
HAL Id: hal-01188803
https://hal.science/hal-01188803

Submitted on 31 Aug 2015

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

A Parametric Replay-Based Framework for Underwater
Acoustic Communication Channel Simulation

François-Xavier Socheleau, Christophe Laot, Jean-Michel Passerieux

To cite this version:
François-Xavier Socheleau, Christophe Laot, Jean-Michel Passerieux. A Parametric Replay-
Based Framework for Underwater Acoustic Communication Channel Simulation. UComms
2014 : Underwater Communications and networking, Sep 2014, Sestri Levante, Italy.
�10.1109/UComms.2014.7017148�. �hal-01188803�

https://hal.science/hal-01188803
https://hal.archives-ouvertes.fr


1

A Parametric Replay-Based Framework for

Underwater Acoustic Communication Channel

Simulation
Francois-Xavier Socheleau, Christophe Laot, Jean-Michel Passerieux

Abstract—This paper lays the foundation of an underwater
acoustic channel simulation methodology that is halfway between
parametric modeling and stochastic replay of at-sea measure-
ments of channel impulse responses. The motivation behind this
approach is to extend the scope of use of replay-based methods by
allowing some parameterization of the channel properties while
complying with some level of realism. Based on a relative entropy
minimization between the original channel impulse response and
the simulated one, the idea is to deliberately distort the original
channel statistics in order to meet some specified constraints.

Index Terms—Underwater acoustic communications, channel
modeling, stochastic replay, relative entropy minimization

I. INTRODUCTION

A
MONG the various simulation strategies proposed in the

literature, stochastic replay of time-varying impulse re-

sponse (TVIR) measured in situ has emerged as a relevant and

accurate underwater acoustic communication (UAC) channel

simulation method. As described in [1]–[3], the idea is to

probe a UAC channel at sea to then generate in laboratory new

random TVIR with statistical properties similar to the original

measurement. From a single measurement, it is thus possible

to compare competing transmission schemes when faced to

the same realistic environment [3]. Thanks to Monte-Carlo

simulations, design and validation metrics such as bit error

rate [1]–[3], capacity bounds [4]–[6] or fading statistics [2]

can be computed with a good accuracy. Note however that the

methodology behind stochastic replay does not apply to every

UAC channel. Cyclostationary channels are typical examples

that fall outside the domain of applicability of such a method

(ref. to [3] for more details).

When designing channel models, there is a always a choice

to make between realism, ease of parameterization (knowledge

of the model parameters should be easy to acquire) and

flexibility (the diversity of the simulated environments should

be controlled to some extent). Standard stochastic replay meets

the first two criteria but not the last one. Indeed, the main

drawback of stochastic replay lies in its lack of diversity. As

opposed to fully parametric UAC channel modeling, the input
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impulse response that drives the replay-based simulator cor-

responds to a specific transmission configuration in a specific

environment leading to fixed channel statistical properties. As

shown in [1], [7], some degree of diversity can however be

achieved by “building a database with channels probed in

different areas, different seasons, etc.”. The lack of flexibility

of replay-based models can be a concern when extensive

modem testing is called for in order to assess the robustness

of communication links.

The purpose of this paper is to show that this drawback can

be compensated, to a certain extent, by creating diversity in

some statistical sense. Existing replay-based methods already

artificially create some environment diversity by acting on the

noise properties only. From a single TVIR, several acoustic

environments can be simulated by changing the noise power or

the noise distribution. Higher level of diversity can be achieved

by exploiting the ability of common replay-based methods to

separate first-order statistics of the measured impulse response

from second-order statistics [1], [2]. A first example was given

in [8] where the power ratios between the specular and the

scattered components of the channel were artificially modified

to test the receiver robustness to random scattering.

