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Abstract In this paper we propose an adaptation of

the ∞-Poisson equation on weighted graphs, and pro-

pose a finer expression of the ∞-Laplace operator with

gradient terms on weighted graphs, by making the link

with the biased version of the tug-of-war game. By us-

ing this formulation, we propose a hybrid ∞-Poisson

Hamilton-Jacobi equation, and we show the link be-

tween this version of the ∞-Poisson equation and the

adaptation of the eikonal equation on weighted graphs.

Our motivation is to use this extension to compute dis-

tances on any discrete data that can be represented

as a weighted graph. Through experiments and illus-

trations, we show that this formulation can be used in

the resolution of many applications in image, 3D point

clouds, and high dimensional data processing using a

single framework.

Keywords Generalized distance · ∞-Poisson equa-

tion · Hamilton-Jacobi equation · Weighted graphs ·
Partial difference equations · Tug-of-war game

1 Introduction

The main goal of this paper is to adapt and to solve

∞-Poisson and Hamilton-Jacobi equation on general

discrete domain: a weighted graph of arbitrary topol-

ogy. This adaptation is introduced as Partial difference
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Equations (PdEs) which are convex combinations of

discrete ∞-Laplacian and discrete upwind gradient on

graphs. These PdEs can be also interpreted as a simple

combination of two discrete upwind gradients.

Our motivation is to give a simple and unified nu-

merical scheme to approximate generalized distances on

images, meshes, point clouds, or any data that can be

represented as a weighted graph.

1.1 Introduction and motivations

Computing distance function has many applications in

numerous area including image processing, computer

graphics, robotics, or computational geometry. In ad-

dition, having the distance functions from a seed to

a target, one can compute the corresponding geodesic

path, which is used in many applications, to compute

skeletons, voronoi diagrams, or to perform mesh edit-

ing.

Several distance functions approximation methods

are based on partial differential equations (PDEs), in

particular the eikonal equation, Poisson, ∞-Poisson, or

screened Poisson [11,17,7,13,24].

In the context of a regular grid, solving numerically

these equations is straightforward. The regularity of the

grid provides a domain that is amendable, in the case

of the Poisson equation, one can use several methods to

compute a solution, such as using the Fourier transform,

or a multigrid technique [11]. For ∞-Poisson equation

or eikonal equation, one can use finite differences [18], or

finite element methods. For meshes or general curved

surfaces, solving these equations is more challenging.

The numerical treatment of these PDEs requires a suit-

able representation of the geometry of the surface. One

can use the parameterization of the surface as triangu-
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lated meshes and uses either explicit representations to

define differential operators on it, or the intrinsic ge-

ometry to define differential operators directly on the

triangles. Another way is to represent the surface im-

plicitly by level sets or using the closest point method

[23]. Moreover, in the case of 3d point clouds, the con-

nectivity of the points is not provided, which adds ad-

ditional problems in the processing of these data.

In this paper, we propose a simple and unified nu-

merical method for solving and adaptation of the ∞-

Poisson and Hamilton-Jacobi equation on both regular

or nonregular discrete domains. Using the framework

of PdEs [9,10], first we interpret the tug-of-war game

related to ∞-Laplacian and Hamilton Jacobi equations

as PdEs on particular Euclidean graphs. Then, extend-

ing these same equations on weighted graphs, we give a

general PdE which coefficients are data dependent. Set-

ting differently these coefficients, we can adapt the gen-

eral scheme to different applications on images, meshes,

point clouds, and so on. The main contributions of this

article are the following:

We propose an interpretation of both continuous∞-

Poisson and a hybrid∞-Poisson-Hamilton-Jacobi equa-

tion, as PdEs on particular graphs. We propose an ex-

tension of these PdEs on weighted graphs of arbitrary

topology, and show that these general PdEs are related

to nonlocal tug-of-war game. We also show the connec-

tion with nonlocal continuous PDEs.

We propose to solve these PdEs with a simple mor-

phological scheme: nonlocal erosion and dilatation op-

erator type.

