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Abstract 

Kossel diffraction under standing-wave excitation in a one-dimensional photonic crystal is 

investigated. It is shown that by combining the reciprocity theorem, the Fermi golden rule and 

the concept of density of photonic modes, it is possible to predict the behaviour of the Kossel 

diffraction in such a system. 
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1. Introduction 

Standard Kossel lines, that is the spatial distribution of the x-ray fluorescence emission from a 

crystal induced by ionizing radiation were first recorded in the thirties [1]. The shape of the 

lines was explained by using both the dynamical theory of diffraction and the reciprocity 

theorem [2]. The inherent equivalence of Kossel diffraction and x-ray standing-waves (XSW) 

was pointed out by T. Gog et al. [3] by virtue of the reciprocity theorem, which according to 

James [4], states that “if a source of radiation and a point of observation are interchanged, the 

electric field intensity will be the same in the new point of observation as it was at the old”. 

Accordingly, Kossel diffraction and standing-wave mechanism can be viewed as space 

reversed processes : the fluorescing atoms within the crystal are sources of radiation that can 

be observed by a distant detector. Then it becomes clear that Kossel diffraction and XSW can 

be implemented and combined for structural characterization of crystal. This technique 

became powerful with the advent of synchrotron radiation facilities [5]. 

Kossel diffraction and standing-wave mechanism has been extended to the new artificial 

crystals, the so-called photonic crystals [6,7]. In particular, Kossel lines from the one-

dimensional photonic crystals (1D-PCs) with nanometer scale developed for x-ray optics, that 

is the Bragg multilayer reflectors, were observed under electron [8,9] or x-ray [10–13] 

excitation. The analysis of a periodic structure stratified on a nanometer scale using 

fluorescence modulated by a XSW, that can be regarded as a Kossel method, is a rapidly 

developing method which makes it possible to investigate the atomic distribution especially at 

the interfaces [14]. 

In this paper we study the Kossel diffraction under standing-wave excitation in a one-

dimensional photonic crystal. We will show that using the reciprocity theorem, the Fermi 

golden rule and the concept of density of photonic modes, it is possible to predict the 

behaviour of the Kossel diffraction in such a system. We illustrate our approach by analyzing 

the Kossel diffraction by a Fe/C Bragg mirror under XSW excitation at 8 keV. 

 

2. Application of the reciprocity theorem to the Kossel effect in a 1D-PC  

2.1 First method approach 

We consider a 1D-PC as shown in Figure 1 formed by a periodic stack of N bilayers. The 

element of one of the layers (say 1, or Fe in the case described below) can emit x-ray 

fluorescence of photon energy Efluo upon excitation by monochromatic radiation of energy 

Eexc in the geometry sketched in Fig. 1. 
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Figure 1: Scheme of the one-dimensional crystal formed by a periodic stack of N bilayers. 

The bilayer is made up with a medium 1, Fe in our case, emitting fluorescence and a medium 

2, C in our case. 

 

The intensity !!"#$of the fluorescence radiation at the depth z of the structure is given by the 

formula: 

!!"#$(!,!!",!!"#) = ! ! ℇ!"#(!,!!") !   ℇ!"#$(!,!!"#)
!  

 

            (1) 

where ℇ!"#(!,!!")  stands for the electric field of the exciting (primary) radiation and 

ℇ!"#$(!,!!"#) is the electric field of the fluorescent (secondary) radiation; c(z) denotes the 

concentration of fluorescing atoms at z; θin and θout are the angles of the incident (primary) 

and emitted (fluorescence) radiations, respectively. This formula assumes that secondary 

fluorescence is negligible. 

The term corresponding to the primary field ℇ!"#  is generally computed using a direct 

approach implementing different methods : recursive (Parratt) method [15], transfer matrix or 

coupled-wave theory [16] while the term ℇ!"#$corresponding to the fluorescence radiation is 

generally estimated on the basis of the reciprocity theorem.	   The	   distance	   between	   the	  

source	   and	   the	   detector	   being	   very	   large	   with	   respect	   to	   the	   layer	   thickness,	  ℇ!"#$	  is	  

calculated	  by	  using	  the	  same	  formalism	  as	  the	  one	  used	  to	  calculate	  ℇ!"# 	  and	  assuming	  a	  

