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ABSTRACT

In this paper, a completely blind equalizer based on proba-
bility density function (pdf) fitting is proposed. It doesn’t re-
quire any prior information about the transmission channel
or the emitted constellation. We also investigate Automatic
Modulation Classification (AMC) for Quadrature Amplitude
Modulation (QAM) based on the pdf of the equalized signal.
We propose three new approaches for AMC. The first em-
ploys maximum likelihood functions (ML) of the modulus of
real and imaginary parts of the equalized signal. The second
is based on the lowest quadratic or Bhattacharyya distance be-
tween the estimated pdf of the real and imaginary parts of the
equalizer output and the theoretical pdfs of M-QAM modula-
tions. The third approach is based on theoretical pdf diction-
nary learning. The performance of the identification scheme
is investigated through simulations.

Index Terms— Blind equalization, AMC, pdf, ML, Bhat-
tacharyya distance, dictionary learning

1. INTRODUCTION

AMC is a high requirement of intelligent systems in both
military and civil domains. It has been of significant impor-
tance for cognitive radios when the receiver has no knowl-
edge about the channel and transmitted modulation. It is very
useful in adaptive modulation contexts where the transmitter
has to adapt the emitted modulation to the transmission con-
ditions. [1] gives a detailed overview on the techniques de-
veloped in the field of AMC. There are two approaches for
AMC [1]. One is based on likelihood functions where the
detected modulation is the one that maximises the likelihood
among all hypothesis [2] [3]. The second approach is based
on statistical characteristics of the received signal and their
comparison with the theoretical ones [4] [5].

Most of these techniques consider an Additive white
Gaussian noise (AWGN) channel. However, in real scenar-
ios, signal propagation undergoes multipaths. In this case,
Intersymbols Interference (ISI) has to be reduced before pro-
ceeding to AMC. In [6], Wu et al proposed to estimate the

multipah channel from the moments of the received signal
before using a cumulant-based classifier. Instead of esti-
mating the channel, an equalizer can be used to reduce the
ISI. Among works in the literature that addressed joint blind
equalization and AMC, we can mention [7], where S. Bar-
barossa et al proposed to use multiple equalizing branches,
each one adapted to a specific constellation. This leads to
a complex architecture system where the filter that provides
the smallest cost function indicates the correct constellation.
In [8], the CMA was used as a generic equalizer with radius
equal to1 and the amplitude of the equalized signal Charac-
teristic Function (CF) as a technique to recognize the trans-
mitted modulation. In this paper, we propose to use a generic
MSQD-ℓp equalizer that is more efficient than the CMA [9].
Once the signal is equalized, we identify the transmitted con-
stellation via an ML approach or pdf distance based methods.
More specifically, the modulation we detect has the pdf that
best fits, in some sense, that of the equalizer output. The
key idea here is that we assume that after equalization, we
roughly obtain a Gaussian mixture with modes centered on
constellation points. The Gaussian nature of equalizer output
conditional to transmitted symbol has been discussed in [10].
The rest of the paper is organized as follows. In section 2,
the system model and the generic MSQD-ℓp equalizer are
introduced. In section 3, the AMC approaches are detailed.
In section 4, simulation results are presented. Conclusions of
our work are given in section 5.

2. SYSTEM MODEL AND MSQD- ℓPGEN

EQUALIZER

2.1. System model

The baseband model of a transmission system with an
adaptive blind channel equalizer is shown in Fig.1, where
s(n), n ∈ Z, is the transmitted symbol at timen, that is
assumed to be drawn from an M-QAM modulation,h =
[h0, h1, ..., hLh−1]

T is the multipath channel finite impulse
response with lengthLh, while (.)T denotes the transpose op-
erator,b(n) is an additive white Gaussian noise,x(n), n ∈ Z



is the equalizer input,w = [w0, w1, ..., wLw−1]
T is the

equalizer impulse response, with lengthLw andy(n) is the
equalized signal at timen. x(n) and y(n) can be mod-
eled asx(n) =

∑Lh−1
i=0 his(n − i) + b(n) and y(n) =

∑Lw−1
i=0 wix(n− i) = wTx(n), wherex(n) = [x(n), x(n−

1), ..., x(n− Lw + 1)]T .

Transmitter Channelh +

b(n)

Equalizerw
s(n) x(n) y(n)

Fig. 1. Baseband model of a transmission system with an
adaptive blind channel equalizer.

