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Towards scalable optimal traffic control

Pietro Grandinetti, Federica Garin and Carlos Canudas-de-Wit

Abstract— This paper deals with scalable control of traffic
lights in urban traffic networks. Optimization is done in real
time, so as to take into account variable traffic demands. At
each cycle of the traffic lights, the optimization concerns time
instants where each traffic light starts and ends its green phase:
this allows to describe both the duty-cycle and the phase shifts.
First, we formulate a global optimization problem, which can
be cast as a mixed-integer linear program. To overcome the
complexity of this centralized approach, we also propose a
decentralized suboptimal algorithm, whose simplicity allows on-
line implementation. Simulations show the effectiveness of the
proposed strategies.

I. INTRODUCTION

The problem of traffic congestion has always been a
crucial aspect for the design of efficient infrastructures, but it
is particularly in the second half of the last century that this
phenomenon has become predominant, due to the quickly
increasing traffic demand and the more frequent congestions.
Congestions appear when too many vehicles try to use a
common transportation route, which, due to physical reasons,
has limited capacity. If it happens, they lead to queueing
phenomena or, even worse, to a severe degradation of the
available infrastructure’s usage. Hence, congestions result
in reduced safety, increased pollution and excessive delays.
Economic implication of such events are recently widely
discussed [1, 2].

Traffic in urban scenarios is mainly regulated by the
traffic lights installed at intersections of roads. Even though
these devices were first conceived to guarantee avoidance of
collision, with steadily increasing traffic demands it was soon
realized that they may lead to more or less efficient network
operation. Therefore, the idea to increase the efficiency of the
infrastructure using smart traffic lights policies has constantly
been employed in academic and industrial research.

Some existing strategies, called fixed–time techniques [3],
have limitations due to their settings, which are based on
historical, rather than real–time, data. A survey about the
existing techniques can be found in [4]. More advanced
schemes have been presented recently and they refer to
different models for the network and for the chosen control
actions, such as max pressure control [5] and cooperative
green lights policies [6]. Concerning the control action, we
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will instead contribute focusing on a more realistic repre-
sentation of traffic lights, whose mathematical abstraction
often produces problems difficult to solve, due to the binary
(green-red) nature of these signals. Because of that, scientific
works often consider optimization that takes into account
either bandwith maximization via phase shift selection [7,
8] or duty cycle design [9]. The control of both parameters
is a very challenging problem still open in transportation
optimization environments.

In this paper, we decided to deal with the most general
and difficult problem: the control of traffic lights, in urban
networks, parametrized by two degrees of freedom: such
representation (i.e., their description with two variable time
instants) includes the most generic scenario, being able to
embody phase shift as well as duty cycle.

Our contribution consists of two strategies for traffic
control: the first one is a centralized control scheme that
provides an optimal solution. Even though it gives the
optimal control action, it may be computationally inefficient
because based on a mixed integer linear program. Therefore,
we also propose a decentralized suboptimal scheme that is
able to dramatically reduce the computational burden, and
hence is scalable to large networks.

Furthermore, the strategies we elaborated are on–line
strategies based on the receding horizon philosophy. This
choice is due to the fact that in traffic scenarios demands
are continuously changing and, therefore, proactive decisions
are needed. Our control schemes are able to accomplish such
requirement, i.e., they may improve the quality of the system
in the upcoming future taking into account external demands.

The rest of the paper is organized as follows: Section
II introduces the model used to describe the traffic lights
behavior, the network state evolution and the metrics used
to describe traffic’s performance; Section III illustrates how
to formulate the centralized optimal control using a mixed
integer linear formulation; Section IV explains our idea
to decentralize the control scheme; Section V shows the
numerical results of our software simulations employing
the designed algorithms; Conclusions and future works are
outlined in Section VI.

II. TRAFFIC NETWORK DESCRIPTION

In this section we first motivate the mathematical repre-
sentation of traffic lights and, then, describe the network’s
model and our chosen measures of traffic performance.

