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Abstract. In this paper we propose a Bayesian framework for multi-
object atlas estimation based on the metric of currents which permits
to deal with both curves and surfaces without relying on point corre-
spondence. This approach aims to study brain morphometry as a whole
and not as a set of different components, focusing mainly on the shape
and relative position of different anatomical structures which is funda-
mental in neuro-anatomical studies. We propose a generic algorithm to
estimate templates of sets of curves (fiber bundles) and closed surfaces
(sub-cortical structures) which have the same “form” (topology) of the
shapes present in the population. This atlas construction method is based
on a Bayesian framework which brings to two main improvements with
respect to previous shape based methods. First, it allows to estimate
from the data set a parameter specific to each object which was previ-
ously fixed by the user: the trade-off between data-term and regularity
of deformations. In a multi-object analysis these parameters balance the
contributions of the different objects and the need for an automatic esti-
mation is even more crucial. Second, the covariance matrix of the defor-
mation parameters is estimated during the atlas construction in a way
which is less sensitive to the outliers of the population.

1 Introduction

In the last years statistical analysis of shapes has acquired a central role in med-
ical imaging. One of the main applications is to find morphological differences
between a population of controls and one of patients or to highlight the effects of
a treatment (i.e. drug) on a group of patients. Most studies focus their attention
on a single anatomical structure [6, 8–10, 12]. Others propose multi-object analy-
sis considering only a particular kind of shape, either only surfaces (sub-cortical
structures) [2, 13, 11] or only curves (fiber-bundles) [5]. However, brain anatomy
consists of an intricate network of white matter fiber bundles and sub-cortical
structures which need to be studied together in many neuro-anatomical studies.
One example is the study of the neural circuits whose morphological changes
are often correlated with neurodevelopmental disorders, such as in Gilles de la
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Tourette syndrome (GTS) [3]. To this end, we propose here a new atlas con-
struction method based on the framework of currents which permits to deal
simultaneously with curves and surfaces. Given a set of shape complexes, each
one is seen as a deformation of a common template complex. Both the template
complex and the deformations, together called “atlas”, need to be estimated
and they characterize the anatomical invariants and the variability of the pop-
ulation. Every deformation is based on one single diffeomorphism of the whole
3D space which preserves the spatial organization of the objects and prevents
shape components to intersect, fold or shear during deformation. In the case of
neuro-anatomical studies, this makes possible a more realistic analysis since one
can study the brain as a whole and not as a series of independent components.
Moreover the metric between shape complexes is derived from the metric on
deformations that consistently integrates the variations of each component of
the complex. The use of currents allows to estimate such deformations without
relying on point or fiber correspondence.

We extend to shape complexes (curves and surfaces) the methodology of [2]
proposed only for surfaces and we enrich it. The aspects borrowed from [2] aim
not to increase the dimensionality of the deformation parametrization between a
single and a multi-object analysis and to make the results more useful for neuro-
anatomical studies. The first one is achieved by separating the parametrization
of the deformations from the one of the template complex and therefore making
it not dependent on the size and number of objects. A second aspect is to con-
struct templates with the same form (topology) of the shapes. This was not the
case in previous works based on currents like in [5] where the template was a set
of disconnected Dirac delta currents or in [6] where it was the superimposition of
warped surfaces. Now templates of closed surfaces have a mesh structure defined
by the user while templates of fiber bundles have the form of sets of curves con-
necting cortical to sub-cortical structures. This makes easier the interpretation
of the results since the template complex can be compared with the shapes of
the population and it is also possible to study the relations between objects of
the template complex which is crucial in neuro-anatomical studies like in [3].

In this paper, the atlas is estimated using the same generative model as in [1,
2]. We propose to estimate the atlas of shape complexes using similar Bayesian
priors as in [1] for images. This enables to automatically estimate the trade-off
between the data term and the regularity of the deformations instead of being
fixed by the user as in [2]. This parameter is important in the context of statisti-
cal analysis since a value too small might weight too much the data term leading
to a situation of over-fitting. On the contrary, a value too large might penalize
the deformations making less accurate the analysis of the variability of the popu-
lation. Moreover, the situation is even more complicated in multi-object analysis
where each object is characterized by its own parameter which weights the con-
tribution of the object in the criterion to be optimized. Objects characterized
by a bigger norm than the others should be weighted lesser in order to balance
all the contributions for the atlas estimation. The automatic estimation of the
different parameters takes into account also this aspect in only one simulation.
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Previously [2] it was necessary more than one simulation in order to understand
the “best” trade-off and the choice was very subjective.