In this work, we extend this idea and seek to build a

replay-based simulation strategy that allows some level of

parameterization in order to enlarge its scope of use. The

problem we want to tackle is the following: given prior

information on UAC channels that is available through a

measured impulse response, can we build a channel model

that satisfies some specified constraints while being “as close

as possible” to the original TVIR? Constraining the model

means that we want to control some of its properties through

specific parameters such as the Doppler spread or the level

of taps correlation for instance. “Being as close as possible”

is a way to achieve some level of realism as provided by the

original TVIR. As shown in the sequel, this problem can be

addressed by optimizing an information-theoretic criterion that

formally defines the concept of model proximity. The results

presented in the sequel are the first steps towards the design

of this parametric replay-based framework. For now, we only

focus on second-order statistics and only consider constraints

on the channel Doppler spread and the channel energy. In

addition, we mostly insist on the modeling strategy rather than

on its applicability with real data.

The paper is organized as follows: Section II is devoted

to the presentation of the replay-based channel simulation

strategy which our framework is based on. Section III presents
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the method used to deliberately distort the original TVIR

statistics in order to meet the desired constraints. Numerical

examples are provided in Section IV. Finally, perspectives are

discussed in Section V.

II. REPLAY-BASED CHANNEL MODEL

We consider a doubly selective underwater acoustic channel,

modeled as a random linear time-varying system H that maps

input signals x(t) onto output signals y(t) according to the

I/O relationship

y(t) = (Hx)(t) +w(t) =

∫

τ

hH(τ, t)x(t− τ)dτ +w(t), (1)

where hH(τ, t) is the channel impulse response and w(t)
denotes the ambient noise. As common practice in replay-

based simulation, the input of the simulator is a discrete-time

baseband estimate of the channel impulse response whose

mean Doppler shift has been removed [1]–[3]. Such an es-

timate is denoted as hl(k) where l ∈ {0, · · · , L−1} is the tap

index and k ∈ {0, · · · ,K−1} is the time index. In agreement

with [2], {hl(k)} is modeled as a multi-variate trend stationary

random process so that, for all k, k1 and k2 ∈ Z

hl(k) = h̄l(k) + h̃l(k), (2)

with

E {hl(k)} = h̄l(k), (3)

and

E

{

h̃l(k1)h̃
∗

p(k2)
}

= E

{

h̃l(k)h̃
∗

p(k + k2 − k1)
}

,

E

{

h̃l(k1)h̃p(k2)
}

= E

{

h̃l(k)h̃p(k + k2 − k1)
}

. (4)

h̄l(k) is called the trend and is a slowly time-varying determin-

istic component. h̃l(k) is a zero-mean wide-sense stationary

random process assumed to be Gaussian. This model describes

the UA channel as a multivariate Rician fading process with

a slowly time-varying mean. h̄l(k) can be interpreted as the

contribution of (pseudo) deterministic physical phenomena to

channel fluctuations and h̃l(k) represents the channel fluc-

tuations attributable to scatterers that result in fast fading.

Note that since no particular assumption is made about the

correlation of scatterers, the model is very general and includes

the wide-sense stationary uncorrelated scattering (WSSUS)

model as a subset.

Based on (2), standard replay methods first consist in

isolating both components h̄l(k) and h̃l(k) from hl(k). This

can be done by estimating the specular component h̄l(k) either

by simple time averaging when it is time-invariant [1], [3], [9]

or by an empirical mode decomposition [2] in the general time-

varying case. h̃l(k) is then obtained as a difference between

hl(k) and h̄l(k). Finally, stochastic replay consists in drawing

new realizations of the channel random components based

on the observation h̃l(k). These realizations are then added

to the original specular components h̄l(k) to obtain a new

TVIR. New realizations of {h̃l(k)} can be obtained either by

explicitly estimating the second order statistics of {h̃l(k)},

as given by the scattering function for instance [1], and by

then filtering white Gaussian noises, or they can be generated

by simply adding noise on the phase of the discrete Fourier

transform of the observation h̃l(k) [2], [10].