virtual	  source	  located	  at	  infinity	  in	  the	  detection	  direction.	  In	  this	  calculation,	  the	  results	  

are	  given	  with	  an	  unknown	  proportional	  coefficient.	  Let	  us	  remark	  that	  this	  method	  is	  
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relatively	  time-‐consuming	  :	  since	  x-‐ray	  fluorescence	  is	  a	  volume	  scattering	  effect	  within	  

the	  multilayer,	  it	  is	  necessary	  to	  calculate	  the	  fields	  at	  discrete	  equidistant	  virtual	  layers	  

into	  the	  multilayer	  (meshing	  approach),	  before	  summing	  the	  contributions	  [17].	  

 

2.2 Second method approach 

As we show in this section, it is very instructive and also efficient from the computational 

point of view to use an indirect approach (hereafter called second method) also using the 

reciprocity theorem to calculate the term  !!"# = ℇ!"#(!,!!") !  . Indeed, by virtue of this 

theorem, as indicated previously, one can also calculate the intensity !!"#of the exciting field 

ℇ!"# !,!!" , as the one of the electric field generated in the far-field by radiating sources 

properly distributed in the PC. This intensity is proportional to the spontaneous emission rate 

of a transition between the initial and the final states i and f (of energy !! and !!  respectively) 

involved in the fluorescence emission. The crucial point is that this rate is simply given by the 

Fermi golden rule [18]: 

!!"#   ∝
2  !
ℏ ! ! ! !! !! − !!   !(ℏ  !!) 

           (2) 

where H is the Hamiltonian of the whole system (atom in PC + field) and ! the density of 

photonic modes (DOM) of the PC at the frequency !! of the emitted photon with the wave 

number k. In fact, assuming the validity of the Wigner-Weisskopf regime, the DOM is the 

same classically or quantum dynamically [19], so that a mere classical approach can be used 

to deal with the above problem. 

In this context, the radiating source is described by an oscillating dipole with moment µ(R) at 

the position R and a frequency ω0, so that the steady-state rate of power emission P after all 

transients have vanished, is given by [19]: 

 

    ! =   !!!!!!! !!" !! ,! .! !! !! − !!! !! !!  

           (3) 

where !!" !!! ,!   stands for the normal modes (NMs) at a given polarization mode σ = s or 

p ; the frequency !!!  is related to the wavenumber k by the dispersion relation which depends 

on the geometry of the PC. By integrating this expression over the wavenumbers k, the DOM 

! !!! = !"/!!!! appears as a result of changing the variable k to !!!. It yields the power 

spectrum Pω of the emitted radiation as follows : 
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!! = !  ! !! !! !! ,!    ! 

            (4) 

C is some constant irrelevant in this case. It includes includes the polarization effects : since 

both dipole moment and NMs are vector quantities, it is necessary to take into account their 

relative directions via the dot product in Eq.(3) ; this fact leads to a multiplying factor (2 for 

the two possible polarization degrees of freedom [19]) which can be included in the term C. 

Since the DOM is independent of the position !, the power spectrum can be calculated by 

replacing the values !!" !!! ,! !  by the averaged value: 

!!" !!! ,! ! =
1
! ! !,!!" !!" !!! , ! !

!

!
  !" 

            (5) 

taking into account that in the above geometry geometry, the distribution of the oscillating 

dipoles ! !,!!"  varies only along the z axis (see figure 1) ; D is the length of the structure. 

This distribution can be calculated by considering that the dipoles are induced by the exciting 

electric field ℇ!"#(!,!!") which depends on the incoming angle !!"; it should be noted that 

under the Bragg condition for the exciting radiation ℇ!!" !,!!"   forms a system of standing-

waves. The expression of the DOM in a finite 1D-PC was considered by Bendickson et 

al. [20] and extended to absorbing media and oblique incidence in Ref. [21]. For the sake of 

consistency, the calculation is summarized here. Let t(ω) be the complex transmission 

coefficient of the 1D-PC. Then the DOM ! !  is given by: 

! ! =
1
!
!!! − !!!
!! + !!  