1.2 Tug-of-war game and ∞-Laplacian type equation

Let Ω ⊂ IRn, and ∂Ω its boundaries. We denote by d(x)

the minimal distance from x ∈ Ω to ∂Ω. A common ap-

proach for simple approximation of a smooth distance

function consists of solving the Dirichlet problem for

the Poisson equation, which is defined as:

{
∆u(x) = h(x) , x ∈ Ω,
u(x) = g(x) , x ∈ ∂Ω,

(1)

where u, h, and g are real-valued functions on the

domain Ω, and ∆ is the Laplace operator. This equa-

tion is classically used in various fields, such as electro-

statics, Newtonian gravity, and more recently in surface

reconstruction [15,4]. To compute an estimation of the

distance from a point x ∈ Ω to ∂Ω, a common approach

is to set h(x) = −1 and g(x) = 0. In image processing,

it was used e.g. to represent shapes [11]. In this case,

the domain is a two dimensional grid, and solving this

equation can be interpreted as the mean time a random

walker would hit the boundary ∂Ω of Ω, starting from

a point x in Ω.

One can also consider the p-Poisson equation, which

is a natural generalization of Eq.(1):

{
∆pu(x) = −1 , x ∈ Ω,
u(x) = 0 , x ∈ ∂Ω,

(2)

where∆pu(x) = div(|∇u(x)|p−2∇u(x)) is the p-Laplacian.

One can see that when using p = 2, we recover the

Poisson equation. As p → ∞, it can be shown that

u(x)→ d(x) [14], giving the following equation:

{
∆∞u(x) = −1 , x ∈ Ω,
u(x) = 0 , x ∈ ∂Ω,

(3)

where ∆∞u =
∑
i,j

∂2u
∂xi∂xj

∂u
∂xi

∂u
∂xj

is ∞-Laplacian.

In a recent paper Peres et al. [21] have shown that

the ∞-Poisson is connected to a stochastic game called

tug-of-war. Let us briefly review the notion of tug-of-

war game. Let Ω ⊂ IRn be a Euclidean space, h : Ω →
IR the running payoff function, and g : ∂Ω → IR the

payoff function. Fix a number ε > 0. The dynamics of

the game are as follows. A token is placed at an initial

position x0 ∈ Ω. At the kth stage of the game, Player

I and Player II select points xIk and xIIk , respectively,

each belonging to a specified set Bε(xk−1) ⊆ Ω (where

Bε(xk−1) is the ε-ball centered in xk−1. The game to-

ken is then moved to xk, where xk can be either xIk
or xIIk with probability P = 1

2 . In other words, a fair

coin is tossed to determine where the token is placed.

After the kth stage of the game, if xk ∈ Ω then the

game continue to stage k + 1. Otherwise, if xk ∈ ∂Ω,

the game ends and Player II pays Player I the amount

g(xk) + ε2
∑k−1
j=0 h(xj). Player I attempts to maximize

the payoff while Player II attempts to minimize it. If

both player are using optimal strategy, according to the

dynamics programming principle, the value functions

for Player I and Player II for standard ε-turn tug-of-

war satisfy the relation
uε(x) = 1

2

[
sup

y∈Bε(x)
uε(y) + inf

y∈Bε(x)
uε(y)

]
+ ε2h(x),

x ∈ Ω,
u(x) = g(x), x ∈ ∂Ω.

(4)

The authors of [21] have shown that when h = 0, or

minh > 0 or maxh < 0, the value function uε converges

to the solution of the normalized ∞-Poisson equation:
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{
−∆N

∞u(x) = h(x) , x ∈ Ω,
u(x) = g(x) , x ∈ ∂Ω,

(5)

where ∆N
∞u = 1

|∇u|∆∞ is the normalized ∞-Laplacian.

If the game is modified as follows: we consider two

fixed real number α > 0, β > 0 and α + β = 1. We

can add bias in the tug-of-war game by using the same

dynamics, but setting the probability to choose xIk as α

and xIIk as β. When the game is optimal, according to

dynamic principle, the value function is:


uε(x) = α sup

y∈Bε(x)
uε(y) + β inf

y∈Bε(x)
uε(y) + ε2h(x),

x ∈ Ω,
u(x) = g(x), x ∈ ∂Ω.