A. Traffic lights model

Traffic lights are electronic devices installed at the end
point (w.r.t. the flow direction) of roads for the purpose to



t

ur(t)

kT + σ
(1)
r kT + σ

(2)
rkT (k + 1)T

Fig. 1: Traffic lights described as a time trajectory with two degrees of
freedom, represented by the timed-controlled variables σ(1)
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avoid any collision between vehicles. A traffic light can either
allow of forbid vehicles to continue their route, therefore it
can be mathematically described as a map from the set of
time instants to the set {0, 1}.

In a typical urban environment a fixed cycle length T is
assigned for the traffic lights. This cycle is a slot of time
during which every traffic light can switch from green to
red (or viceversa) at most once. Several physical reasons
justify such a behavior: faster switching may, in fact, give
unfavourable consequences regarding pollution generation
and drivers comfort, since in this case vehicles will have
to stop–and–go with higher frequency. Typical values for T
are from 90 seconds up to 2 minutes.

To fully capture the above mentioned dynamics we de-
cide to describe the time trajectory of traffic lights with
a two-degree-of-freedom trajectory (see Fig. 1), given by
the vector of two natural numbers σr =

[
σ

(1)
r σ

(2)
r

]
∈

{Ts, 2Ts, . . . , T}2, where Ts is the sampling time used to
discretize the dynamics, such that T/Ts ∈ N. Hence, σr
represents the raising and falling time instants of the signal
ur:

ur(t, σr) =

{
1 if σ(1)

r ≤ t ≤ σ(2)
r

0 otherwise,
(1)

where t has to be intended modulo T .

B. Traffic dynamics on signalized networks

To describe traffic’s time evolution we use the description
given by a mass conservation law [10, 11] and by its
discrete-time representation widely known as Cell Trans-
mission Model (CTM) [12]. In particular, we consider an
extension of the CTM for networks with FIFO policy at
intersections, similar to the one we already introduced in [9].
A urban network is a collection of roads entering it (Rin),
internal roads (R), and exiting roads (Rout). We use the word
intersections to identify locations where two or more roads
merge. Such intersections have no capacity storage and they
are signalized, in the sense that the traffic flow exiting each
road r ∈ Rin∪R is regulated by a traffic light whose value at
time instant t will be denoted by ur(t, σr) ∈ {0, 1}. Whether
two roads r and q are connected to the same intersection in
such a way that flow can exit r and enter q we use the
notation r _ q (q is downstream w.r.t. r). Furthermore, to
every road q is associated a value βq ∈ (0, 1) (split ratio)
that expresses the percentage of the flow upstream q which
actually wants to turn in q.

In urban scenarios we consider every road r as a cell of the
CTM, hence the value of vehicles’ density in it, indicated as
ρr (which we consider as normalized w.r.t. the length Lr of
the roads itself) depends on the flows f in

r and f out
r , entering

and exiting r, respectively.
Inflow and outflow values are given according to the

demand and supply paradigm [13]. Given a road r its demand
Dr is the flow of vehicles that want to exit r; its supply Sr is
the flow that r can receive according to its storage capacity.

Every road r is characterized by given parameters: the
maximum speed in free flow vr, the speed in congestion
phase wr, the maximum density allowed ρmax

r and the max-
imum flow ϕmax

r . Whether the system is sampled with step
size Ts, to ensure stability it must hold Tsvr/Lr < 1, for
every road.

Finally, external traffic demand for every road r entering
the network is indicated by Din

r , and external supply for every
road q exiting the network is indicated by Sout

q .
The model is given by the following set of equations:

ρr(t+ Ts) = ρr(t) + Ts

(
f in
r (t)− ur(t, σr)f out

r (t)
)

(2a)

f in
r (t) =

{
min{Din

r (t), Sr(t)}, r ∈ Rin

βr
∑
q:q_r uq(t, σq)f

out
q , oth.

