p) = {x ∈ Rn : d(x, p) ≤ d(x, q), ∀q ∈ S, q 6= p∧p visible from q} (3)

In Figure 5 is represented, on the left, the (no constrained) Voronöı cell
associated with node p. On the right-hand side drawings, two constrained

i

a b c d

ef

g

h

l

j

p

k

i

a b c d

ef

g

h

l

j

P
k

i

a b c d

ef

g

h

l

j

p
k (1)

(2)

Figure 5: Voronöı cell of a node p, no-constrained (left), constrained (right)

cells associated with the same node p are present: on the top the cell resulting
form the definition (2), on the bottom the cell resulting from the definition
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(3). The border of the domain is defined by the green segments. In the
definition (3), the visibility criterion is applied only to nodes of the domain
whereas in the definition (2) the visibility criterion is applied to all the points
of the domain.

It must be noticed that the Voronöı diagram of a cloud of nodes, is the
constrained Voronöı diagram, constrained by the convex hull of this cloud
of nodes. For a non-convex domain, the convex hull of the cloud is not
anymore its border. This explains the difference between the two diagrams,
constrained and not constrained, for non-convex domains.

The constrained Voronöı diagram (CVD) is the dual of the constrained
Delaunay tessellation (CDT)[20]. For this tessellation the circum circle (sphe-
re, hyper-sphere) of each triangle (tetrahedron, simplex) does not contain any
visible node from the nodes of this triangle. In 2d the constrained Delaunay
tessellation always exists, for convex domain or not. This is unfortunately
not true anymore in 3d for certain non-convex domains. An example is given
with the Schönhardt polyhedron [21] (figure 6). A solution in these cases
consists in adding some nodes on the border of the domain.

Adding
nodes

Domain allowing
no constrained 

Delaunay tetraedrisation

Domain allowing
a constrained 

Delaunay tetraedrisation

Figure 6: Schönhardt polyhedron

In our implementation, the construction of the CVD is done through its
dual, the CDT. To build this CDT we use the algorithm proposed by Si and
Gärtner [22] and implemented in TETGEN code [23] by the author. The
input data of this algorithm are the nodes of the domain and the border of
the domain described in the form of PLC (Piecewise Linear Complex)[24].
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In our case, for a 3d domain, the tessellation of the border is a very simple
PLC where all the faces are triangles.

3.3. Definition of the Sibson CNN shape functions

Let x be a point inside Ω, the point where we want to evaluate the
interpolation, such as x /∈ S ∧ x /∈ Γ. We denote V Γ

S the constrained Voronöı
diagram of Ω, V Γ

S+x the constrained Voronöı diagram of Ω with addition of
x as node and DΓ

S+x the corresponding constrained Delaunay tessellation, c
′
x

the Voronöı cell associated with x in V Γ
S+x.

The constrained natural neighbors of x are the nodes of Ω whose Voronöı
cell are directly close to the cell of x in V Γ

S+x, in other words, the nodes of Ω
connected to x by a Delaunay edge in DΓ

S+x.
Let say that vi is such a neighbor, and cvi its associated Voronöı cell in

V Γ
S . Similarly to the NN shape function [11][25][26], the value of Sibson CNN

shape function associated with vi at point x, denoted φsvi(x), is given by:

φsvi(x) =

∥∥c′
x ∩ cvi

∥∥
L

‖c′
x‖L

, (4)

where ‖.‖L is the algebraic Lebesgue measure (length in 1d, area in 2d, vol-
ume in 3d...). For CNN shape functions, unlike NN shape functions, this
measure can be negative or equal to zero for strongly non-convex 3d do-
mains. Hence, for these domains, there are points where shape functions are
non-definite. We return on this aspect in Appendix A.

A diagram illustrating the computation of Sibson shape functions in 3d is
given Figure 7. In Figure 8 we can see the difference resulting from the use
of constrained Voronöı diagram versus Voronöı diagram on a Sibson shape
function (2d) (for an internal node near to non-convex border(top), border
node (bottom)).

3.4. Properties of CNN shape functions

a) Delta Kronecker property: like NN shape functions, the CNN shape
functions are interpolating:

φni (nj) = δij, ∀(ni, nj) ∈ S2 (5)
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Insert x point 

Voronoï 

 Take the 
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v 
Compute the 
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associated with 
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Figure 7: Computation of Sibson shape fonctions in 3d
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Figure 8: Contour of Sibson shape functions: NN (left) versus CNN (right)
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b) Partition of unity: by construction CNN shape functions check the
partition of unity:

n(x)∑
i=1

φvi (x) = 1, ∀ x ∈ Ω (6)

where n(x) is the number of neighbors of x.

c) Local coordinate property and linear consistency: Sibson[11][25][26] and
Piper[27] showed that NN shape function reproduce exactly coordinates of
this point, and by extention CNN also verifies:

x =

n(x)∑
i=1

φvi (x)xi (7)

Properties b) and c) imply that CNN shape functions reproduce exactly the
linear functions.

d) Linearity on the border: on Γ, the CNN shape functions are strictly
linear [15]. For recall, this border is: the convex hull of the nodes of Ω if
we uses a Voronöı diagram, the real border of Ω, if we uses a constrained
Voronöı diagram.