A second improvement is the estimate of the covariance matrix of the defor-
mation parameters during the atlas construction in a more statistically robust
way. This should lead to a PCA less influenced by the outliers in contrast to an
analysis based on a covariance matrix computed at the end of the procedure.

2 Bayesian Framework for Atlas estimation

In the first paragraph we recall how to build diffeomorphic deformations with the
new control point scheme defined in [2]. Afterwards, we explain the novelty of
our new Bayesian formulation, highlighting the methodological differences with
respect to [2] linked to the use of priors. Eventually we introduce an innovative
solution to initialize templates of shape complexes (curves and surfaces).

Diffeomorphism Assume that we have M different structures segmented from
structural and diffusion images for N subjects. All structures belonging to sub-
ject i can be seen as a shape complex Si = {Sij}j=1...M which is modeled as the
deformation of a common template complex φi(T ) plus a residual ǫi where T =
{Tj}j=1...M and ǫi = {ǫij}j=1...M . Shape complexes, deformed template complex
and residuals are modelled as currents. The deformation φi depends only on sub-
ject i. The whole 3D space is deformed by a single diffeomorphism using the con-
trol point formulation presented in [2]. Diffeomorphic deformations are built by
integrating a time-varying vector field vt(x) over the interval [0, 1]. Calling φt(x)
the position of a point x at time t, its evolution is given by: φ̇t(x) = vt(φt(x)) and
under some smoothness constraints of vt satisfied here [7] the set of deformations
{φt}t∈[0,1] is a flow of diffeomorphisms. The speed vector field vt is defined by a
dynamical system of Cp control points c={ck}, shared among the whole popula-
tion and a set of momenta α

i={αi
k} linked to each control point and specific to

each subject: ẋ(t) = vt(x(t)) =
∑Cp

p=1 K(x(t), cp(t))α
i
p(t), where K is an interpo-

lating kernel (i.e. gaussian). This equation defines the motion of all the points in
the 3D space: both template and control points. The momenta α

i parametrize
the deformation of the template complex towards the shapes of subject i. If we
assume that there are no external forces in the system, the total energy is con-

served and it is equal to the Hamiltonian
∑Cp

k=1

∑Cp

p=1 α
i
k(t)

TK(ck(t), cp(t))α
i
p(t).

Control points and momenta satisfy therefore the Hamiltonian system:

{

ċk(t) = vt(ck(t)) =
∑Cp

p=1 K(ck(t), cp(t))α
i
p(t)

α̇i
k(t) = −

∑Cp

p=1 α
i
k(t)

Tαi
p(t)∇1K(ck(t), cp(t))

(1)

Integrating Eq.1 and Ṫ (t) = vt(T (t)) with T (0) = T from t=0 to t=1, one
obtains the deformed template complex T (1)=φi(T ). The last diffeomorphism
φi at time t=1 is completely parametrized by the initial conditions of the system.
Since the control points are shared among the population, the only subject-
specific deformation parameters are the Cp initial momenta {αi

k(0)}=α
i
0.
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Currents The aim of our atlas construction is to estimate simultaneously the Cp

control points c, the N sets of initial momenta {αi
0} and the template complex

T optimizing at the same time the residuals {ǫi} in a Bayesian framework sense.
More formally this can be achieved by maximizing the joint posterior distribution
of c, {αi

0} and T given {Si}. The space of currents is of infinite dimension and
therefore pdf are not defined. In order to overcome this problem we fix M finite
dimensional spaces W ∗

Λj , one for each object j, constituted by grids on which
shapes and templates are projected (Π) and where pdf are defined. As demon-
strated in [7], the norm in this space is: Π(Sij − φi(Tj))

TK
j
WΠ(Sij − φi(Tj))

which is precisely the numerical scheme used in [7] to compute the continuous
norm on currents. Kj

W is the currents kernel sampled at the grid points of W ∗
Λj

and it is defined as a block matrix whose blocks are 3D gaussian kernels charac-
terized by the same standard deviation. In this way, both the αi