(2b)

f out
r (t) =


min{Dr(t), S

out
r (t)}, r ∈ Rout

min

{
Dr(t),

{
Sq(t)
βq

}
q:r_q

}
, oth.

(2c)

Dr(t) = min{vrρr(t), ϕmax
r } (2d)

Sr(t) = min{ϕmax
r , wr(ρ

max
r − ρr(t))} (2e)

ur(t, σr) =

{
1 if σ(1)

r ≤ t ≤ σ(2)
r

0 otherwise.
mod T (2f)

C. Urban traffic performance metrics

Traffic behavior needs to be evaluated and assessed with
respect to properly defined performance indices. There exist
several metrics in literature to address traffic performance
evaluation; in this paper we focus mainly on two features of
the urban network.

1) Service of demand (SoD): A urban traffic network is
an highly dynamical environment that continously receives
demand from outside. This demand cannot be ignored just to
favour the inner quality of the system, because the external
request will end up growing with several undesired effects,
due to the bigger and bigger queues arising outside.

For this reason we consider as quality of the service for a
road r ∈ Rin the number of vehicles (users) served by that
road:

SoDr(t) = f in
r (t)|r∈Rin =

= min
{
Din
r (t), ϕmax

r , wr(ρ
max
r − ρr(t))

}
,

(3)

To improve performance we would like to maximize the sum
of (3) over all roads in Rin.

2) Optimization of the infrastructures usage: In urban
networks there are roads preferred by the users. The civil
authority would like to set traffic lights as to diminuish this



usage disparity, to guarantee a more equilibrate diffusion of
vehicles, thus reducing hard congestions in main streets as
well as the possibility of accidents.

A standard metric that takes into account this behavior is
the Total Travel Distance [14], defined as follows:

TTDr(t) = min
{
vrρr(t), wr(ρ

max
r − ρr(t))

}
. (4)

We want to maximize the sum of (4) over all roads in R ∪
Rout (because boundary flows are considered by SoD).

III. CENTRALIZED OPTIMAL CONTROL

The control strategy we designed consists in solving an
optimization problem at the beginning of every cycle (i.e.,
every t0 = kT , k ∈ N), in order to decide the optimal traffic
lights in the upcoming cycle. Such procedure optimizes the
traffic behavior using a receding horizon philosophy that
predicts densities ρ(t0 + nTs), n = 1, . . . , T/Ts. Predictions
are carried out assuming that a measure of densities ρ(t0) is
available for the controller.

The optimal values σ∗, i.e., the optimal activation time
instants for the traffic lights, are given by:

σ∗ = arg max
σ

T/Ts∑
n=1

(
a1

∑
r∈R∪Rout

TTDr(t0 + nTs)+

+ a2

∑
r∈Rin

SoDr(t0 + nTs)
)

under network dynamics (2)
∀ t = t0 + nTs, n = 1, . . . , T/Ts,

(5)

where a1, a2 ∈ R are weights for the two involved objectives.
In the rest of this section we show that equations (2)

and the objective function can be reformulated using logical
constraints and variables, obtaining a mixed integer linear
problem (MILP). To this aim, we use the reasoning outlined
in [15]. At the end of the reformulation, the problem’s con-
straints, instead of (2), will be given by (7)–(11),(14),(16)–
(18).

Such final formulation of the problem is more convenient
because MILPs are extensively studied, and there exist good
numerical solvers to deal with them, e.g. [16].

A. Traffic lights constrained trajectory

Introducing the binary variables δ(1)
r (t), δ(2)

r (t), the con-
straint expressed by (1), for a given time instant t, is
equivalent to the following:[

δ(1)
r (t) = 1

]
←→

[
σ(1)
r ≤ t

]
(6a)[

δ(2)
r (t) = 1

]
←→

[
t ≤ σ(2)

r

]
(6b)[

ur(t) = 1
]
←→

[
δ(1)
r (t) = 1 ∧ δ(2)

r (t) = 1
]
. (6c)