(6)

This value function is related to the ∞-Laplacian

with gradient terms: −∆∞u(x) + c|∇u| = 1, where c

depends on the α and β values. This type of PDE and

related stochastic game was studied in [20].

Paper organisation The rest of this paper is or-

ganized as Follows. In Section 2, we provide definitions,

notation, and operators on graphs used in this work. In

Section 3, we rewrite the value function of the tug-of-

war and biased tug-of-war game in the context of our

PdE framework, and we show the link with local and

nonlocal PDEs. We also propose an iterative scheme to

solve the proposed formulation on weighted graphs, and

a morphological interpretation of this scheme. Finally,

Section 4 presents experiments using our proposed for-

mulation, to compute generalized distances and per-

form image segmentation and data clustering on dis-

crete data, such as images, 3D point cloud, and unor-

ganized high dimensional data.

2 Operators on graphs

As the core structure of our approach, in this section

we provide notations and basics on weighted graphs,

recall our formulations of difference, morphological dif-

ferences, and gradients on weighted graphs. This section

is a required preliminary to fully understand the differ-

ent operators defined on weighted graphs that will be

introduced in the following sections.

2.1 Basic notation

A weighted graph G = (V,E,w) consists of a finite set

V of N ∈ IN vertices, a finite set E ⊆ V × V of edges,

and a weight function w : V ×V → [0, 1]. In our case the

weight function represents a similarity measure between

two vertices of the graph. We denote by (u, v) ∈ E the

edge that connects the vertices u and v and we write

u ∼ v to denote two adjacent vertices. The neighborhood

of a vertex u (i.e. the set of vertices adjacent to u) is

denoted N(u) and the degree of a vertex u is defined as

δw(u) =
∑
v∼u w(u, v).

Let H(V ) be the Hilbert space of real valued func-

tions on the vertices of the graph, i.e., each function

f : V → IR in H(V ) assigns a real value f(u) to each

vertex u ∈ V . For a function f ∈ H(V ) the Lp(V ) norm

of f is given by:

‖f‖p =
(∑
u∈V
|f(u)|p

)1/p
, for 1 6 p <∞ ,

‖f‖∞ = max
u∈V

(
|f(u)|

)
, for p =∞ .

(7)

The Hilbert space H(V ) is endowed with the follow-

ing inner product: 〈f, g〉H(V ) =
∑
u∈V f(u)g(u) with

f, g ∈ H(V ). Similarly, let H(E) be the Hilbert space

of real valued functions defined on the edges of the

graph, i.e., each function F : E → IR in H(E) as-

signs a real value F (u, v) to each edge (u, v) ∈ E. The

Hilbert space H(E) is endowed with the following inner

product: 〈F,G〉H(E) =
∑
u∈V

∑
v∈V F (u, v)G(u, v) for

F,G ∈ H(E).

Let A ⊂ V be a set of connected vertices, i.e., for

all u ∈ A there exists a vertex v ∈ A with (u, v) ∈ E.

We denote by ∂A the (outer) boundary set of A, which

is given by:

∂A = {u ∈ Ac : ∃v ∈ A with (u, v) ∈ E} , (8)

where Ac = V \A is the complementary set of A in V .

2.2 Nonlocal finite differences

Based on these basic notations, we are able to introduce

the needed framework to translate differential opera-

tors and PDEs from the continuous setting to graphs.

In particular the fundamental elements for this transla-

tion are nonlocal finite differences on graphs. For more

detailed information on these operators we refer to [9,

2,26]. In the following we assume that the considered

graphs are connected, undirected, with neither self-loops

nor multiple edges between vertices.

Let G = (V,E,w) be a weighted graph and let f ∈
H(V ) be a function on the set of vertices V of G. Then

we can define the weighted (nonlocal) finite difference

of f at a vertex u ∈ V in direction of a vertex v ∈ V
as:

∂vf(u) =
√
w(u, v) (f(v)− f(u)) . (9)
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This definition is consistent with the continuous defi-

nition of the directional derivative and has the follow-

ing properties ∂vf(u) = −∂uf(v), ∂uf(u) = 0, and if

f(u) = f(v) then ∂vf(u) = 0.

