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1. INTRODUCTION

The availability of daily satellite Sea Surface Temperature
(SST) data and theoretical results (see e.g., [1]) advocate for
new methods to retrieve the Sea Surface Height (SSH) and the
surface geostrophic currents from SST observations. The un-
derlying hypothesis comes to assume that the local variations
of the SST relate to the surface currents. Ocean turbulence
models, such as the Surface Quasi Geostrophic (SQG) the-
ory (cf. [2], [3]) or statistical methods like neural networks
(cf. [4]) or latent class regressions (cf. [5]) provide different
means to state the SST-SSH relationships. This later approach
has the advantage to be completely parametric and to account
for different transfer functions between SST and SSH. It relies
on a conditional setting with respect to a hidden variable re-
lated to different dynamical modes at the surface of the ocean.
In this paper, we aim at further developing such latent models
with an emphasis on two aspects: (i) the modeling and learn-
ing of the spatio-temporal dynamics of the hidden dynami-
cal modes using Markovian priors, (ii) the reconstruction of
daily SSH fields from a joint analysis of microwave SST and
altimetry observation series. We evaluate the proposed model
both qualitatively and quantitatively with respect to the refer-
ence altimetry product.

2. REMOTE SENSING DATA

In this work, we achieve a joint analysis of microwave SST
and altimetry. As altimetric data, we use the daily time
Maps of Absolute Dynamic Topography (MADT) produced
by Collecte Localisation Satellites (CLS) available online at
http://www.aviso.oceanobs.com/. The considered SST data
is the daily optimally interpolated microwave SSTs pro-
vided by Remote Sensing System (RSS) available online at
http://www.ssmi.com/. The two data sources are interpolated
at the same spatial resolution, i/e. 1/4◦. Whereas the daily
SST series actually involve daily satellite measurements, the
daily MADT maps roughly refer to a weekly temporal res-
olution, as narrow-swath altimetry sensors involve a weekly
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revisit time. The considered study area is the Agulhas current
for the year 2004.

3. PROPOSED APPROACH

This section first describes the considered latent model for
the identification and characterization of the hidden dynam-
ical modes. In a second step, we focus on the two specific
objectives of this study.

The considered model relates the local SSH variability to
the SST field in a neighboring region. For a given spatio-
temporal location (s, t), Y(s, t) encodes the local SSH vari-
ability through a 3-dimensional vector formed by the SSH
value and the surface current (U,V) and X(s, t) is the vec-
torized version of the local SST patch (p-dimensional vector)
centered in s at time t (cf. Fig. 1(a)). Assuming that different
dynamical modes may be exhibited, we denote by Z(s, t) the
latent variable corresponding to the hidden dynamical mode
at ocean surface in play at location s and time t. We assume
that the conditional probability of Y given X and Z = k is
given by

p (Y|X, Z = k) ∝ Nk (Y;Xβk,Σk) (1)

where Nk represents a multivariate Gaussian probability den-
sity function evaluated in Y with mean Xβk and covariance
Σk. The inference of model parameters (i.e. the statistical
parameters given in Eq. (1) and the number of modes K)
involves classical Bayesian inference techniques (cf. [5]).
In the considered study region, we identify K = 4 hidden
dynamical modes, corresponding to 4 different slopes and
covariances in the regression between X and Y (cf. Fig.
1(b)). We also show that the dynamical modes correspond
to geostrophic or advective displacements with different am-
plitudes (cf. [5] for more details).

In operational situations, following Eq. (1), the SSH
and surface currents can be predicted conditionally to the
SST field and the hidden dynamical mode. In practice,
the microwave SSTs are always available, even in cloudy
conditions, and the SST observation is available daily. As
mentioned above, the intrinsic altimery time resolution is
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Fig. 1. (a) Sketch of SST patches (in degree represented in
false colours), noted X, and the corresponding SSHs (in me-
ter represented by dots) and surface currents (in meter per
second represented by quivers) noted Y at the central loca-
tion s and s′ at time t. (b) SSH as a function of SST in the
Agulhas current. For each dynamical mode Z, we give the
regression line and the 95% confidence envelope. The fine
black line is a benchmark curve corresponding to the global
linear regression (with a one-mode model).

rather weekly. To overcome the lack of collocations between
daily SST and SSH observations, we address the inference of
the dynamical modes at a daily resolution using Markovian
priors. More precisely, at each location s, we use a Hidden
Markov Model (HMM). We estimate the stationary law and

the transition matrices using an Expectation-Maximization
procedure (cf. [6]). Then, the posterior likelihoods of the hid-
den dynamical modes are evaluated from a forward-backward
algorithm (cf. [7]). Given these posterior likelihoods and the
daily SST local variations X, we apply Eq. (1) to reconstruct
the SSH and surface geostrophic currents at a daily resolu-
tion. The scheme of the corresponding model is given in Fig.
2.

X(s, t− 1) X(s, t)
↓ ↓

Y(s, t− 1) Y(s, t)
↑ ↑

. . . → Z(s, t− 1) → Z(s, t) → . . .

Fig. 2. Directed acyclic graph of the proposed model. At a
specific location s, we use a hidden Markov chain to model
the temporal evolution of the dynamical mode Z. Then, we
estimate the SSH and surface current (Y) conditionally to the
local SST variations (X) and the dynamical mode. The delay
between two consecutive times is one day.

4. RESULTS

Using the joint time series of SST and SSH, we are able to
spatially and temporally track the hidden dynamical modes
at the surface of the ocean (cf. Fig. 3). The first results
of the hidden Markov model indicate a large variability in
the estimations of the stationary laws and transition matrices.
For instance, at locations situated in the main Agulhas current
(Z = 1 in Fig. 3(a)), the transitions to the others dynamical
modes is unlikely. By contrast, in the return Agulhas current
moving from 36◦S to 44◦S along the year, the switching prob-
abilities between Z = 1, 2, 3 are significant. Such an example
is given in Fig. 3(b).

Then, knowing the temporal dynamics of Z and the SST
local variations, we reconstruct the SSH at each location s
for the year 2004. The results are very closed to the MADT
estimations, except in the Agulhas retroflection region where
the surface dynamics is more advective than geostropic (cf.
Fig. 4(a)). Moreover, the estimations differ during the aus-
tral summer, when the occurrence of the advective modes are
more likely (cf. Fig. 4(b)). In the first results, we also remark
a benefit to use the SST data to retrieve the warm core rings
in the Agulhas current. Indeed, the MADT product only uses
very sparse altimetric data and may not be able to spatially
and temporally track these structures.
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Fig. 3. (a) Spatial distribution of the K = 4 dynamical modes
for a given date. (b) Time series of the observed (lines) and
filtered (filled areas) posterior likelihoods for each dynamical
mode at location 36◦S, 36◦E.
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Fig. 4. Difference in space (a) and time (b) between the es-
timated SSH using model given in Fig. 2 and the reference
SSH (coming from the MADT) along the year 2004.

nal of Physical Oceanography, vol. 36, no. 2, pp. 165–
176, 2006.

[2] J. Isern-Fontanet, G. Lapeyre, P. Klein, B. Chapron,
and M.W. Hecht, “Three-dimensional reconstruction of
oceanic mesoscale currents from surface information,”
Journal of Geophysical Research, vol. 113, no. C9, pp.
C09005, 2008.
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