Properties a) and d) imply that on a segment (triangle in 3d) of the
border, the CNN interpolation depends only on the DOF of the nodes of this
segment (triangle).

e) Support of CNN shape functions: the support of a CNN shape function
associated with a given node i of Ω, is the set of the circles (sphere, hyper-
sphere) circumscribed with the Delaunay triangles (tetrahedron, simplexes)
connected to i. This support is truncated by Γ (see Figure 8, right).

f) Continuity: Sibson NN or CNN shape functions are C0 on the nodes,
C1 on the Delaunay circles (sphere, hyper-sphere), and C∞ everywhere else
[28].

3.5. Commputation of Sibson CNN shape functions

We denote by P int the polyhedron defining the common domain of c
′
x and

cv (P int = c
′
x∩cv), v being one of the neighbors of x in V Γ

S+x. The computation
of φsv(x) is made in two steps: the first one is the local modification of V Γ

S

by the insertion of the point x, the second one concerns the calcultation of
‖P int‖L.
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For the first step the use of an incremental algorithm is very well adapted.
Two similar algorithms can be used [29]: the Bowyer algorithm [30], which
works with Voronöı vertices, or the Watson algorithm [31] which works with
Delaunay tetrahedrons. These two algorithms, initially developed for the
construction of VD/DT, can be used in a incremental way on an existing
CVD/CDT. Both of them maintain the constrained character of the initial
diagram V Γ

S or Delaunay tesselation DΓ
S. The firts step can be split in three

main sub-steps:

1. Search for the tetrahedron which contains the point x. For that it
is possible to use a gradient descent based on Voronöı graph (Schmitt
and Borouchaki [32]), or that based on the Delaunay graph (Green and
Sibson [33]). In the case of non-convex domains this two search can
fail if search starting from a no visible tetrahedron by the point x. It is
thus necessary to implement other types of search, such frontal search,
or octree search.

2. Search for all the tetrahedrons whose circumscribed sphere contains the
point x and break them. This search is local, it is done by visiting the
nearest tetrahedrons to the first one.

3. Remesh obtained cavity by connecting each cavity triangle to the x.

The second step can be done in different ways:

a) By Lasserre recursive algorithm
Alfaro et al. [34], like Sambridge et al. [35][36], propose to use the recur-

sive Lasserre algorithm. The Lasserre algorithm can be used to compute the
volume of convex polyhedrons described in a H-representation way (volumes
delimited by a set of half-planes).

In the case of convex domain, the Voronöı cells are convex and, as being
the intersection of two convex polyhedrons, P int is also convex. P int can then
be described as a volume delimited by a set of half-planes. This set consists
of all the faces of cv (cell of v in V Γ

S ), and the common face to c
′
v (cell of v in

V Γ
S+x) and c

′
x (see Figure 9). The Lasserre recursive algorithm can therefore

be used to compute the volume of P int. This algorithm can be succinctly
described as follow:

Let P a convex polyhedron in Rn, delimited by m half-planes. Each
one of these half-planes can be represented by an inequation, which can be
translated in a matrix form by the inequation:
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c  
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Figure 9: Computation of
∥∥P int

∥∥
L

with Lasserre algorithm

A · x ≤ b, (8)

where A is an m × n matrix, x the column of the n components of the
point x, and b a column of m terms.
The volume measurement of P , denoted V (n,A, b), can be calculated by the
following recursive formula:

V (n,A, b) =
1

n

m∑
i=1

bi
‖ai‖

Vi(n− 1, A, b), (9)

where Vi(n− 1, A, b) is the volume measurement in Rn−1 of the face fi:

fi =
{
x| aTi · x = bi, A · x ≤ b

}
.

b) By complementary volume
The Volume measurement of P int can also be defined as the measurement

of volume variation of its associated Voronöı cell after the insertion of the
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with complementary volume

point x (see Figure 10).
This approach can be applied only if the cell of each neighbour node is non-
infinite. If it is not the case, it is impossible to calculate the measurement
of its volume, but considering that we need only for the measurement of the
variation of volumes of the cells after insertion of the point x, and not of their
volume, this problem can be solve by truncating the infinite cells (addition
of faces).

c) and d) By topological approaches
It is possible to rebuild the topology of P int polyhedron (faces, edges,

vertices) with only c) CVD connectivity [37] or d) CDT connectivity [38].
No computations of geometrical intersections are needed. In both of these
approaches the faces of the P int polyhedron are classified into three categories
(see Figure 11):
- fic