Let M (1) and m(1) upper and lower bounds1 such that
m(1) < σ

(1)
r − t < M (1), for every σ

(1)
r ; then (6a) is

1Here and in what follows the numerical values for these bounds are
omitted. Notice that flows in the network are always in [0, ϕmax], while
time instants indicated by σ are in [Ts, T ]. Bounds can be manually set
even if some software, like Yalmip [17], is able to determine them while
parsing the problem formulation.

equivalent to the following constraints:

σ(1)
r − t ≤M (1)(1− δ(1)

r (t)) (7a)

σ(1)
r − t > m(1)δ(1)

r (t). (7b)

Similarly, let M (2) and m(2) such that m(2) < σ
(2)
r − t <

M (2), for every σ(2)
r ; then (6b) is equivalent to the following

constraints:

σ(2)
r − t ≤M (2)(1− δ(2)

r (t)) (8a)

σ(2)
r − t > m(2)δ(2)

r (t). (8b)

Finally, the constraint (6c) is equivalent to the following:

ur(t)− δ(1)
r (t) ≤ 0 (9a)

ur(t)− δ(2)
r (t) ≤ 0 (9b)

δ(1)
r (t) + δ(2)

r (t)− ur(t) ≤ 1 (9c)

δ(1)
r (t), δ(2)

r (t) ∈ {0, 1}.

Depending on the physics of system it may be useful to
impose another constraint: we can require that the rising
instant σ(1)

r and the falling one σ(2)
r are sufficiently separated

in time, so ensuring that too short green slots are avoided.
This can be obtained with the following constraints:

σ(1)
r + σmin

r ≤ σ(2)
r (10a)

Ts ≤ σ(1)
r , σ(2)

r ≤ T, (10b)

where σmin
r are consistently assigned to every traffic light.

B. Collision avoidance constraints

To guarantee the safe crossing we impose an hard con-
straint such that at every time instant only one among roads
entering the same intersection has the right of way. This
condition is expressed by the following linear constraint:∑

r:r_q

ur(t, σr) ≤ 1, (11)

for every road q. Notice that constraint (11) let the further
freedom to assign red to all traffic lights at the same
intersection, if it is required.

C. State constraints

The dynamics defined in (2) is non linear due to the min
operator and to the product between flows and traffic lights’
values. Our aim is to show how such a dynamics may be
reformulated with mixed integer linear constraints.

Let σ be a vector containing σr’s for every road r, and
let f̄ in

r (t, σ) and f̄ out
r (t, σ) be the following modified flows:

f̄ in
r (t, σ) =

{
βr
∑
q:q_r f̄

out
q (t, σ), r ∈ R ∪Rout

f in
r (t), r ∈ Rin (12a)

f̄ out
r (t, σ) =

{
ur(t, σr)f

out
r (t), r ∈ Rin ∪R

f out
r (t), r ∈ Rout.

(12b)

We now show a scheme to rewrite (12b), i.e., min of several
functions multiplied by a binary variable. For every road
r ∈ Rin ∪ R let d(r)(t) ∈ {0, 1}h be a vector of binary



variables, where h = 1 + #{q : r _ q}. Then the definition
of outflow (2c) is equivalent to the following constraints:[

d(r)
0 (t) = 1

]
−→

[
f out
r (t) = Dr(t)

]
(13a)[

d(r)
q (t) = 1

]
−→

[
f out
r (t) =

Sq(t)

βq
∀ q : r _ q

]
(13b)

[
d(r)

0 (t) = 1
]
−→

[
Dr(t) ≤

Sq(t)

βq
∀ q : r _ q

]
(13c)

[
d(r)
i (t) = 1

]
−→

[
Sq(t)

βq
≤ Si(t)

βi
∀ i 6= q

]
(13d)

h∑
i=1

d(r)
i (t) = 1. (13e)