0 and the residuals
ǫij can be modelled with Gaussian distributions. Assuming independence of ob-
servations, their likelihoods are: p(αi

0|Γα) ∝ 1
|Γα|1/2

exp
[

− 1
2 (α

i
0)

TΓ−1
α α

i
0

]

and

p(ǫij |σ
2
ǫj) ∝ 1

|σ2

ǫj |
Λj/2

exp
[

− 1
2σ2

ǫj
||(Sij − φi(Tj))||

2
W∗

Λj

]

, where Λj is the number

of points of the j-th grid. Γα and σ2
ǫj(K

j
W )−1 are two covariance matrices. The

scalar σ2
ǫj depends on the object j and it is the variance of ǫj = {ǫji}i=1...N .

Bayesian framework As in [1] for images, it is possible to estimate both Γα and
σ2
ǫj in a Bayesian framework using the standard conjugate prior of the Gaussian

distribution, the Inverse Wishart: Γα ∼ W−1(Pα,
wα

N
) and σ2

ǫj ∼ W−1(Pǫj ,
wǫj

N
)

where the matrix Pα and the scalars wα,{Pǫj}, {wǫj} are new hyper-parameters
fixed by the user. Using an uniform prior distribution for the template complex T

and for the control points c0 and assuming all random variables independent, it is
possible to write explicitly the posterior distribution F of T , {αi

0}, c0, Γα, {σ
2
ǫj}

given the shapes {Si}. Maximizing F is equivalent to minimize E = − log(F ) =

M

2

N
∑

i=1

(αi
0)

TΓ−1
α α

i
0 +

M
∑

j=1

N
∑

i=1

1

2σ2
ǫj

(

||(Sij − φi(Tj))||
2
W∗

Λj
+

Pǫjwǫj

N

)

+

M

2
(wα +N) log(|Γα|) +

M

2
wαtr(Γ

−1
α Pα) +

M
∑

j=1

1

2
(wǫj + ΛjN) log(σ2

ǫj)

(2)

where the first two terms were present also in [2]. The use of two conjugate priors
makes possible to compute the optimal values for Γα and σ2

ǫj in a closed form:

Γ̂α =

∑N

i=1

[

(αi
0)(α

i
0)

T
]

+ wαP
T
α

(wα +N)
σ̂2
ǫj =

∑N
i=1 ||(Sij − φi(Tj))||

2
W∗

Λj
+ wǫjPǫj

(wǫj +NΛj)

Γ̂α is equal to a weighted sum between the sample covariance matrix and the
prior. A good choice for the prior seems to be: Pα = K−1

V , where KV is a block
matrix whose blocks are 3D gaussian kernels between two different control points.
If all αi

0 are equal to zero, Γ̂α ∼ K−1
V and this means that the “deformation
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regularity” part in Eq.2 becomes
∑N

i=1(α
i
0)

TKV α
i
0, which is the sum of the

geodesic distances from the template complex to all the shapes as in [2].

The second parameter σ̂2
ǫj is equal to a weighted sum between the data-term

of the j-th object and the prior and it was previously fixed by the user. The
results were highly dependent on its value as shown in the next section. Now
it is automatically estimated in a way which balances the contributions of the
different objects in order that objects characterized by bigger norms do not stand
above the smaller ones. With this new technique the sample covariance matrix
penalizes the deformations of the template complex towards “outliers” at each
iteration. Thus adjusting also the residual variance σ

2
ǫ={σ2

ǫj}j=1...M , contrary

to [2] where both Γα and σ
2
ǫ were fixed during optimization.

Gradient descent For the other parameters T , {αi
0}, c0 there is not a closed

form and they are computed using a gradient descent algorithm. Their gradients

are: ∇Tk
E =

∑N

i=1 ∇Tk

[

1
2σ2

ǫk
Dik

]

, ∇α
s
0
E =

∑M

j=1 ∇α
s
0

[

1
2σ2

ǫj
Dsj

]

+ MΓ−1
α α

s
0

and ∇c0
E =

∑N

i=1

∑M

j=1 ∇c0

[

1
2σ2

ǫj
Dij

]

. The differentiation of the data term

Dij=||(Sij −φi(Tj))||
2
W∗

Λj
is exactly the same as in [2]. The gradient of the prior

Pα with respect to c0 is not taken into account since its norm is negligible. The
use of a gradient descent method implies the choice of an initial template. Its
“form” (topology) is preserved during the minimization process. We propose to
initialize templates of 3D closed surfaces as centred and scaled ellipsoids. Tem-
plates of fiber bundles are initialized in two steps. First, it is selected randomly
10% of the fibers of each subject bundle from its most dense part. After, all the
fibers are grouped and it is used a greedy approximation method based on the
framework of currents to select the H most representative fibers, where H is the
average number of fibers in the subject bundles.