′
x, the face of c

′
x cell having as second node v,

- Ftrq, the set of cv cell faces truncated by the edges of fic
′
x,

- and possibly Ftrq, the set of cv cell faces being completely inside c
′
x.

e) By Watson algorithm
Watson [39] proposes to use the Lawrence polyhedron decomposition [40]

for the computation of ‖P int‖L. Taking a polyhedron P , and an hyperplane
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16



b

a

c

d

pcd pab pda pbc

c

d

a

b

a

pda
pab

b

pab

pbc

pbc

c

pcd

d

pda
pcd

Figure 12: Lawrence decomposition in 2d

π which is not parallel to any face of P , its volume measurement can then be
calculated by summing algebraically the volume measures of the simplexes

spxLaws . spxLaws are build for each vertex s of P by taking in addition to
the hyperplane π, the hyperplanes associated with the faces of P having s as
vertex. Each one of these hyperplanes divides space into two signed parts, the
positive one includes P . The sign of the volume measurement of a simplex
spxLaws is the sign of the part of the space in which it is located, which is
the product of the signs of this space part compared to each hyperplane
associated with spxLaws (the hyperplane π is not considered). In Figure 12,
we can see an example of the Lawrence polyhedron decomposition in 2d.
Watson takes, for his algorithm, the π plane as the median plane between
the point x and v. An illustration of this is given in Figure 13.

The Watson algorithm is not applicable on evaluation point x being lo-
cated on a face of any Delaunay tetrahedron. If the calculation of the inter-
polation is needed at such a point an other algorithm must be used.
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3.6. Efficiency comparison of the five proposed algorithms

The five methods of Sibson shape function calculation were implemented
(C, C++ languages). For the method based on the Lasserre recursive al-
gorithm, we use the Vinci code [41], in which an improved version of this
algorithm is implemented, the r-Las algorithm [42].

For the comparison, we takes a unit cube of dimension (1×1×1) with
10 000 random distributed nodes inside. The shape functions are evaluated
at the barycentre of each Delaunay tetrahedron. Only the points for which
the five methods are applicable are taken into account.

Given times (in table 1) are average times corresponding to 1000 evalua-
tions. The total computing time includes:
-Tcav: time taken for the cavity construction (identical for the five algo-
rithms).
-Tsf : needed time for shape functions computation once the cavity is built.

The Watson algorithm is clearly the more powerful. For points where
this algorithm doesn’t work (points located on or close to a Delaunay face),
the topological algorithm based on the CDT is recommended. In practice
the rate of failure of the Watson algorithm for random evaluation points is
about 1

1000
.

For time measurements the characteristics of the used computer are:
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Algorithm Lasserre Vol-comp Topo-DVC Topo-TDC Watson
Tcav (m.s) 35
Tsf (m.s) 4136 544 413 192 51
Tsf Alg

Tsf (Watson)
82 11 8 4 1

Table 1: Comparison of the computation efficiency of
∥∥P int

∥∥
L

- OS: microsoft windows xp,
- Compiler: Microsoft (R) Incremental Linker Version 7.10.3077,
- Processor: Mobile Intel Pentium M 745 - 1800 MHz,
- RAM: PC2700 DDR SDRAM.

4. Numerical integration of CNN shape functions for the CNEM

Numerical integration over Ω are needed in order to solve mechanical
problems. In the NEM, and thus by extension in the CNEM, two numerical
integrations are generally used: the Gauss integration, performed on the De-
launay tetrahedrons, and the stabilized conforming nodal integration (SCNI).
As CNN shape functions are rational, the first one requires a high number
of Gauss points in order to minimize the integration error. To improve this
direct nodal integration, Chen et al. [43][44] proposed the SCNI approach
for the RK interpolation in the RKPM method [45]. The SCNI approach
was taken again by Gonzàlez et al. [46] for the NEM method.

In the SCNI approach a strain smoothing stabilization is performed to
stabilize the nodal integration. The SCNI is based on the assumed strain
method in which an average gradient (called stabilized gradient) is introduced
for each node ni:

∇̃Ai =
1

‖Ωi‖L

∫
Ωi

∇A dΩi, (10)

where A is field interpolated over Ω and Ωi a sub-domain surrounding ni.
Using the divergence theorem, (10) can be rewrite as:

∇̃Ai =
1

‖Ωi‖L

∫
Γi

A ~n dΓi, (11)

where Γi is the border of Ωi and ~n the outward normal on Γi. This allows
to pass from a volume integral to a surface integral, and to integrate directly
the field rather than its gradient.
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Figure 14: Domain partition for slightly non-convex domains

In a large transformations context, SCNI avoid fields projection between
two configurations during a reactualization, all variables (displacement, strain,
stress) being associated with the nodes (colocation approach).