Given the following upper and lower bounds: l0 < f out
r (t)−

Dr(t) < L0, lq < f out
r (t) − Sq(t)/βq < Lq , ψ0 < Dr(t) <

Ψ0, ψq < Sq(t)/βq < Ψq , logical constraints (13a)–(13d)
are equivalent to the following linear ones:

f out
r (t)−Dr(t) ≥ l0(1− d(r)

0 (t)) (14a)

f out
r (t)− Sq(t)

βq
≥ lq(1− d(r)

q (t)) (14b)

f out
r (t)−Dr(t) ≤ L0(1− d(r)

0 (t)) (14c)

f out
r (t)− Sq(t)

βq
≤ Lq(1− d(r)

q (t)) (14d)

Dr(t) ≤
Sq(t)

βq
+ (Ψ0 − ψq)(1− d(r)

q (t)) (14e)

Sq(t)

βq
≤ Si(t)

βi
+ (Ψq − ψi)(1− d(r)

q (t)) (14f)

∀ q : r _ q, ∀ i 6= q

d(r)(t) ∈ {0, 1}h,

for every road i and j 6= i.
Finally, given ur(t, σ) ∈ {0, 1} setting

f̄ out
r (t, σ) = ur(t, σ)f out

r (t) =

{
f out
r (t) if ur(t, σ) = 1

0 otherwise
(15)

is equivalent to

g(1− ur(t, σ)) + f̄ out
r (t, σ) ≤ f out

r (t) (16a)
−G(1− ur(t, σ))− f̄ out

r (t, σ) ≤ −f out
r (t) (16b)

−Gur(t, σ) + f̄ out
r (t, σ) ≤ 0 (16c)

gur(t, σ)− f̄ out
r (t, σ) ≤ 0, (16d)

where g < f out
r (t) < G.

D. Objective functions

The metrics illustrated in Section II-C are nonlinear func-
tions of roads’ density. Therefore, we use the same technique
previously employed, which allows us to transform their
expression as linear constraints.

1) SoD: Using the scheme illustrated by (13)–(16), ex-
pression (3) is equivalent to:

π1(1− b1(t)) ≤ SoDr(t)−Din
r (t) ≤ Π1(1− b1(t)) (17a)

π2(1− b2(t)) ≤ SoDr(t)− ϕmax
r ≤ Π2(1− b2(t)) (17b)

π3(1− b3(t)) ≤ SoDr(t)− wr(ρmax
r − ρr(t)) (17c)

SoDr(t)− wr(ρmax
r − ρr(t)) ≤ Π3(1− b3(t)) (17d)

Din
r (t) ≤ ϕmax

r + (P1 − p2)(1− b1(t)) (17e)

Din
r (t) ≤ wr(ρmax

r − ρr(t)) + (P1 − p3)(1− b1(t)) (17f)

ϕmax
r ≤ Din

r (t) + (P2 − p1)(1− b2(t)) (17g)
ϕmax
r ≤ wr(ρmax

r − ρr(t)) + (P2 − p3)(1− b2(t)) (17h)

wr(ρ
max
r − ρr(t)) ≤ Din

r (t) + (P3 − p1)(1− b3(t)) (17i)
wr(ρ

max
r − ρr(t)) ≤ ϕmax

r + (P3 − p2)(1− b3(t)) (17j)

b(t) ∈ {0, 1}3,

where Π, P (π, p) are upper (lower) bounds consistently
chosen.

2) TTD: Similarly, expression (4) is equivalent to the
following:

γ1(1− c1(t)) ≤ TTDr(t)− vrρr(t) (18a)
TTDr(t)− vrρr(t) ≤ Γ1(1− c1(t)) (18b)
γ2(1− c2(t)) ≤ TTDr(t)− wr(ρmax

r − ρr(t)) (18c)
TTDr(t)− wr(ρmax

r − ρr(t)) ≤ Γ2(1− c2(t)) (18d)
vrρr(t) ≤ wr(ρmax

r − ρr(t)) + (Θ1 − θ2)(1− c1(t)) (18e)
wr(ρ

max
r − ρr(t)) ≤ vrρr(t) + (Θ2 − θ1)(1− c2(t)) (18f)

c(t) ∈ {0, 1}2,

where Γ,Θ (γ, θ) are upper (lower) bounds consistently
chosen.

