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In this paper, a completely blind equalizer based on probability density function (pdf) fitting is proposed. It doesn't require any prior information about the transmission channel or the emitted constellation. We also investigate Automatic Modulation Classification (AMC) for Quadrature Amplitude Modulation (QAM) based on the pdf of the equalized signal. We propose three new approaches for AMC. The first employs maximum likelihood functions (ML) of the modulus of real and imaginary parts of the equalized signal. The second is based on the lowest quadratic or Bhattacharyya distance between the estimated pdf of the real and imaginary parts of the equalizer output and the theoretical pdfs of M-QAM modulations. The third approach is based on theoretical pdf dictionnary learning. The performance of the identification scheme is investigated through simulations.

INTRODUCTION

AMC is a high requirement of intelligent systems in both military and civil domains. It has been of significant importance for cognitive radios when the receiver has no knowledge about the channel and transmitted modulation. It is very useful in adaptive modulation contexts where the transmitter has to adapt the emitted modulation to the transmission conditions. [START_REF] Dobre | Survey of automatic modulation classification techniques: classical approaches and new trends[END_REF] gives a detailed overview on the techniques developed in the field of AMC. There are two approaches for AMC [START_REF] Dobre | Survey of automatic modulation classification techniques: classical approaches and new trends[END_REF]. One is based on likelihood functions where the detected modulation is the one that maximises the likelihood among all hypothesis [START_REF] Sills | Maximum-likelihood modulation classification for psk/qam[END_REF] [START_REF] Wei | Maximum-likelihood classification for digital amplitude-phase modulations[END_REF]. The second approach is based on statistical characteristics of the received signal and their comparison with the theoretical ones [START_REF] Marchand | Classification of linear modulations by a combination of different orders cyclic cumulants[END_REF] [START_REF] Marchand | Multiple hypothesis modulation classification based on cyclic cumulants of different orders[END_REF].

Most of these techniques consider an Additive white Gaussian noise (AWGN) channel. However, in real scenarios, signal propagation undergoes multipaths. In this case, Intersymbols Interference (ISI) has to be reduced before proceeding to AMC. In [START_REF] Hsiao-Chun Wu | Novel automatic modulation classification using cumulant features for communications via multipath channels[END_REF], Wu et al proposed to estimate the multipah channel from the moments of the received signal before using a cumulant-based classifier. Instead of estimating the channel, an equalizer can be used to reduce the ISI. Among works in the literature that addressed joint blind equalization and AMC, we can mention [START_REF] Barbarossa | Classification of digital constellations under unknown multipath propagation conditions[END_REF], where S. Barbarossa et al proposed to use multiple equalizing branches, each one adapted to a specific constellation. This leads to a complex architecture system where the filter that provides the smallest cost function indicates the correct constellation. In [START_REF] Shi | Blind equalization and characteristic function based robust modulation recognition[END_REF], the CMA was used as a generic equalizer with radius equal to 1 and the amplitude of the equalized signal Characteristic Function (CF) as a technique to recognize the transmitted modulation. In this paper, we propose to use a generic MSQD-ℓp equalizer that is more efficient than the CMA [START_REF] Fki | Blind equalization based on pdf fitting and convergence analysis[END_REF]. Once the signal is equalized, we identify the transmitted constellation via an ML approach or pdf distance based methods. More specifically, the modulation we detect has the pdf that best fits, in some sense, that of the equalizer output. The key idea here is that we assume that after equalization, we roughly obtain a Gaussian mixture with modes centered on constellation points. The Gaussian nature of equalizer output conditional to transmitted symbol has been discussed in [START_REF] Laot | A closed-form solution for the finite length constant modulus receiver[END_REF]. The rest of the paper is organized as follows. In section 2, the system model and the generic MSQD-ℓp equalizer are introduced. In section 3, the AMC approaches are detailed. In section 4, simulation results are presented. Conclusions of our work are given in section 5.

SYSTEM MODEL AND MSQD-ℓP GEN EQUALIZER

System model

The baseband model of a transmission system with an adaptive blind channel equalizer is shown in Fig. 1, where s(n), n ∈ Z, is the transmitted symbol at time n, that is assumed to be drawn from an M-QAM modulation, h = [h 0 , h 1 , ..., h L h -1 ] T is the multipath channel finite impulse response with length L h , while (.) T denotes the transpose operator, b(n) is an additive white Gaussian noise, x(n), n ∈ Z is the equalizer input, w = [w 0 , w 1 , ..., w Lw-1 ] T is the equalizer impulse response, with length L w and y(n) is the equalized signal at time n. x(n) and y(n) can be modeled as

x(n) = L h -1 i=0 h i s(n -i) + b(n) and y(n) = Lw-1 i=0 w i x(n -i) = w T x(n), where x(n) = [x(n), x(n - 1), ..., x(n -Lw + 1)] T . Transmitter Channel h + b(n) Equalizer w s(n) x(n) y(n) Fig. 1.
Baseband model of a transmission system with an adaptive blind channel equalizer.