Based on the definition of weighted finite differ-

ences in (9) one can straightforwardly introduce the

(nonlocal) weighted gradient on graphs ∇w : H(V ) →
H(V × V ), which is defined on a vertex u ∈ V as the

vector of all weighted finite differences with respect to

the set of vertices V , i.e.,

(∇wf)(u) = (∂vf(u))v∈V . (10)

From the properties of the weighted finite differences

above it gets clear that the weighted gradient is linear

and antisymmetric. The weighted gradient in a vertex

u ∈ V can be interpreted as function inH(V ) and hence

the Lp(V ) and L∞(V ) norm in (7) of this finite vector

represent its respective local variation and are given as:

‖(∇wf)(u)‖p =

(∑
v∼u

(w(u, v))p/2 |f(v)− f(u)|p
) 1
p

,

‖(∇wf)(u)‖∞ = max
v∼u

(√
w(u, v) |f(v)− f(u)|

)
.

(11)

Based on previous definitions, we can define two up-

wind directional derivatives expressed by :

∂±v f(u) =
√
w(u, v)

(
f(v)− f(u)

)±
, (12)

with the notation (x)+ = max(0, x) and (x)− = max(0,−x).

Similarly, discrete upwind nonlocal weighted gradi-

ents are defined as

(∇±wf)(u)
def.
=
(
∂±v f(u)

)
v∈V

. (13)

The upwind gradient norm operators, with 1 6 p <

∞ are defined for a function f ∈ H(V ) as

‖(∇±wf)(u)‖p =

[∑
v∼u

√
w(u, v)

p(
f(v)− f(u)

)p±] 1
p
.

(14)

These operators allow to define the notion of the regu-

larity of the function around a vertex u.

Similarly, in the case where p =∞, upwind gradient

norm operators are defined for a function f ∈ H(V ) as

‖(∇±wf)(u)‖∞ = max
v∼u

(√
w(u, v)

(
f(v)− f(u)

)±)
. (15)

The relation between discrete gradient and this fam-

ily of upwind gradients is given, for a function f ∈
H(V ), by

‖(∇wf)(u)‖pp = ‖(∇+
wf)(u)‖pp + ‖(∇−wf)(u)‖pp, (16)

and one can deduce that

‖(∇±wf)(u)‖p 6 ‖(∇wf)(u)‖p. (17)

Thus this family provides a slightly finer expres-

sion of the gradient. For instance, one can remark that

‖(∇−wf)(u)‖p is always zero if f has a local minimum at

u. The upwind discrete gradients was used in [8,27] to

adapt the Eikonal Equation on weighted graphs, and to

study the well-posedness (existence and uniqueness) of

the solution with applications in image processing and

Machine learning.

2.3 ∞-Laplacian on graph

The nonlocal ∞-Laplacian of a function f ∈ H(V ),

noted ∆w,∞ : H(V )→ H(V ) is defined by [1]

∆w,∞f(u)
def.
=

1

2

[
‖(∇+

wf)(u)‖∞ − ‖(∇−wf)(u)‖∞
]
,

(18)

which can be rewritten as

∆w,∞f(u) =
1

2

[
max

(√
w(u, v)

(
f(v)− f(u)

)+)
−max

(√
w(u, v)

(
f(v)− f(u)

)−)]
.

(19)

Remark As in the continuous case, this operator can

be formally derived as minimization of the following

energy on graphs, as p goes to the infinity.

Jw,p(f) =
∑
u∈V
‖(∇wf)(u)‖pp. (20)

For more details, see [2,9].

3 Nonlocal ∞-Poisson equation with gradient

term

3.1 From tug-of-war game to PdEs on graphs

Let us rewrite the value function in the context of our

PdE framework, considering the following Euclidean ε-

adjacency graph G = (V,E,w) with V = Ω ⊂ IRn,

E = {(x, y) ∈ Ω ×Ω|w0(x, y) > 0} and

w0(x, y) =

{
1
ε4 , if |y − x| ≤ ε,
0, otherwise.