            (6) 

where x and y are the real and imaginary part of t, respectively ; the prime denotes 

differentiation with respect to ω. The coefficient t can be calculated by means of the transfer 

matrix [16]. The normal modes for a N-bilayered 1D-PC have been studied by André and 

Jonnard [22] in the s-polarization case extending the works done for the Kronig-Penney limit 

case [19,23]. In a general way, for both polarizations s and p, the NMs are the solutions of the 

Helmholtz vector equation: 

! ∧ ! ∧ !! !! ,! −   
!!
!

!  
! !   !! !! ,! = 0 

            (7) 

with the completeness relationship 
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  ! !   !! ∗ !! ,!   !! !! ,!   !! = !!  (!− !′) 

            (8) 

where !!  stands for the ε-transverse Dirac function [19]. Owing to the geometry of the 

problem, the NMs depend only on the z coordinate and Eq.(7) reduces to a Helmholtz scalar 

equation, whose scalar solutions !! !   in the j-th layer are of the form: 

!! ! = exp   !  !  !  ! [!!   exp   !  !!(! − !  ! + !!   exp −  !  !!(! − !  ! )  ] 

            (9) 

where K is the Bloch wavenumber, !! the component of the wavevector along the z axis, p an 

integer corresponding to the pth order of Bragg diffraction and d the bilayer thickness. The 

coefficients !!   and !!    and the Bloch wavenumber can be calculated as shown in the 

Appendix for each polarization.  

At this stage the power spectrum can be calculated as given by Eqs.(4,5). The main interest of 

this approach is to be efficient in terms of calculation time needed to predict the behaviour of 

the Kossel diffraction as a function of the incoming angle !!" especially when the incident 

primary radiation is close to the Bragg condition. Indeed the calculation of the DOM by the 

method proposed in Refs. [20, 21] is very quick and makes it possible to predict the main 

feature of the phenomenon. This fact is illustrated in the following section. 

 

2.3 First approach versus second one 

Table 1 summarizes the different steps of two methods.	   It	   is	   difficult	   to	   quantify	   the	  

advantage	  of	  the	  second	  approach	  with	  respect	  to	  the	  first	  one	  in	  terms	  of	  computation	  

time	  but	  one	  can	  claim	  that	  the	  first	  method	  requires	  a	  language	  with	  compilation	  (the	  

calculation	  are	  performed	  using	  FORTRAN	  90)	  while	  calculations	  by	  the	  second	  method	  

can	  be	  done	  with	  a	  mathematical	  programming	  language	  such	  as	  MATHEMATICA™.	  The 

requirement for a tight meshing in the first method gives rise to considerable time-consuming 

computations.	  
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Step First method Second method 

1 Calculation of the field distribution within the 
multilayer from a real distant source with the 
exciting energy: Field 1 

Calculation of the DOM: 
Eq.(6) 

2 Calculation of the field within the multilayer from 
a virtual source located at the detector position 
with the fluorescence energy: Field 2 

Calculation of the NMs: 
Eq.(9) and Appendix 

3  Product of the intensity of Field 1 by intensity of 

Field 2: Eq.(1) 

 

Average of the NMs using the 
source  (fluorescent atoms) 
distribution in the multilayer 

4  Product of averaged NM intensity 
by the DOM: Eq.(4) 

Table 1: Main steps of the two approaches. 

 

 4. Kossel line in a Fe/C1D-PC under XSW excitation  

The following experiment is now considered whose details and first results have been 

reported in Ref. [11]. The 1D-PC consists in 24 Fe/C bilayers with Fe and C layer thickness 

equal to 2.8 and 2.6 nm respectively, which gives a period of 5.4 nm. It is irradiated by the Cu 

Kα line (8045 eV or 0.154 nm) at an angle !!"in the domain of the Bragg condition for this 

radiation, that is around 0.9°. This radiation excites the Fe Kα fluorescence, which is recorded 

as a function of the angle !!"# (see Fig. 1 for the geometry). With the first calculation method, 

one obtains for this system a typical angular distribution displayed in Figure 2 which is in 

good agreement with experimental results reported in Refs. [10,11]. 
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Figure 2: Calculated (first method) intensity of fluorescence radiation as	   a	   function	   of	   the 

emission angle θout	   for	   the	   Fe/C	   PC,	   for two values of the grazing incident angle:	  

θin	  =	  θBragg	  = 0.882° (red points) and	  θin	  = 0.895° (solid blue line). 