MSQD-ℓp gen equalizer

The MSQD-ℓp algorithm [START_REF] Fki | Blind equalization based on pdf fitting and convergence analysis[END_REF] aims at minimizing the distance error between observed and assumed pdfs for the real and imaginary parts of the equalizer output. The MSQD-ℓp cost function is given by

J(w) = ∞ -∞ (p |yr| p (z) -p|sr| p (z)) 2 dz + ∞ -∞ (p |yi| p (z) -p|si| p (z)) 2 dz (1) 
where y r = ℜ{y(n)}, y i = ℑ{y(n)}. For instantaneous pdf estimation, we use the Parzen window method [START_REF] Archambeau | Assessment of probability density estimation methods: Parzen window and finite gaussian mixtures[END_REF]: 

pu (z) = 1 N u Nu k=1 K σ (z -u k ) (2 
J genp (w) = -K σ (|y r (n)| p -1) -K σ (|y i (n)| p -1) + Cst.
(3) Thus, the equalizer coefficient weights are adapted by

w(n + 1) = w(n) -µ∇ w J genp (w) (4) 
where µ is a fixed step-size. In the following we focus, as in [START_REF] Fki | Blind equalization based on pdf fitting and convergence analysis[END_REF], on the cases p = 2 and p = 1.

Output Constellations with MSQD-ℓp gen (p=1,2)

We now discuss the performance of the generic equalizers in terms of ISI. To check the reliability of both equalizers, we tested them with different multipath channels. The equalizer is initialized with a tap-centered strategy and its length is set to 21. The step size was blindly adapted to the transmitted modulation basing on the equalizer input power:

µ 2(1) = µ 2(1)
Px where P x is the power of x. The values of µ 2 and µ 1 were set to µ 2 = 4 × 10 -3 and µ 1 = 6 × 10 -3 for MSQD-ℓ2 gen and MSQD-ℓ1 gen respectively after testing the equalizers with a 16-QAM modulation. The kernel bandwidth, σ, of K σ (x) was updated to control the convergence speed of the equalizer and its residual ISI [START_REF] Fki | Blind equalization based on pdf fitting and convergence analysis[END_REF]. Since we have no prior information about the emitted constellation, we propose to update the kernel size by

σ(n) = aG(n) + b (5) 
where,

G(n) = αG(n -1) + (1 -α) min k=1,...,Ns (|y(n)| 2 -|s k | 2 ) 2 .
(6) α ∈]0, 1[ is a forgetting factor and a and b are fixed empirically. N s is the number of points in the largest constellation that transmitter may emit. In our case, we set N s to 256. In figure 2, we show the ISI obtained with the generic equalizers and the input and output constellations with the MSQD-ℓ2 gen equalizer for an emitted 16-QAM constellation. We used one of typical digital radio channels [START_REF] You | Nonlinear blind equalization schemes using complex-valued multilayer feedforward neural networks[END_REF].

According to figure 2(a), we notice that MSQD-ℓ2 gen is more efficient than MSQD-ℓ1 gen in terms of ISI. We also notice that the equalizer tends to output a constellation inside the square [-1, 1] × [-1, 1]. We notice the same think when we use another channel like the Proakis A channel [START_REF] Proakis | Digital Communications[END_REF]. In the next section we detail on how to calculate the constellation scaling factor before proceeding to AMC.

NEW TECHNIQUES FOR AMC

ML existing approach based on the pdf of the received signal [3]

Assuming we have K M-QAM modulations to classify. According to this approach, the detected modulation is the one that maximises p(r n |H k ) where r n is the received signal through a Gaussian channel, H k is the hypothesis to receive the k th modulation k = 1, 2, ..., K. The pdf of r n is supposed to be a Gaussian mixture with means on the constellation points and variances equal to noise variance. Then the emitted modulation is decided according to (8) :

p(r n |H k ) = 1 M k M k l=1 1 √ 2πσ b e - |rn -s l | 2 2σ 2 b (7) 
k = arg max 1≤k≤K N n=1 lnp(r n |H k ) (8) 
In the following, we introduce the three approaches that we propose for AMC.