In this work, we consider the first approach and assume that

we are able to estimate the second order statistics of {h̃l(k)}
given by the 2L× 2L cross-spectral density matrix expressed

as

Sh̃(ω) =

[

S
ℜ,ℜ(ω) S

ℜ,ℑ(ω)
S
ℑ,ℜ(ω) S

ℑ,ℑ(ω)

]

, (5)

where the matrix block S
ℜ,ℑ(ω) of size L×L satisfies for all

ω ∈ [−π, π]

[

S
ℜ,ℑ(ω)

]

lp
=

1

2π

+∞
∑

u=−∞

E

{

ℜ{h̃l(k)}ℑ{h̃p(k + u)}
}

e−iuω.

(6)

ℜ and ℑ denotes real and imaginary part, respectively and

the matrix blocks S
ℜ,ℜ(ω), S

ℑ,ℜ(ω), S
ℑ,ℑ(ω) are defined

analogously to (6). Estimation of this matrix can be performed

with common spectral estimation methods (Welch, Burg, Cor-

relogram, etc.) as long as the observation duration of the

channel impulse response is much greater than the coherence

time of each process {h̃l(k)}k. In most experiments, this

duration is on the order of several tens to several hundreds of

seconds, which is large in comparison to the coherence time

of most UA channels that is usually lower than few hundreds

of milliseconds [7]. Note that the common assumption of

uncorrelated scattering as well as proper1 random processes

{h̃l(k)}k consider Sh̃(ω) as diagonal.

Based on the spectral representation (5), it is then possible

to draw new realization of the process {h̃l(k)} using existing

techniques for simulating multivariate stationary Gaussian

ergodic processes such as those presented in [12]–[14].

As discussed in the introduction, the main drawback of

stochastic replay lies in its lack of diversity or flexibility. In

the next subsection, we show how it is possible to extend

the scope of use of such replay-based modeling strategy by

allowing some degree of parameterization. More specifically,

it is shown how to distort the second-order statistics of the

original TVIR in order to get realizations of a new TVIR that

satisfies some desired constraints.

III. DISTORTING SECOND-ORDER STATISTICS

A. Theoretical background

Let {yk, k ∈ Z} be a Gaussian random process taking

values in RM and let pY[−n,n]
denote the joint probability

density function of Y[−n,n] = [y−n, y−n+1, · · · , yn−1, yn],
the differential entropy rate of y is defined as

hr(y) = lim
n→+∞

1

2n+ 1
H

(

pY[−n,n]

)

, (7)

where H(·) denotes the differential entropy [15]. Entropy rates

can be considered as a tool for quantitative characterization of

dynamic processes evolving in time. For multivariate Gaussian

processes, it can be seen as a single metric that carries all the

information on the second-order statistics (time fluctuations

as well as correlation across individual processes). If Sy(ω)

1Refer to [11, Sec. III-B] for a definition of proper random processes.
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denotes the cross-spectral density matrix of y, then it can be

shown [15] that

hr(y) =
M

2
log(2πe) +

1

4π

∫ π

−π

log detSy(ω) dω. (8)

The concept of entropy rate can be extended as a metric

for comparing two random processes. Let {yk, k ∈ Z} and

{zk, k ∈ Z} be two random processes, the relative entropy

rate between y and z is defined as

Dr(y||z) = lim
n→+∞

1

2n+ 1
D

(

pY[−n,n]
||pZ[−n,n]

)

, (9)

where D (·||·) denotes the relative entropy. If y and z are

jointly Gaussian with cross-spectral density matrices Sy(ω)
and Sz(ω), respectively, then, under some regularity condi-

tions (see [16] for details), their relative entropy satisfies

Dr(y||z) =
1

4π

∫ π

−π

(

log det
(

S
−1
y (ω)Sz(ω)

)

+ tr
[

S
−1
z (ω) (Sy(ω)− Sz(ω))

]

)

dω,

(10)

where tr [·] denotes the trace.