For the integration of the weakforms it is necessary that the set of Ωi

forms a partition of Ω. In the case of convex, or slightly non-convex domain,
the use of the Voronöı cells is a “natural” partition of the domain as they
remain convex at interior domain (Figure 14). It is nevertheless necessary
to truncate the cells which overflow domain border. This is the case of cells
whose nodes are on the border and for some nodes close to the border. A
fast and robust algorithm is presented in [37] to do this operation.

For strongly non-convex domains, the partition based on nodal Voronöı
cells is no longer valid. For such domains, cells associated with border nodes,
or close to it, can be non-convex inside the domain.

For the non-convex domain depicted in Figure 15 the phenomenon occurs
at node n. The cell associated with n (visible in Figure 16) is non-convex
inside Ω (the surrounded point with a circle belongs to the auto-intersection
curve of the cell associated with node n). This problem can be avoided by
using another nodal partition. The most simplest consists in subdividing each
Delaunay tetrahedron in four parts. The set of all the parts of tetrahedron
attached to a node ni defines the sub-domain Ω̃i associated with ni (Figure
17). The set of Ω̃i is a partition of Ω.
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Figure 15: Example of non-convex domain
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Figure 16: Example of a Voronöı cell having a non-convexity inside the domain
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Figure 17: Domain partition for non-convex domains
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5. 3d elastic Benchmarks

In order to validate the CNEM in 3d, we carried out simulations for
two standard problems in isotropic elasticity (small displacement and small
strain): the hollow sphere under pressure and the cylindrical excavation in an
infinite medium subjected to constraints ad infinitum. An analytical solution
exists for both of them.

We do not give here a description of the implementation of the CNEM in
elasticity but the reader car refer to Yvonnet et al. [13].

When time calculation are examinated, we use the sparse iterative solver
MKL [47] for the resolution of the generated linear system. The characteris-
tics of the used computer are the following:
- Operating System: Linux RedHat 64 bits,
- Compiler: Intel c++ compiler 9.1,
- Processor: Intel Itanium 2 Monticito - 1,6GHz - 1 core used,
- RAM: 32G - DDR2 - 667MHz.

5.1. Hollow sphere under internal pressure

The exact solution of the problem (stresses) in spherical coordinates
(r, θ, φ), is given by:

σrr = − Rint
3

Rext
3 −Rint

3

(
Rext

3

r3
− 1

)
P (12)

σθθ = σφφ = − Rint
3

Rext
3 −Rint

3

(
Rext

3

2r3
+ 1

)
P (13)

σrθ = σrφ = σθφ = 0 (14)

where P is the pressure inside the sphere, Rint is the internal sphere radius
and Rext is the external sphere radius.

For simulations, the pressure inside the sphere is taken equal to 1 MPa
and due to the symmetry of the problem only the eighth of the sphere is con-
sidered (Figure 18). Figure 19 shows the distribution of Von Mises equivalent
stress (CNEM simulation with Sibson SCNI integration for 300 000 nodes).
In this Figure, the equivalent stress field is not smoothed. The stress is
constant on each node cell.
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P 

Figure 18: Hollow sphere under internal pressure – Boundary conditions

Figure 19: Hollow sphere – Von Mises equivalent stress (No. nodes ≈ 300,000, SCNI -
Sibson shape function)
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5.2. Cylindrical excavation in an infinite medium

This is a plane strain problem with a bi-axial load but we solve it in 3d.
The exact solution of this problem is the following [48] (cylindrical coordi-
nates (r,θ,z)):

σrr =
σ1∞ + σ2∞

2

(
1−

(a
r

)2
)

+
σ1∞ − σ2∞

2

(
1− 4

(a
r

)2

+ 3
(a
r

)4
)

(15)

σθθ =
σ1∞ + σ2∞

2

(
1 +

(a
r

)2
)
− σ1∞ − σ2∞

2

(
1 + 3

(a
r

)4
)
cos (2θ) (16)

σrθ = −σ1∞ − σ2∞

2

(
1 + 2

(a
r

)2

− 3
(a
r

)4
)
sin (2θ) (17)

σzz = ν (σrr + σθθ) (18)

σrz = σθz = 0 (19)

For the stresses ad infinitum we take σ1∞ = 0 and σ2∞ = 1 MPa. Only
a quarter of the domain is studied (the problem has two symmetry plans).
The boundary conditions are illustrated in Figure 20 and the calculated Von
Mises equivalent stress field is depicted in Figure 21.