By using w0 in the discrete upwind gradient L∞-

norm, we get:
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‖(∇+
w0
f)(x)‖∞ = max

y∈Bε
(
√
w0(x, y)(f(y)− f(x)))

=
1

ε2
(max
y∈Bε

(f(y))− f(x)),

applying the same simplification to ‖(∇−w0
f)(x)‖∞, we

get:

‖(∇−w0
f)(x)‖∞ =

1

ε2
(f(x)− min

y∈Bε
(f(y))).

We can define the sup and inf operator as:

sup
y∈Bε(x)

f(y) = ε2‖(∇+
w0
f)(x)‖∞ + f(x),

and

inf
y∈Bε(x)

f(y) = f(x)− ε2‖(∇−w0
f)(x)‖∞.

Now, by replacing them in Eq. (4), we get:

f(x) =
ε2

2

[
‖(∇+

w0
f)(x)‖∞ − ‖(∇−w0

f)(x)‖∞
]

+ f(x)

+ ε2h(x),

which can be simplified as:

∆w0,∞f(x) = −h(x), (21)

which is the discrete ∞-Poisson equation. Now if we

use a general weight function, we get a general discrete

∞-Poisson equation on graph:

∆w,∞f(u) = −h(u),

Similarly, using our discrete PdE framework, we can

transcribe the biased tug-of-war (Eq. (6)) game as:

α‖(∇+
wf)(x)‖∞ − β‖(∇−wf)(x)‖∞ + h(x) = 0 (22)

with α, β ∈ [0, 1], and α+ β = 1.

We define the operator Lw,∞f(u) as:

Lw,∞f(u)
def
= α‖(∇+

wf)(u)‖∞ − β‖(∇−wf)(u)‖∞. (23)

It corresponds to a new family of ∞-Laplace oper-

ators with gradient terms.

By a simple factorization, this operator can be rewrit-

ten as

Lw,∞f(u) = 2 min(α, β)∆w,∞f(u)

+ (α− β)+‖(∇+
wf)(u)‖∞

− (α− β)−‖(∇−wf)(u)‖∞.
(24)

We consider the following equation that describes

the general Dirichlet problem associated to the Poisson

equation on graphs:

{
−Lw,∞f(u) = h(u) u ∈ A
f(u) = g(u) u ∈ ∂A,

(25)

where A is a connected set of vertices and ∂A its bound-

ary.

One can see that using different values for α and

β in Lw,∞f(u), we can recover different version of the

equation. In this work, we are particularly interested by

three of them:

– case α = β 6= 0, expression of (24) becomes

Lw,∞f(u) = ∆w,∞f(u), (26)

and recovers the discrete ∞-Laplacian expressions.

Eq. (25) now becomes:

−∆w,∞f(u) = h(u) (27)

– case α− β < 0, expression of (24) becomes

Lw,∞f(u) = 2α∆w,∞f(u)

− (β − α)‖(∇−wf)(u)‖∞.
(28)

Eq. (25) now becomes:

−2α∆w,∞f(u) + (β − α)‖(∇−wf)(u)‖∞ = h(u) (29)

– case β = 1, it becomes

Lw,∞f(u) = −‖(∇−wf)(u)‖∞. (30)

We can see here that we recover PdEs based mor-

phological operators with the upwind derivative dis-

cretization. Eq. (25) now becomes:

‖(∇−wf)(u)‖∞ = h(u), (31)

By setting h(u) = −1 and g(u) = 0, this formulation

recovers the following eikonal equation:{
‖(∇−wf)(u)‖∞ = 1, u ∈ A
f(u) = 0, u ∈ ∂A.

(32)

By setting different interaction functions (defining

the weight of the graph), we can compute a gener-

alized distance, from any vertex in A to ∂A. This
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eikonal equation is a particular case of a more gen-

eralized equation on weighted graphs:{
‖(∇−wf)(u)‖p = 1, u ∈ A
f(u) = 0, u ∈ ∂A.

(33)

This family of equation has been studied in [8]. In

particular, for p = 2, it has been shown that when

dealing with grid graph, this equation corresponds

to the Osher-Sethian discretization scheme [19].

In the next Sections, to solve the hybrid ∞-Poisson

equation, we set h = −1, g = 0, and α ≤ β.