IV. DECENTRALIZED SUBOPTIMAL CONTROL

The control strategy illustrated in the previous section,
while providing the optimal values for traffic lights, requires
to solve an intractable (NP–hard) problem. In this section we
therefore propose a decentralized realization of such strategy,
which reduces the computational burden substantially. It is
based on two main ingredients: suboptimal solutions for local
problems and agreement policy between local solutions.

A. Local problems

The optimization procedure is decentralized among in-
tersections, each of which solves a local MILP. For every
local problem, i.e., over intersection A, a receding horizon
approach is used and the predicted densities belong to the
set

RA =
{
r ∈ Rin∪R∪Rout : r entering or exiting A

}
, (19)

while the optimization variables are all traffic lights in the
following set:

ΩA =
{
σr : r ∈ RA

}
∪
{
σq : q _ r, r entering A

}
. (20)

Furthermore, densities for roads in Rin ∪ R ∪ Rout \ RA
are considered constant (equal to the last measured values).
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Fig. 2: Illustrative example of local subproblems.

This is the main reason of suboptimality, since the objective
function maximized in every subproblem is computed over
the set RA, i.e.,

JA =

T/Ts∑
n=1

(
a1

∑
r∈RA\Rin

TTDr(t0 + nTs)+

+ a2

∑
r∈RA∩Rin

SoDr(t0 + nTs)
)
.

(21)

As illustrative example look at Fig. 2, where we consider
the optimization solved by intersection A. In such a scenario
density predictions are carried out only for roads 1–4, and
the problem is solved with respect to the variables σ1, . . . , σ8

(notice that σ5, . . . , σ8 are needed to compute inflows for
roads 1 and 2).

It is worth to note that, among all σ’s considered by an
intersection, only a subset of them fulfills hard constraints for
collision avoidance within the local optimization: referring
again to Fig. 2, intersection A guarantees such fulfillment
only for σ1 and σ2. For the other variables considered by
A (marked in red in the figure) there might be some hard
constraint which is not included within the local problem
(in Fig. 2 this happens for σ3 and σ4); Therefore, the values
computed by A for these variables can be interpreted only as
suggestions that A would like to advice its neighbor intersec-
tions, to optimize its own objective. How such suggestions
are considered is explained in the next section.

B. Agreement policy

To let local problems taking care of advices provided by
neighbors we save the result of every local optmization. For
instance, when A solves its subproblem, we save the vari-
ables σr,A, for every r involved in such problem. Once these
informations are available we can identify, for every road r,
the set Sr of all intersections whose local problem involves
σr. Then the average suggestion given by intersections about
σr is computed as:

σ̂r =
1

|Sr|
∑
I∈Sr

σr,I. (22)

We now use the values σ̂r to modify the cost function of
every local problem, as the following:

ĴA = JA − a3

∑
σr∈ΩA

‖σr − σ̂r‖1, (23)

where a3 is a real number used to weight neighbors’ sugges-
tions w.r.t. A’s own objective. Notice also that the 1–norm can

be turned in a mixed integer linear formulation adding two
binary variables for every σr ∈ ΩA. This is the computational
prize to pay in order to take into account suggestions by
neighbors, rather then ignoring them; the problem, however,
is still significantly numerically more efficient than its cen-
tralized version. This idea can be iterated Nit times, in order
to let suggestions spread among intersections. The scheme
we implemented is the following:

0) Let Nit be assigned;
1) For every intersection A solve the local MILP with

cost function JA and save the resulting σr,A;
2) If Nit = 0 then stop;
3) For every signalized road r compute the average sug-

gestions σ̂r;
4) For every intersection A solve the local MILP with

cost function ĴA, and use the result to update σr,A;
5) If for every r and for every A there was no update in

σr,A then stop;
6) Decrement Nit by 1, goto 2.