σ2∞

σ1∞

Figure 20: Cylindrical excavation – Boundary conditions
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Figure 21: Cylindrical excavation – Von Mises equivalent stress (No. nodes ≈ 370 000,
SCNI, Sibson shape function)

5.3. Convergence curves

For each of the two problems, and for a given homogeneous nodal distri-
bution, following simulations were carried out:
- degree 0 Gauss integration with linear shape function on Delaunay mesh
(Gauss FEM-L M-D),
- degree 0 Gauss integration with linear shape function on an optimized mesh
(Gauss FEM-L M-O),
- degree 4 Gauss integration with Sibson shape function (Gauss Sibson),
- SCNI with linear shape function on Delaunay mesh (SCNI FEM-L M-D),
- SCNI with linear shape function on an optimized mesh (SCNI FEM-L M-
O),
- SCNI with Laplace shape function (SCNI Laplace),
- SCNI with Sibson shape function (SCNI Sibson).

For SCNI, calculations are made on nodal volumes resulting from the quarter
tetrahedron discretization and by taking one Gauss point integration per face
(quadrangular).

Figure 22 and Figure 23 show the convergence curves of the error between
computed and analytic solution for hollow sphere and cylindrical excavation
respectively. The error is base on strain energy:

‖e‖ =

√∫
Ω

(σ − σ̂) : C−1 : (σ − σ̂)dΩ∫
Ω
σ̂ : C−1 : σ̂dΩ

, (20)

26



100,0

10,0

1,0

0000001000001000010001 No. nodes

||e
||

D-M L-MEF ssuaG
O-M L-MEF ssuaG

nosbiS ssuaG
D-M L-MEF INCS
O-M L-MEF INCS

ecalpaL INCS
nosbiS INCS

Figure 22: Hollow sphere – Convergence curves

where C is the elasticity tensor, σ is the computed stress tensor, and σ̂ is the
exact stress tensor.

For the two studied examples, although having the same rate of conver-
gence than the linear finite elements, the CNEM divides the total error by 3.
This profit of precision is mainly due to the use of the stabilized gradient. In
fact, the stabilized gradient gives comparable results on linear interpolation
and on CNN interpolation. We can also see that the rate of convergence
obtained with the CNEM, with a Gauss integration over the Delaunay tetra-
hedrons, drop off when the number of nodes increase. This is due to the
under integration of the Sibson shape function gradients.

Figure 24 gives, for the hollow sphere, and for the largest number of nodes
(≈ 300 000), the computation time tp for stiffness matrix preparation [inte-
gration + assembly + boundary conditions imposition] and the computation
time tr for the resolution of the generated linear system. The relative error
‖e‖ is also present in the same figure. It is interesting to note that tp is
approximatively five time greater for Sibson approximation than for finite
element approximation. This is due to the calculation of shape functions,
and more precisely due to the calculation of stabilized gradients.

The bandwidth of the stiffness matrix is larger for sibson function than
for linear interpolation on tetraedron. This is due to the larger connectivity
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Figure 23: Cylindrical excavation – Convergence curves

of nodes with the CNEM. It is then not surprising that the resolution for
CNEM takes larger time of resolution than FEM.

5.4. Study of the integration efficiency

As we saw in the section 4, the use of Voronöı cells based discretiza-
tion is not always possible. We thus proposed to use the quarters of the
tetrahedrons. In order to see whether the latter does not induce additional
errors, the hollow sphere under pressure problem was treated with the two
discretizations. The domain being slightly non-convex, the Voronöı cells
based discretization is possible. Knowing that the Sibson shapes functions
are rational, the number of integration point taken for the stabilized gra-
dient computation can influence the error. In order to make sure that the
error of integration is converged for each discretization, we have taken various
numbers of integration points.

Following simulations were carried out:
a) For quarters of tetrahedron discretization based:
- 1 integration point for 3 faces,
- 1 integration point per faces (barycenter),
- 1 Gauss integration point per triangle,
- 13 Gauss integration points per triangle (integrand of order 7).
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Figure 24: Hollow sphere – Computation time (in minutes) and error (No. nodes ≈
300 000)

b) For Voronöı cells discretization based:
-1 integration point per faces (barycenter),
-1 Gauss integration point per triangle,
-13 Gauss integration points per triangle (26 per quadrangle).

The previous triangles are obtained by meshing the faces of elementary
volumes attached to each node. These faces are quadrangles if we takes the
quarters of the tetrahedron discretization based, and polygons if we takes
the Voronöı cells discretization based. The study was done for Sibson shape
function.

The obtained results are summarized in Figure 25. We can see that the
quarters of tetrahedron discretization based does not induce more error than
the Voronöı cells discretization based. Moreover, the error of integration
with only one integration point per face is sufficient (identic error with that
obtained with 26 points per face). Hence, we have chosen this integration for
all CNEM simulations.
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Figure 25: Integration efficiency

6. CNEM in finite transformations

In this section, we interest us in the CNEM in the context of large strains
nonlinear elastoplastic, including dynamics, thermomechanical coupling, as
well as localization in the shearing process. For this purpose, the constitutive
equations of the model as well as algorithmic procedures are briefly described.
A larger description can be find in [49].