 

The characteristic features of a Kossel line can be seen : a dip in intensity (K1) followed by a 

peak in intensity (K2). The intensity of the peaks K1 and K2 varies with the incident angle 

!!" of the primary radiation in a rather similar way. The variation results from the strong 

dependence of the electric field distribution intensity on the exciting Cu Kα radiation in the 

1D-PC close to the Bragg angle. One can note that the Bragg angle (0.882°) does not give the 

highest value for the peak fluorescence intensity (K2), as shown in Fig. 4 : one observes that 

the intensity of the structure K2 is maximum around 0.91°. Indeed the Bragg angle is between 

the angles corresponding to K1 and K2. The features around 0.4° are related to the total 

reflection. 

The dependence of the Kossel structures such as K1 and K2 on !!"  is globally well-

reproduced by the variation with !!" of the averaged power spectrum  !!(!!")    calculated by 

using Eqs.(4,5) (second method) as shown in Figure 4; it should be noted that this term 

reproduces (by virtue of the reciprocity theorem) the variation with the incident angle !!" of 

the term ℇ!"#(!,!!") !  and consequently of !!"#$as given by Eq.(1). The depth-distribution of 
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the	  dipole ! !,!!"  has been computed by means of the coupled-wave theory [16]. Table 2 

summarizes the main parameters used in the numerical calculations. 

 

 Fe layer C layer 
Thickness (nm) 2.8 2.6 
Real part of refractive index 1 – 2.44 10-5 1 – 7.06 10-6 
Imaginary part of refractive index 5.49 10-7 1.159 10-8 
Table 2: Parameters for the calculations. 

 

For the calculations (DOM, normal modes, …) we have considered a polarization rate equal 

to 50% in agreement with the experiments [10,11] which have been performed with an 

unpolarized source (x-ray tube).	   As	   shown	   in	   figure	   3,	   the	   results	   given	   by	   the	   two	  

approaches	  are	  in	  general	  close	  at least for the main features : the positions of the maxima 

and minima are in good agreement and the overall contrast (difference between the main 

minimum around 0.86° and the maximum around 0.91°) is also in agreement. In this 

condition we can say that the second approach is rather satisfactory. As this stage, the origin 

of the slight disagreement between the two approaches has not yet been accounted for. 

 

 
Figure 3: Variation of the fluorescence intensity of the Kossel structure K2 as	  a	  function	  of	  

the	   incident angle	  !!"	  calculated by the second method (dotted line) compared to the first 

method (solid line). 
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5. Conclusion and perspectives 

This work shows that the combination of the reciprocity theorem, the Fermi golden rule and 

the concept of density of photonic modes, enables the description of the Kossel diffraction 

under standing-wave excitation and predicts the best conditions of illumination. This work 

concerning a 1D-PC could by extended to a higher dimensional PC but at the expense of a 

sophisticated calculation of the DOM and of the normal modes. 

 

APPENDIX	  

Let !! be the column vector formed by the coefficients !!,!! in Eq.(9) corresponding to the 

layer containing the fluorescing atoms in the nth bilayer : 

!! =   
!!
!!

 

           (A.1) 

The vector !!!! corresponding to the n-1 th bilayer is related to !! by means of a matrix 

relationship ! 

!!!! =   !!;!  !! 

           (A.2) 

The matrix elements of !!;! depend on the polarization case (as indicated by the subscript 

s;p) and have already been published (for instance !  is  given  by  equations  (42) of reference 

[24]). 

Moreover by virtue of the Bloch-Floquet theorem, one has 

!! =   !!  !  !   !!!! 

           (A.3) 

where K is the Bloch wavenumber. 

From Eqs.(A.2) and (A.3), it follows that  

!!;!  !! = 0 

           (A.4) 

where  

!!;! = !!;! − !!  !  !   !    

           (A.5) 

 and !    stands for the 2*2 identity matrix. 



	   11	  

To determine all the vectors !!, it is sufficient to determine !! and then to apply Eq.(A.2). 

According to Eq.(A.5), K is deduced from the eigenvalues !!  !  !of the matrix !!;! and the 

vector !! is the eigenvector of the matrix !!;!  ; consequently the problem of determining 

!! !  in Eq.(9) is reduced to a standard problem of linear algebra for both s and p 

polarizations. 
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