3.2 Connection with nonlocal game and PDEs

In this subsection, we show that Eq.(21) is related to

the nonlocal version of the tug-of-war game and to the

continuous version of the nonlocal Hölder∞-Laplacian.

Considering the same game, but replacing the ε-ball by

a neighborhood N(xk−1) ⊂ Ω where:

N(xk−1) = {x ∈ Ω|w(x, xk−1) > 0}. (34)

In this version of the game, the game token is then

moved to xk, where xk is chosen randomly so that xk =

xIk with a probability

P =

√
w(xk−1, xIk)√

w(xk−1, xIk) +
√
w(xk−1, xIIk )

, (35)

and that xk = xIIk with a probability 1− P . According

to the dynamic programming principle, the value func-

tions for Player I and Player II for this game satisfy the

relation

1

2

[
max
y∈N(x)

√
w(x, y)

(
f(y)− f(x)

)
+

min
y∈N(x)

√
w(x, y)

(
f(y)− f(x)

)]
= −h(x),

(36)

which is simply

∆∞,wf(x) = −h(x). (37)

Now, if we consider a nonlocal Euclidean graph G =

(V,E,w) with V = Ω ⊂ IRn, E = {(x, y) ∈ Ω ×
Ω|w1(x, y) > 0}, and the following weight function :

w1(x, y) =

{
1

|x−y|2s , if x 6= y, s ∈ [0, 1],

0, otherwise.
(38)

Our formulation of ∆w,∞ corresponds to the re-

cently proposed Hölder∞-Laplacian proposed by Cham-

bolle et al. in [5].

∆w1,∞f(x) =
1

2

[
max

y∈Ω,y 6=x
(
f(y)− f(x)

|y − x|s
)

+ min
y∈Ω,y 6=x

(
f(y)− f(x)

|y − x|s
)

]
.

(39)

This operator is formally derived from the mini-

mization of an energy of the form∫
Ω

∫
Ω

[f(y)− f(x)|p

|x− y|p×s
dxdy, (40)

as p→∞.

Now, considering the biased tug-of-war, we get the

probability to get xk = xIk as:

P =
α
√
w(xk−1, xIk)

α
√
w(xk−1, xIk) + β

√
w(xk−1, xIIk )

. (41)

Following the same reasoning, we get the relation:

Lw1,∞f(u) = −h(u). (42)

The formulation of the operator Lw1,∞f(u) also cor-

responds to the Hölder infinity Laplacian, but with gra-

dient terms :

Lw1,∞f(u) =2 min(α, β)

[
max

y∈Ω,y 6=x
(
f(y)− f(x)

|y − x|s
)

+ min
y∈Ω,y 6=x

(
f(y)− f(x)

|y − x|s
)

]
+ (α− β)+ max

y∈Ω,y 6=x
(
f(y)− f(x)

|y − x|s
)

− (α− β)− min
y∈Ω,y 6=x

(
f(y)− f(x)

|y − x|s
).

(43)

3.3 Generalized distance computation on graph

Like the case of random walk for ∆2f(u), we are inter-

ested here to the case where h(u) = 1 and g(u) = 0 in

Eq. (25), leading to the following equation:

{
Lw,∞f(u) = −1 u ∈ A
f(u) = 0 u ∈ ∂A.

(44)

To solve this equation, we first simplify it as Lw,∞f(u)+

1 = 0 in order to set the dynamic following scheme:
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∂f(u,t)
∂t = Lw,∞f(u, t) + 1 u ∈ A

f(u, t) = 0 u ∈ ∂A
f(u, t = 0) = 0 u ∈ A.

(45)

To discretize the time variable in Eq. (45), we use

the explicit Euler time discretization method: ∂f(u,t)∂t =
fn+1(u)−fn(u)

∆t , where fn(u) = f(u, n∆t), in order to get

the following iterative scheme:


fn+1(u) = fn(u) +∆t(Lw,∞f(u, t) + 1) u ∈ A
fn+1(u) = 0 u ∈ ∂A
f0(u) = 0 u ∈ A.

(46)

This iterative scheme can be interpreted as a mor-

phological scheme implying morphological type filter.