6.1. Elastoplasticity formulation

For the integration of the constitutive equation we followed the approach
proposed by [50]. The basic hypothesis underlying this approach to finite
strains elastoplasticity is the multiplicative split of the deformation gradient,
F , into elastic and plastic parts:

F = F e · F p (21)

This assumption, firstly proposed by Lee [51], admits the existence of a
local unstressed intermediate configuration. The elastic part of the behavior
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is base on a hyperelastic formulation which uses the Eulerian (or spatial) log-
arithmic strain tensor Ee = ln(U e). U e comes from the polar decomposition
of the elastic part of the deformation gradient: F e = Re ·U e.

Within the incremental numerical procedure for solving the history de-
pendent problems, a numerical scheme to verify the material constitutive
equation is needed to update stresses as well as the internal variables. We
use J2 plasticity with a predicting correcting approach which has the same
format that the standard return mapping used in the infinitesimal theory
[52, 53, 54, 55].

6.2. Kinematic aspects

Large deformations generate large relative movements between nodes in
particular when shearing occurs. To handle the modification of neighbor-
hoods of such nodes we use an updated Lagrangian procedure.

After an updating at time t?, the interpolation of the total displacement
of a particle m at t, denoted ũ(m)0→t, is defined by:

ũ(m)0→t = ũ(m)0→t? + ũ(m)t?→t (22)

ũ(m)t?→t =
n?∑
i=1

φ?i (x?(m)) .u (ni)t?→t (23)

where x?(m) are the coordinates of m at t?, n? is the number of natural
neighbors of m at t?, φ?i (x) are the shape functions defined on the node
repartition at t? and u (ni)t?→t are the displacements of the natural neighbor
ni of m at t?.

The gradient of the transformation from 0 to t can then be write:

F 0→t = F t?→t.F 0→t? (24)

6.3. Treatment of the additional points

As specified in section 3.2, the construction (or reconstruction when up-
dating the configuration) of the CVD can require the addition of new points.
These new points are always added on the border of the domain, and thus
belong to one of the triangles describing this border.

We suggest handling these new points as “slaves” of the three nodes of the
triangular facet on which they are situated. Their movement is thus defined
as a linear combination of the displacements of these three “master” nodes.
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uslave =
3∑
i=1

λi.ui (25)

where ui is the displacement of each “master” node, and λi the associated

barycentric coefficient location (
∑3

i=1 λi = 1).
This approach presents several advantages: there is no additional un-

known and the value of the time step (in the chosen conditionally stable
explicit time integration scheme) is not affected. The volume of the “slave”
cells is distributed, in proportion to λi, on its “masters” nodes.

6.4. Explicit thermomechanical Lagrangian procedure

The principle of virtual work may be formulated as follows:∫
Ωt
ρ(t)üηdΩt+

∫
Ωt
σt : ∇xηdΩt =

∫
Ωt
ρ(t)bηdΩt+

∫
∂Ωtσ

τηdΓt ∀η ∈ ϑ (26)

where ρ is the density, b and τ represent the body forces and applied trac-
tions respectively, σt is the Cauchy stress tensor at time t, η is the virtual
displacement, and ϑ is the space of virtual displacements. The introduc-
tion of the CNEM discretization in the variational form (26), transported
in the last update configuration, results in the discrete set of algebraic time
dependent equations which may be expressed, in matrix form, as:

Mü(t) = Fext(t)− Fint(un, t) (27)

where t is the time, M denotes the mass matrix, Fint(u, t) the internal forces
vector, while Fext(t) is the external forces vector. The use of the SCNI
quadrature results in a diagonal matrix for M. The diagonal terms are given
by mi = ρ0Ωi, with Ωi the area (volume in 3D) of the Voronöı cell related to
node ni.

To solve (27) the classical explicit central differences incremental scheme
is used. In case of contact a predictor/corrector strategy is used according
to the prescribed displacements or tractions.

The weak form of the heat balance can be expressed as:∫
Ωt
ρ(t)c(t)ṪϕdΩt+

∫
Ωt
k(t)∇xT·∇xϕdΩt =

∫
Ωt
rtϕdΩt+

∫
∂2Ω

q̄ϕdΓt ∀ϕ ∈ ψ

(28)
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where c(t) is the specific heat, k(t) is the thermal conductivity for isotropic
conduction, and rt a heat source related to the inelastic deformations, de-
fined at time t. We have made the assumption that heat generated by elastic
deformation is negligible with respect to heat generated by plastic deforma-
tion.