B. Relative entropy minimization

The simulation framework proposed in this work consists in

generating realizations of a new multivariate Gaussian random

process that satisfies some prescribed constraints, while being

“as close as possible” to the reference process {h̃l(k)}. For

instance, considering the second-order statistics only, it may

be interesting to specify constraints on the Doppler spread

in order know to what extent a receiver is able to track

the fluctuations of a channel. Similarly, it can be interesting

to analyze the impact of the level of correlation between

taps on the demodulation performance. Since a realistic prior

information is available through the matrix Sh̃(ω), it is rather

natural to exploit this knowledge to build the new model.

The concept of model proximity can be formally defined

through the relative entropy rate between processes, which, as

expressed in (10), is also a pseudo-distance between spectral

density matrices. Building models with entropy-based criteria

is a common procedure in statistical inference [16]–[22]. Such

an approach is usually justified on the basis of avoiding the

arbitrary introduction of unknown information.2 Our modeling

strategy can be formalized as follows: let {yk, k ∈ Z} be the

Gaussian random process taking values in R2L that we want

to generate, find S
o
y(ω) that solves











minimize
Sy(ω)

Dr(y||h̃)

subject to fn(Sy(ω)) = αn, n ∈ 0, · · · , N,

(11)

where fn is some function and αn is either a scalar or a

2L× 2L matrix.

To illustrate our modeling approach, we consider for now

simple constraints on the channel Doppler spread and the

2Note that maximum entropy models are not meant to represent the physical
reality of the channel but rather a state of knowledge on this reality.

channel energy (additional constraints will be considered in an

extended version of this paper). More precisely, a particular

value α0 of average Doppler spread can be specified by

constraining the new model Sy(ω) to satisfy

f0(Sy(ω))
∆
=

∫ π

−π

ω2tr [Sy(ω)] dω = α0. (12)

In addition, the channel energy can also be controlled by

setting a new constraint

f1(Sy(ω))
∆
=

∫ π

−π

tr [Sy(ω)] dω = α1. (13)

Problem (11) with constraints (12) and (13) can be solved

using the method of Lagrange multipliers. According to (10)

and since −1
4π

∫ π

−π
tr
[

S
−1

h̃
(ω)Sh̃(ω)

]

dω plays no role in the

optimization, the Lagrangian is expressed as

L (Sy, λ0, λ1) =
∫

(

log
detSh̃(ω)

detSy(ω)
+ tr

[

S
−1

h̃
(ω)Sy(ω)

]

)

dω+

λ0

(
∫

ω2tr [Sy(ω)] dω − α0

)

+ λ1

(
∫

tr [Sy(ω)] dω − α1

)

.

(14)

It can be shown that the directional derivative of the La-

grangian in direction δSy is given by

δL (Sy, λ0, λ1; δSy) =

∫

tr
[(

S
−1

h̃
(ω)− S

−1
y (ω)

+
(

λ0ω
2 + λ1

)

I2L

)

δSy(ω)
]

dω,

(15)

where I2L denotes a 2L × 2L identity matrix. Setting this

derivative to zero leads to the following solution3

S
o
y(ω) =

[

S
−1

h̃
(ω) +

(

λ0ω
2 + λ1

)

I2L

]−1

. (16)

The multipliers λ0 and λ1 are then obtained by solving the

equations (12) and (13). A numerical solution can be found

using a gradient-based method such as the one presented in

[21].

IV. ILLUSTRATIONS

Through very basic examples, the purpose of this section

is to illustrate the methodology specifically presented in Sec-

tion III-B. No attempt is made to model realistic channels

and application of this method to real UA channels and to

performance assessment of UA communication systems is left

for future work.