We define the following operators:

NLD(f)(u) = ‖(∇+
wf)(u)‖∞ + f(u),

NLE(f)(u) = f(u)− ‖(∇−wf)(u)‖∞.
(47)

NLD and NLE refers to nonlocal Dilation, and

nonlocal Erosion, respectively. The reason we call them

this way is that they correspond to classical erosion

and dilation on weighted graphs. By setting ∆t = 1

and rewritting the iterative scheme (46) using (47), we

get the following iterative algorithm:


fn+1(u) = αNLD(f)(u) + βNLE(f)(u) + 1 u ∈ A
fn+1(u) = 0 u ∈ ∂A
f0(x) = 0 u ∈ A.

(48)

4 Applications

4.1 Graph construction

There exists several popular methods to transform dis-

crete data {x1, ...xn} into a weighted graph structure.

Considering a set of vertices V such that data are em-

bedded by functions of H(V ), the construction of such

graph consists in modeling the neighborhood relation-

ships between the data through the definition of a set

of edges E and using a pairwise distance measure µ :

V ×V → IR+. In the particular case of images, the ones

based on geometric neighborhoods are particularly well-

adapted to represent the geometry of the space, as well

as the geometry of the function defined on that space.

One can quote:

– Grid graphs which are most natural structures to

describe an image with a graph. Each pixel is con-

nected by an edge to its adjacent pixels. Classi-

cal grid graphs are 4-adjacency grid graphs and 8-

adjacency grid graphs. Larger adjacency can be used

to obtain nonlocal graphs.

– Region adjacency graphs (RAG) which provide very

useful and common ways of describing the structure

of a picture: vertices represent regions and edges

represent region adjacency relationship.

– k-neighborhood graphs (k-NNG) where each vertex

vi is connected with its k-nearest neighbors accord-

ing to µ. Such construction implies to build a di-

rected graph, as the neighborhood relationship is

not symmetric. Nevertheless, an undirected graph

can be obtained while adding an edge between two

vertices vi and vj if vi is among the k-nearest neigh-

bor of vj or if vj is among the k-nearest neighbor of

vi
– k-Extended RAG (k-ERAG) which are RAGs ex-

tended by a k-NNG. Each vertex is connected to

adjacent regions vertices and to it’s k most similar

vertices of V .

The similarity between two vertices is computed ac-

cording to a measure of similarity g : E → IR+, which

satisfies:

w(u, v) =

{
g(u, v) if (u, v) ∈ E
0 otherwise

Usual similarity functions are as follow:

g0(u, v) =1,

g1(u, v) =exp
(
−µ
(
f0(u), f0(v)

)
/σ2
)

with σ > 0,

g2(u, v) =
1

µ
(
f0(u), f0(v)

) ,
where σ depends on the variation of the function µ and

control the similarity scale.

Several choices can be considered for the expression

of the feature vectors, depending on the nature of the

features to be used for the graph processing. In the

context of image processing, one can quote the sim-

plest gray scale or color feature vector Fu, or the patch

feature vector F τu =
⋃
v∈Wτ (u) Fv (i.e, the set of val-

ues Fv where v is in a square window Wτ (u) of size

(2τ + 1) × (2τ + 1) centered at a vertex pixel u), in

order to incorporate nonlocal features.
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4.2 Weighted geodesic distances

4.2.1 Synthetic image

To illustrate the effect of solving our proposed adapta-

tion of the∞-Poisson equation, we experimented our al-

gorithm on a synthetic image (first image of Fig. 1). The

results were obtained using an 8-adjacency graph, using

two different weight functions, and different α, β values.

The original image is a 400× 400 grayscale image, and

the distance is computed from the top left corner of the

image. The first row shows distance maps with isolines

obtained using the weight function g0 (w(u, v) = 1).

As one can see, using α = 0, the distance between two

adjacent isolines is constant, depicting a linear distance

function. One can also observe that the computed dis-

tance is anisotropic, giving more importance to the di-

agonal directions (this is fully expected and due to the

L∞-norm). As α varies from 0 to 0.5, the computed dis-

tance is evolving from a linear to a quadratic one. The

second row illustrates the effects of the weight function

g1, where the distance function µ we used here is the

L2 distance between the pixel intensities, with σ = 150.