In the following, we assume c and k constant in time. ϕ is the virtual
temperatures, ψ is the space of virtual temperatures, and q̄ represents the
heat transfer at the boundary ∂2Ω. Following similar arguments as in the
mechanical problem (26), the weak form of the heat balance results, with the
CNEM discretization, in the ODE system:

CṪ(t) + KT(t) = Q(t) (29)

which in the context of an explicit scheme can be written as

CTn+1 = [C + ∆tK]Tn + ∆tQn

The matrix C becomes diagonal in the context of CNEM when SCNI is
used. The heat source resulting from the inelastic deformations is given by

rt = χσt : D̂p
t , D̂p

t = sym
[(

Ḟp
t

)
(Fp

t )
−1
]

(30)

where χ is the Taylor-Quinney parameter [56] representing the fraction of
plastic work converted into heat. In the present work, we have used χ = 0.9
[57].

When mechanical and thermal problems are coupled, a staggered solution
approach is usually adopted, which solves the mechanical and the thermal
problems in an uncoupled manner with data exchange performed at the end
of each time step or increment. In particular, the nodal temperatures are
transferred to the mechanical procedure, while plastic work is communicated
to the thermal solver.

6.5. Constitutive law

For the examples below (section 7), we use the Johnson-Cook hardening
law (31)[58]. This law allows, in a simple way, to take into account a thermo-
mechanical coupling: effects of inelastic deformations and softening effects
due to temperature.

σy(ε̄
p) = [A+B(ε̄p)n]

[
1 + Cln

(
˙̄ε
p

˙̄ε
p
0

)] [
1−

(
T−T0

Tf−T0

)m]
(31)
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A, B, C, m, n and ˙̄ε
p
0 are material parameters, ε̄p represents the equivalent

plastic strain and ˙̄ε
p

represents the rate of equivalent plastic strain. T and
T0 correspond to the current and initial temperature respectively.

7. Simulation of manufacturing processes

The objective of this section is to show the ability of the CNEM to simu-
late problems where very large strains (around 10) are present. We chose an
example of high speed blanking and two examples of machining (orthogonal
cutting and oblique cutting). For these examples we give theses following
data:

- Nodes: the number of nodes at the beginning / end of the simulation,

- Ttot: total duration of the simulation,

- NI : number of corresponding increments,

- NU : number of updates of the updated Lagrangian procedure,

- TU : average time for one update,

- RU : percentage of total time taken for all the updates versus Ttot.

For simplicity reason we took the same material for all these examples
(table 2). All the simulations were launched on the same computer:
- OS: Linux RedHat 64 bits
- Compiler: Intel c++ compiler 9.1
- Processor: 4 x Intel Itanium 2 Monticito - 1,6GHz - 8 cores used
- RAM: 32G - DDR2 - 667MHz

SCNI and constitutive law integration are parallelized by using TBB (Thread-
ing Building Blocks) task primitive.

A(MPa) B(MPa) C n m ε̇p0(s−1) Tt(C) Tf (C)
866 318 0.008 0.25 1.055 5.77 10−2 20 1670

Table 2: TA6V – Johnson-Cook coefficients (from [59])

Figures 27, 29 and 30 are structured in the same way for the three ex-
amples. On the top is represented the equivalent plastic strain (for three
different instants), and on the bottom the equivalent Von Mises stress (for
the same instants).
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Figure 26: High speed blanking – Diagram of the blanking apparatus

7.1. High speed blanking

Figure 26 gives the diagram of the studied example: the punch is blue,
the sample is grey/red (due to symmetry reason only a quarter is modeled),
and the die is yellow. The table 3 gives the corresponding data. v is the
relative speed between the punch and the die.

v ee le he rp/rm lp j
10 m/s 2 mm 17 mm 32 mm 0.5 mm 16 mm 0.1 mm

Table 3: High speed blanking – Geometric and process data

7.2. Orthogonal and oblique cutting

Figure 28 gives the diagram of the studied cutting examples. γ is equal
to 0 for orthogonal cutting, otherwise we are in oblique cutting. Table 4
gives the corresponding data. v is the relative speed between the tool and
the workpiece.
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Figure 27: High speed blanking – Equivalent plastic strain and stress contours
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Figure 28: Machining – Diagram of the apparatus
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Figure 29: Orthogonal cutting – Equivalent plastic strain and stress contours

Figure 30: Oblique cutting – Equivalent plastic strain and stress contours
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v e l r0 α β γ
Orthogonal cutting 20 m/s 0.2 mm 0.5 mm 0.05 mm 5o 30o 0o

Oblique cutting 20 m/s 0.2 mm 0.5 mm 0.05 mm 5o 30o 5o

Table 4: Machining – Geometric and process data

7.3. Results

The computational data are given in table 5. One can see that the needed
time for all the updates of configuration is non-negligible with respect to the
total computational time. In general the ratio is near 30%. It is interesting
to see that the number of updates remains relatively low with regard to the
number of increments: NI

NU
is always greater than 300.