. . .  

Subject 1 

. . .  

Subject 1 

Subject N 

Subject N 

Initial template 

complex 

Updated template 

complex patients 

Updated template 

complex controls 

Fig. 1: Left: template
update process for
left caudate (LC) and
left caudate bundle
(LCB) in patients and
controls. Center: up-
dated template com-
plexes starting from
the same initial tem-
plate complex but us-
ing only the popu-
lation of patients or
controls. Right: num-
ber of intersections
between fibers and
surface.



6 Pietro Gori et al.

3 Experiments and Discussion

In the following experiments the data set is composed of left caudate (LC) and
left caudate bundle (LCB) of 10 controls and 10 patients with GTS. The segmen-
tation of the shapes was performed from T1-weighted MRI and DWI respectively
[3, 4]. We use the non-oriented currents metric, also called varifold metric [14],
which allows not to orient shapes in a consistent way across population.
The initial template process ends with two updated template complexes for the
population of controls and patients respectively (Fig.1). These two template
complexes reveal the common anatomical features of their populations. In Fig.1-
right are highlighted the number of fibers intersecting the surface. Fibers seem
to be more spread on the template surface of patients with respect to controls.
In Fig.2 we show the updated template complexes deformed according to the
first mode of PCA for both groups using the estimated covariance matrix. In the
set of controls there is mainly a variability in the distribution of fibers along the
upper part of the surface. For patients there is especially a spread/concentration
of the fibers on the surface towards the sides of the nucleus. There is also an
elongation/shortening of the surface but it is common to both populations.
Eventually we evaluate the robustness of our method w.r.t. the hyper-parameter
values and we compare its performance with the same optimization scheme us-
ing Γα = K−1

V and different fixed values for σ2
ǫ , leading to the same results as

with the method in [2]. In Fig.3 we show the norm of the difference between the
updated template complex and a reference template complex which we choose
arbitrarily equal to the one with a fixed σ2

ǫ equal to 0.01 for all the objects. We
show also the residuals ǫ obtained at the end of the atlas procedure. In both cases
we show results using different normalised hyper-parameter values or different
fixed values for σ2

ǫ . It is possible to conclude that the results with a fixed σ2
ǫ (as

in [2]) lead to results more variable than with the hyper-parameters which can
therefore have a “universal” value, for example equal to 1. We obtained similar
results for different sets of parameters using only surfaces, only bundles or both.

4 Conclusions

We have presented here a new multi-object atlas construction method based on
a Bayesian framework and we have compared its performance with the one of a
previous technique described in [2]. We have shown that this new formulation
permits to have results less sensitive to the parameters fixed by the user. More-
over the covariance matrix of the deformation parameters is estimated through-
out the atlas construction penalizing the contributions of the outliers. This new
method can be applied simultaneously to fiber bundles (curves) and sub-cortical
structures (closed surfaces) for which we propose also a generic template initial-
ization procedure. Initial templates show the same “form” of the shapes which
is also preserved during the atlas estimation. Moreover this technique allows
to preserve the underlying organization of the structures under examination.
This permits to study the relative positions of different objects in the template
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Fig. 2: PCA based on the covariance matrix of the deformation parameters. The
central panels show the deformed updated template complexes at ± σ along the
first principal direction. The colors refer to the magnitude of the displacement
of the points from the template complex. The lateral panels show the number
of intersections between the bundle and the surface at ± σ.

complex and how they interact. In this way it is possible, for example, to high-
light precisely the anatomical differences between a population of controls and
patients. Our preliminary results in a GTS study show differences in neuronal
connexions which still need to be discussed in regards to the hypothesis put forth
in [3]. The use of currents, which minimizes the need of user intervention, gives
the possibility to apply full brain morphometry to large data sets.
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