ML approach based on the pdf of the modulus of real and imaginary parts of the equalized signal

We Here, we take the absolute values of real and imaginary parts of the equalized signal to increase the number of data and decrease the number of modes in the folded normal distribution mixture in order to improve pdf calculation. If we suppose that the pdf of y is a 2D Gaussian mixture, then the pdfs of ℜ{y} and ℑ{y} are 1D Gaussian mixture. Then the pdf of γ is a mixture of folded normal distribution:

f (γ(n)|H j ) 1≤n≥N = I i=1 p i 1 σ j √ 2π e - (γ(n)+α j s Ri ) 2 2σ 2 j + e - (γ(n)-α j s Ri ) 2 2σ 2 j , 1 γ(n)≥0 ( 9 
)
where I is the number of different positive real parts of symbols under hypothesis H j , s Ri are their values and p i are their probabilities: I i=1 p i = 1. Note that in modulations such as 32-QAM, weights p i can be not uniform. The standard deviation σ j measures the dispersion around the constellation points under each hypothesis and it is estimated by:

σ 2 j = 1 N N n=1 |γ(n) -d j (n)| 2 (10) 
where d j (n) is the absolute real value of the constellation symbols under hypothesis H j that is the closest to γ(n). The signal scaling factor α j is introduced to take into account the effect of the generic equalizer rescales the constellation as discussed at the end of section 2.1. constellation as figures 2 and ?? show. α j is calculated as a function of the mean of γ n , m est , and the positive real parts of the constellation under the hypothesis H j :

α j = m est Mj k=1 p k | ℜ{sjk}| (11) 
where p k is the weight of the mode s jk . Then, we calculate the logarithm of the likelihood function of a sequence of 2N absolute real and imaginary parts of N consecutive symbols and define the decision variable D as

D j = arg max Hj N n=1 ln f (γ n |H j ) (12) 

Bhattacharyya or quadratic pdf distance based approach for AMC

With this method, the real and imaginary parts of the equalized signal are considered: Γ = [ℜ{y} ℑ{y}]. unlike to the previous approach, here we take the real and imaginary parts of the equalized symbols to make more meaningful the Gaussian mixture assumption and the use of the Gaussian kernel estimator for observed data pdf estimation. The scaling factors α j and the standard deviations σ j are estimated as above except that the decisions d j (n) are taken over the entire set of the real parts of the symbols s jk under the hypothesis H j . The pdf of Γ is then estimated by a Gaussian kernel estimator:

fΓ (x|H j ) = 1 L Γ h j LΓ k=1 K σj ( x -Γ(k) h j ) (13) 
where L Γ is the data size and h j is the bandwidth smoothing parameter such as h j = (

4σ 2 j 3LΓ ) 1 
5 [START_REF] Scott | Multivariate density estimation theory, practice, and visualization[END_REF]. The theoretical pdfs are calculated supposing that ideally, after eliminating the ISI by the generic equalizer, we get a Gaussian mixture pdf of the noisy emitted constellation with means the scaled constellation points. The theoretical pdfs are then given by:

f Γ (x|H j ) = Mj k=1 1 M j K σj (x -α j ℜ{sjk}) (14) 
Finally, we select the modulation basing on the quadratic or Bhattacharyya distances between fΓ (x|H j ) and f Γ (x|H j ) such as

j = argmin 1≤j≥K D B fΓ (x|H j ), f Γ (x|H j ) (15) j = argmin 1≤j≥K D Q fΓ (x|H j ), f Γ (x|H j ) (16) 
where, D B (p, q) = -ln( x∈X p(x)q(x)) and D Q (p, q) = x∈X (p(x)q(x)) 2 .

Pdf dictionary learning based approach for AMC

With this method, we define a dictionary A of theoretical pdfs of all constellations that the transmitter may emit: f Γ (x|H j ). These functions are calculated as explained in the previous subsection. A is a matrix such as each column j includes the values of fΓ (x|H j ). The idea of this approach consists in minimising the following quantity:

min v ||i -Av|| 2 2 + λ||v|| 1 ( 17 
)
where i is the pdf of the equalized signal that is estimated by a Gaussian kernel estimator. Our goal is to find the vector v of minimum ℓ 1 norm since v is sparss. Indeed, we ideally obtain a vector v that has only one element equal to 1 and all the others are equal to 0. The position, "j", of 1 in v indicates the right hypothesis H j of the emitted modulation.

SIMULATION RESULTS

In this part, we show the results obtained with the complex channel [START_REF] You | Nonlinear blind equalization schemes using complex-valued multilayer feedforward neural networks[END_REF] with the same parametres detailed in section 2.1. Figure 3 shows the probability of correct classification (Pcc) in function of SNR of the foor methods explained in section 3 when a 16-QAM constellation is transmitted. Figure 3 shows that the quadratic and dictionnary learning based methods outperform the two ML and Bhattacharyya distance approches. Whereas figure 4 shows that the existing ML approach outperforms other methods. we present the Pcc, obtained with a 32-QAM modulation. In figure 5 and for low values of SNR the Bhattacharyya distance approche outperforms the other approaches with low slope. Quadratic distance approach has a compromise between performance and slope.

We also can notice from these figures that the two ML approcahes have relatively the same performance and that the increase of the number of data around the modes does not provide a significant benefit in terms of Pcc. However the proposed method is less complicated since it requires less computing exponential. 

CONCLUSION

In this paper, a new joint blind equalization and AMC approach has been proposed. The key idea of the AMC process is based on the assumption that the equalized signal can be approximated as a Gaussian mixture with modes centered at constellation points. The results show that the quadratic distance approach is almost the best. 
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