2.2. MSQD-ℓpgen equalizer

The MSQD-ℓp algorithm [9] aims at minimizing the distance
error between observed and assumed pdfs for the real and
imaginary parts of the equalizer output. The MSQD-ℓp cost
function is given by

J(w) =

∫ ∞

−∞

(p̂|yr|p(z)− p̂|sr |p(z))
2dz

+

∫ ∞

−∞

(p̂|yi|p(z)− p̂|si|p(z))
2dz (1)

whereyr = ℜ{y(n)}, yi = ℑ{y(n)}. For instantaneous pdf
estimation, we use the Parzen window method [11]:

p̂u(z) =
1

Nu

Nu∑

k=1

Kσ(z − uk) (2)

whereu stands for|sr|p, |si|p, |yr|p or |yi|p. We letNu =
Ns for u = |sr,i|p andNu = Ny (previous symbols) for
u = |yr,i|p. Kσ is a Gaussian kernel with standard deviation
σ. Since, in this paper we do not know the transmitted mod-
ulation, we propose to use the MSQD-ℓp criterion adapted
for a 4-QAM modulation to equalize all emitted M-QAM
constellations. Then, expending (1) with this choice where
|sr|p = |si|p = 1 and lettingNs = 1 andNy = 1, we get the
following generic cost function for the MSQD-ℓpgen:

Jgenp
(w) = −Kσ(|yr(n)|p − 1)−Kσ(|yi(n)|p − 1)+Cst.

(3)
Thus, the equalizer coefficient weights are adapted by

w(n+ 1) = w(n) − µ∇wJgenp
(w) (4)

whereµ is a fixed step-size. In the following we focus, as
in [9], on the casesp = 2 andp = 1.

2.3. Output Constellations with MSQD-ℓpgen (p=1,2)

We now discuss the performance of the generic equalizers in
terms of ISI. To check the reliability of both equalizers, we
tested them with different multipath channels. The equal-
izer is initialized with a tap-centered strategy and its length
is set to21. The step size was blindly adapted to the transmit-
ted modulation basing on the equalizer input power:µ2(1) =
µ2(1)

Px

wherePx is the power ofx. The values ofµ2 andµ1

were set toµ2 = 4 × 10−3 andµ1 = 6 × 10−3 for MSQD-
ℓ2gen and MSQD-ℓ1gen respectively after testing the equal-
izers with a 16-QAM modulation. The kernel bandwidth,σ,
of Kσ(x) was updated to control the convergence speed of
the equalizer and its residual ISI [9]. Since we have no prior
information about the emitted constellation, we propose to
update the kernel size by

σ(n) = aG(n) + b (5)

where,

G(n) = αG(n− 1)+ (1−α) min
︸︷︷︸

k=1,...,Ns

(
(|y(n)|2 − |sk|2)2

)
.

(6)
α ∈]0, 1[ is a forgetting factor anda andb are fixed empiri-
cally. Ns is the number of points in the largest constellation
that transmitter may emit. In our case, we setNs to 256. In
figure 2, we show the ISI obtained with the generic equalizers
and the input and output constellations with the MSQD-ℓ2gen
equalizer for an emitted 16-QAM constellation. We used one
of typical digital radio channels [12].

According to figure 2(a), we notice that MSQD-ℓ2gen is
more efficient than MSQD-ℓ1gen in terms of ISI. We also no-
tice that the equalizer tends to output a constellation inside the
square[−1, 1]× [−1, 1]. We notice the same think when we
use another channel like the Proakis A channel [13]. In the
next section we detail on how to calculate the constellation
scaling factor before proceeding to AMC.

3. NEW TECHNIQUES FOR AMC

3.1. ML existing approach based on the pdf of the re-
ceived signal [3]

Assuming we haveK M-QAM modulations to classify. Ac-
cording to this approach, the detected modulation is the one
that maximisesp(rn|Hk) where rn is the received signal
through a Gaussian channel,Hk is the hypothesis to receive
thekth modulationk = 1, 2, ...,K. The pdf ofrn is supposed
to be a Gaussian mixture with means on the constellation
points and variances equal to noise variance.

p(rn|Hk) =
1

Mk

Mk∑

l=1

1√
2πσb

e
−

|rn−sl|
2

2σ2
b (7)
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Fig. 2. Convergence curves of MSQD-ℓ2gen and MSQD-
ℓ1gen algorithms for SNR= 20dB.

Then the emitted modulation is decided according to (8) :

k̂ = arg max
1≤k≤K

N∑

n=1

lnp(rn|Hk) (8)

In the following, we introduce the three approaches that we
propose for AMC.

3.2. ML approach based on the pdf of the modulus of real
and imaginary parts of the equalized signal

We note
γ = [| ℜ{y(1)}|, .., | ℜ{y(N)}|, | ℑ{y(1)}|, .., | ℑ{y(N)}|].
Here, we take the absolute values of real and imaginary parts
of the equalized signal to increase the number of data and de-
crease the number of modes in the folded normal distribution
mixture in order to improve pdf calculation. If we suppose
that the pdf ofy is a 2D Gaussian mixture, then the pdfs of
ℜ{y} andℑ{y} are 1D Gaussian mixture. Then the pdf ofγ

is a mixture of folded normal distribution:

f(γ(n)|Hj)1≤n≥N =

I∑

i=1

pi
1

σj

√
2π

(
e
−

(γ(n)+αjsRi)
2

2σ2
j

+ e
−

(γ(n)−αjsRi)
2

2σ2
j

)
, 1γ(n)≥0 (9)

whereI is the number of different positive real parts of sym-
bols under hypothesisHj , sRi are their values andpi are their
probabilities:

∑I
i=1 pi = 1. Note that in modulations such as

32-QAM, weightspi can be not uniform. The standard de-
viation σj measures the dispersion around the constellation
points under each hypothesis and it is estimated by:

σ2
j =

1

N

N∑

n=1

|γ(n)− dj(n)|2 (10)

wheredj(n) is the absolute real value of the constellation
symbols under hypothesisHj that is the closest toγ(n). The
signal scaling factorαj is introduced to take into account the
effect of the generic equalizer rescales the constellationas dis-
cussed at the end of section 2.1. constellation as figures 2 and
?? show. αj is calculated as a function of the mean ofγn,
mest, and the positive real parts of the constellation under the
hypothesisHj :

αj =
mest

∑Mj

k=1 pk| ℜ{sjk}|
(11)

wherepk is the weight of the modesjk. Then, we calculate
the logarithm of the likelihood function of a sequence of2N
absolute real and imaginary parts ofN consecutive symbols
and define the decision variableD as

Dj = argmax
Hj

N∑

n=1

ln f(γn|Hj) (12)

3.3. Bhattacharyya or quadratic pdf distance based ap-
proach for AMC

With this method, the real and imaginary parts of the equal-
ized signal are considered:Γ = [ℜ{y}ℑ{y}]. unlike to the
previous approach, here we take the real and imaginary parts
of the equalized symbols to make more meaningful the Gaus-
sian mixture assumption and the use of the Gaussian kernel
estimator for observed data pdf estimation. The scaling fac-
torsαj and the standard deviationsσj are estimated as above
except that the decisionsdj(n) are taken over the entire set
of the real parts of the symbolssjk under the hypothesisHj .
The pdf ofΓ is then estimated by a Gaussian kernel estimator:

f̂Γ(x|Hj) =
1

LΓhj

LΓ∑

k=1

Kσj
(
x− Γ(k)

hj

) (13)

whereLΓ is the data size andhj is the bandwidth smoothing

parameter such ashj = (
4σ2

j

3LΓ
)

1
5 [14]. The theoretical pdfs

are calculated supposing that ideally, after eliminating the ISI
by the generic equalizer, we get a Gaussian mixture pdf of the
noisy emitted constellation with means the scaled constella-
tion points. The theoretical pdfs are then given by:

fΓ(x|Hj) =

Mj∑

k=1

1

Mj

Kσj
(x− αj ℜ{sjk}) (14)



Finally, we select the modulation basing on the quadratic or
Bhattacharyya distances between̂fΓ(x|Hj) and fΓ(x|Hj)
such as

j = argmin
1≤j≥K

DB

(
f̂Γ(x|Hj), fΓ(x|Hj)

)
(15)

j = argmin
1≤j≥K

DQ

(
f̂Γ(x|Hj), fΓ(x|Hj)

)
(16)

where,DB(p, q) = −ln(
∑

x∈X

√

p(x)q(x)) andDQ(p, q) =
∑

x∈X

(p(x)− q(x))2.

3.4. Pdf dictionary learning based approach for AMC

With this method, we define a dictionaryA of theoretical pdfs
of all constellations that the transmitter may emit:fΓ(x|Hj).
These functions are calculated as explained in the previous
subsection.A is a matrix such as each columnj includes
the values of̂fΓ(x|Hj). The idea of this approach consists in
minimising the following quantity:

min
v

(
||i−Av||22 + λ||v||1

)
(17)

wherei is the pdf of the equalized signal that is estimated by
a Gaussian kernel estimator. Our goal is to find the vectorv

of minimum ℓ1 norm sincev is sparss. Indeed, we ideally
obtain a vectorv that has only one element equal to1 and all
the others are equal to0. The position, ”j”, of 1 in v indicates
the right hypothesisHj of the emitted modulation.

4. SIMULATION RESULTS

In this part, we show the results obtained with the complex
channel [12] with the same parametres detailed in section 2.1.
Figure 3 shows the probability of correct classification (Pcc)
in function of SNR of the foor methods explained in sec-
tion 3 when a 16-QAM constellation is transmitted. Figure 3
shows that the quadratic and dictionnary learning based meth-
ods outperform the two ML and Bhattacharyya distance ap-
proches. Whereas figure 4 shows that the existing ML ap-
proach outperforms other methods. we present the Pcc, ob-
tained with a 32-QAM modulation. In figure 5 and for low
values of SNR the Bhattacharyya distance approche outper-
forms the other approaches with low slope. Quadratic dis-
tance approach has a compromise between performance and
slope.

We also can notice from these figures that the two ML
approcahes have relatively the same performance and that the
increase of the number of data around the modes does not pro-
vide a significant benefit in terms of Pcc. However the pro-
posed method is less complicated since it requires less com-
puting exponential.
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Fig. 3. Pcc for 16-QAM modulation.
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Fig. 4. Pcc for 32-QAM modulation.

5. CONCLUSION

In this paper, a new joint blind equalization and AMC ap-
proach has been proposed. The key idea of the AMC process
is based on the assumption that the equalized signal can be
approximated as a Gaussian mixture with modes centered at
constellation points. The results show that the quadratic dis-
tance approach is almost the best.
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