For the sake of simplicity, we consider scenarios where

{h̃l(k)} takes values in C2 (i.e., L = 2) and assume that there

is no correlation between the real and imaginary parts of each

tap so that Sh̃(ω) is block-diagonal. Fluctuations of the taps

real and imaginary parts are assumed to be governed by the

same spectral density matrix (i.e., Sℜ,ℜ(ω) = S
ℑ,ℑ(ω)). Two

different families of Doppler spectrum shape are considered

3Thanks to the Woodbury identity, the computation of the inverse ma-

trix S
−1

h̃
(ω) can be avoided and (16) can also be written as So

y(ω) =

S
h̃
(ω)

(

I2L −

[

I2L +
(

λ0ω
2 + λ1

)

S
h̃
(ω)

]

−1 (

λ0ω
2 + λ1

)

S
h̃
(ω)

)

.
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Fig. 1. Stretched exponential Doppler spectra for a channel with two taps. (a) spectrum of the first tap, (b) cross-spectrum between the two taps, (c) spectrum
of the second tap. Plain lines: original spectra, dash-dotted lines: spectra with an average Doppler spread set to 2/3 of the original one, dashed lines: spectra
with an average Doppler spread set to 3/2 of the original one.
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Fig. 2. Gaussian-shaped Doppler spectra for a channel with two taps. (a) spectrum of the first tap, (b) cross-spectrum between the two taps, (c) spectrum
of the second tap. Plain lines: original spectra, dash-dotted lines: spectra with an average Doppler spread set to 2/3 of the original one, dashed lines: spectra
with an average Doppler spread set to 3/2 of the original one.

for the illustration and in both cases the two channel taps are

correlated (i.e. Sℜ,ℜ(ω) and S
ℑ,ℑ(ω) are non-diagonal).

The first example shown in Figure 1 corresponds to the

family of sharply peaked Doppler spectra with heavy tails such

as those described in [23]. The plain lines of Figure 1-(a), (b)

and (c) represents the original spectrum of the first tap (real or

imaginary part), the cross-spectrum between the two taps and

the original spectrum of the second tap, respectively. The first

tap is 5 dB more powerful than the second one and the corre-

lation level between the two taps is equal to 10%. The dash-

dotted lines indicate the output of the optimization procedure

(11) when the taps fluctuations are artificially slowed down. In

this case the average Doppler spread (12) is set to 2/3 of the

original one. As for the dashed lines, they correspond to faster

taps fluctuations with an average Doppler spread constraint set

to 3/2 of the original one. In both cases the average power as

expressed by (13) is the same as the original channel. The

Doppler spread modification mostly change the peakiness and

the tail weight of the spectra stretched exponential shape, the

larger the Doppler spread the heavier the tail. It can also be

noticed that the second tap becomes slightly more energetic as

the Doppler spread increases. This is explained by the fact that

the original spread of the second tap is larger than the spread of

the first one and as the optimization procedure minimizes the

effort to satisfy the specified constraint, if it is told to increase

the average spread it will automatically allocate more energy

to the second tap.

The second example shown in Figure 2 corresponds to

Gaussian-shaped Doppler spectra as predicted by the theory of

underwater sound interacting with the sea surface with a large

Rayleigh parameter. The spectra are here plotted in linear scale

to better observe the changes. What is specifically interesting

to note is the deformation of the spectra that get peaky for

small average Doppler spread and that become multimodal

as this spread increases. Contrary to the previous example,

Gaussian-shaped spectra do not carry much energy in their

tails, it is therefore less demanding in term of entropy change

to modify the original Doppler spectra around their mode

rather than around their tails.

V. CONCLUSIONS AND PERSPECTIVES

UAC channel modeling as defined in the proposed para-

metric and replay-based framework may be a way to find

a good compromise between model realism, parameterization

simplicity and flexibility. Thanks to the formalism of relative

entropy minimization between random processes, we can

control some statistical properties of the simulated channel

while being close to realistic TVIR. The work presented in

this paper sets the general concept but additional research has

to be conducted to assess the applicability of the proposed

framework to real data and to further extend its possibility. For

instance, constraints on the correlation level between channel

taps may be interesting to add in order to measure their

impact on modems performance and, more largely, generalized

moments constraints, as formalized in [16], [22], [24], [25],

could also be considered.
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