Nodes Ttot NI NU TU RU

Blanking 73385/147974 147 h 305944 153 6.82 min 12%
Oth. cutting 14386/78092 32.2 h 148651 449 2.3 min 54%
Obl. cutting 14386/20699 10.55 h 149093 254 0.75 min 30%

Table 5: Computational data

8. Conclusion

We can say that up to now the main difficulties inherent to the imple-
mentation of the CNEM 3d are overcome: construction of the constrained
Voronöı diagram in 3d, optimization of the calculation of Sibson shape func-
tions, domain discretization in nodal elementary volumes for the stabilized
nodal integration. The elastostatic tests are successful. Although having the
same rate of convergence of linear finite elements, the CNEM divides the
global error by 3. In finite transformations, for thermo-elasto-viscoplastic
behavior, the proposed approach also gives very promising results.

However, the CNEM requires a correct description of the border (no auto-
intersection) for the construction of the constrained Voronöı diagram. This
involves a possible update of this last one: a remeshing of the border in
the area where there are surface folds, excessive elongations or where nodes
become to close. For high speed processes (cutting or blanking for example)
it is still necessary, to realize more representative simulations, to take into
account dynamic effects of the tools and the machine (die, punch, . . . ). To
simulate a process like blanking, it is also necessary to be able to take into
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account matter separation. A simple manner to introduce such a separation
may concist in using a “kill cell” approach.

If numerical simulation is a key issue for the development of efficient
cutting or forming processes, the definition, and the identification, of con-
stitutive laws adapted to high speeds and high temperatures remain still a
major difficulty.
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Appendix A. Study the CNN shape functions near highly non-
convex borders

For non-convex domains, there exist locations for which the insertion of
a point in the CVD creates a non-convex Voronöı cell. In order to illustrate
that, let take the domain Ω depicted in Figure A.31. The insertion of the
point x (coordinates [−0.1, 0, 0]), in the CVD of Ω, leads to a non-convex cell
(see Figure A.32). We can also see in this Figure, that the cell associated
with the neighbor node v (n0 or n1) is also non-convex. When x moves
the topology of its associated cell evolves continuously from a non-convex
topology to a convex topology. In order to highlights this phenomenon, the
point x moves gradually, in Figure A.33, from the position [−0.25, 0, 0] to
[0−, 0, 0] (displacement along the X axis).

Having noticed this non-convex property, it is interesting to study the
evolution of the shape functions according to different positions of a point x.
The graph A.34 gives, according to the point x coordinate along the X axis,
the volume measures of:
- the point x cell, (Vol(cx)),
- the polyhedron intersections associated with each neighbor of x.

The graph A.35 gives, again according to the the point x coordinate along
the X axis, the value of the shape functions associated with each neighbor
of x. All shape function properties stated in 3.4 remain verified. We can
however notice that there is a position x0 for which the volume of the cell
of the point x cancels. This gives place to an indetermination of the Sibson
shape function (division by 0). Such position is not unique. Indeed, if we
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calculate the volume measure of the point x cell in a vicinity of x0, the
location where the volume measure cancel forms a surface (Figure A.36).

It should be noted that even for Laplace CNN shape functions, places for
which they are unspecified also exist, as the graph in the Figure A.37 shows
it.
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Figure A.31: Non-convex domain – Location of the point x
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Figure A.33: From a convex cell to a non-convex cell according to the position of x.
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Figure A.35: Sibson shape functions at x for different neighbors
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Figure A.36: Space location where the volume of x cell is null
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Figure A.37: Laplace shape functions at x for different neighbors
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[22] H. Si, K. Gärtner, Meshing piecewise linear complexes by con-
strained delaunay tetrahedralizations, in: 14th International Meshing
Roundtable, pp. 147–163.

[23] H. Si, Tetgen version 1.4, a quality tetrahedral mesh generator and three-
dimensional delaunay triangulator, 2006. c©2002, 2004, 2005, 2006.
http://tetgen.berlios.de/.

[24] G. L. Miller, D. Talmor, S.-H. Teng, N. Walkington, H. Wang, Con-
trol volume meshes using sphere packing: Generation, refinement and
coarsening, in: 5th International Meshing Roundtable, pp. 47–61.

[25] R. Sibson, The dirichlet tessellation as an aid in data analysis, in: Math-
ematical Proceedings of the Cambridge Philosophical Society, volume 7,
pp. 14–20.

[26] R. Sibson, A brief description of natural neighbor interpolation, in:
V. Barnett (Ed.), Interpreting Multivariate Data, John Wiley and Sons
Ltd, 1981, pp. 21–36.

[27] B. Piper, Properties of local coordinates based on dirichlet tessellations,
Computing Suppl. 8 (1993) 227–239.
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