Whenever the algorithm stops, the value assigned to every
traffic light is

σ∗r = σr,A, where r enters A, (24)

since every intersection guarantees the fulfillment of collision
avoidance (hard) constraints only over roads entering it.

Notice that if Nit = 0 is given, this means that suggestions
from neighbors are ignored. An important feature of our
scheme is that the subproblems’ complexity does not depend
on the network size; therefore the algorithm complexity is
linear in the number of intersections and in the chosen
number of iteration, which is a tunable parameter. Our
numerical results, presented in the next section, show that the
algorithm stops already after three iterations as no changes
appear in the solution.

Another benefit of this decentralized strategy is that step
1 (the same applies to step 4), requires to solve a set of
optimization problems that are completely indipendent of
each other. Therefore the procedure can be implemented even
more efficiently in a parallel architecture, where there is a
controller at every intersection that exchanges σ’s values with
the others.

V. SIMULATIONS AND COMPARISONS

The strategies illustrated in the previous sections have
been tested via software simulations in MatLab environment,
using software [16, 17] to solve the mixed integer linear pro-
grams. The simulated scenario is the following: all roads in
the network have same physical properties (v,w,ϕmax,ρmax).
Each simulation is run for a virtual time of 45 minutes,
when traffic lights’ cycle is 90 seconds and sampling time
is 10 seconds. As explained in Section III, the optimization
problem is solved at the beginning of each cycle, therefore
in this set-up the control values are computed 30 times. The
constant σmin is set equal to 2 sample steps, so the minimum
green slot is 20 seconds. Outside the network, time-varying
demands and supplies are randomly uniformly generated in
the interval [0.5, 1]ϕmax for the entire simulated time; by
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Fig. 3: Networks used for simulations and comparisons.

TABLE I: Normalized performance comparison between the centralized
strategy (MILP), considered as benchmark, and the decentralized one (Dec–
MILP).

Network 3a Network 3b

MILP Dec–MILP MILP Dec–MILP

TTD 1 0.82 1 0.83
SoD 1 0.86 1 0.85

cpu time 1 0.6 1 0.03

doing so, the network’s state changes during the simulation
(from overall free to overall congested, and viceversa), and
the controllers are then tested in different circumstances. The
numerical results here presented are obtained as mean values
over the entire simulation time.

We would like to stress the fact that the centralized
strategy we propose is able to solve a very general problem,
despite the computational inefficiency. The proposed traffic
lights’ representation, along with the numerical optimization,
guarantees optimal behavior by means of the chosen objec-
tive index, as it may cleverly choose phase shifts between
lights as well as green time for each of them. Therefore,
the results obtained applying this techinique are considered
as benchmark (upper bounds) to evaluate performances of
the decentralized strategy, from traffic and computational
performance point of view. We generate the afore mentioned
scenario for two sample networks, shown in Fig. 3.

Representative results of the simulations are reported in
Table I. Our numerical results are encouraging:
• The decentralized strategy obtains performance around

80-85% of the ones obtained by the centralized opti-
mization;

• Computational time is dramatically reduced, especially
with growing network’s size (as expected from the NP–
hardness of the problem). Notice also that in these
simulation we did not make use of possible multithread
implementation.

VI. CONCLUSIONS AND FUTURE WORKS

In this paper we presented an optimal control scheme
for urban signalized traffic networks that schedules traffic
lights taking into account upcoming external demands. This
strategy, on one hand, ensures optimal performances, on
the other, requires to solve a mixed integer linear program.
To overcome the hardness of this problem, we proposed a
decentralized realization of the same control scheme, that
allows parallel computation. Our software simulations have
shown that the computational load is extremely reduced by
the decentralized scheme, which moreover achieves quite
good performances from traffic point of view.

Future research will aim to investigate the scalability
properties of the depicted techniques, combined with im-
provements on the gap with the upper bound provided by
the centralized algorithm.
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