The shape information is naturally represented by this

weight function in the graph, enhancing the value of

the computed distance as it reaches the boundary of an

object.

α = 0 α = 0.4 α = 0.5

w
=
g
0

w
=
g
1

Fig. 1 Distance computation on a synthetic image, with dif-
ferent α values, and different weight functions. The distance
is computed from the top left corner of the image.

4.2.2 Shapes

We also experimented our algorithm on shapes images

(Fig. 2). The graph is built the same way as for the ex-

periments on the synthetic image, and we used w(u, v) =

g2(u, v), with µ the L2 distance function between pixels

coordinate. In this case, the distance is computed from

the boundaries of the shape. As one can see, by varying

the α parameter, we can observe the same phenomena

as for the synthetic image, namely the distance function

is evolving from linear to quadratic.

(a) (b)

(c) (d)

Fig. 2 Distance generation on a shape image using different
α values: Fig. (b) is computed with α = 0, Fig. (c) with
α = 0.4, and Fig. (d) with α = 0.5. The distance is computed
from the boundary of the shape.

4.2.3 Natural image

To show the effects of the weight function, we exper-

imented our algorithm on a natural image (top image

of Fig. 3). On the first, second, and third rows, we also

used w(u, v) = g2(u, v), with µ the L2 distance func-

tion between pixel coordinates. The first row shows the

computed distance with a 4-adjacency grid graph, sec-

ond row with an 8-adjacency one, and third row with

a 7 × 7 square neighborhood window (i.e. a node u is

connected to all the point in a 7 × 7 square window,

centered at node u). As one can see, by adding more

neighbors to a node, the computed distance tends to be

less anisotropic. In fact, it is still anisotropic, but in the

direction of the neighboors. As we added more neigh-

bors to the graph, there is more and more directions

to take into account. To get an isotropic distance, a so-

lution would be to add an infinity of neighboors in an

infinity of direction. The fourth row shows the distance

computed by building an 8-adjacency graph, g1(u, v) as
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a color similarity weight function. As for the synthetic

image, one can see that this weight function permits to

exhibit shapes according to the pixel intensity differ-

ences. On the fifth row, we built a k-nn graph, in the

patch space of the image. We chose k = 5, the research

being performed in a 15× 15 pixels window around the

pixel. We used patches of size 5×5 pixels, also centered

at the corresponding pixel. To compute the similarity,

we used the g1 function, with µ the normalized sum of

the L2 distance between each pixels of the patch of the

considered pair of nodes. As one can see, the objects

are even better delineated, showing large areas of slow

evolution of the distance when in a same object, and

fast evolution at the edge of an object.

α = 0 α = 0.4 α = 0.5

Fig. 3 Distance computation on a natural image, using dif-
ferent α values, different graph construction, and different
weight functions. First row is generated with a 4-adjacency
grid graph, second row with an 8-adjacency grid graph, and
third row with neighbors in a 7× 7 window around the pixel.
The weight function for these latter is the Euclidean distance
in the coordinate space of the pixel’s grid. For the fourth row,
we used an 8-adjacency grid graph, with color similarity as
a weight function. The fifth row has been generated using a
knn graph in the patch space of the image. See text for more
details.

4.2.4 3D point cloud

To show the adaptivity of our framework, we computed

the generalized distance on several point clouds (Fig. 4).

We built the graph as a k-nn with k = 5, in the coordi-

nate space of the point cloud. As the spatial discretiza-

tion step is regular enough, we used a constant weight

function (w(u, v) = 1). The superimposed red line on

the figure is the shortest path between the source point

(the point from which the distance is computed) and an

other point in the point cloud. This path was obviously

computed using the computed distance function. We

compared ourselves with the adaptation of the eikonal

equation on graph [8] (first column of Fig. 4) using the

L2 norm of the gradient.

eikonal α = 0 α = 0.4 α = 0.5

Fig. 4 Distance generation on 3D point clouds data, using
different values of α and a knn graph. See text for more de-
tails.

4.3 Semi-supervised segmentation and data clustering

In this section, we present the behavior of our algorithm

for the task of semi-supervised image segmentation and

semi-supervised data classification. We illustrate it with

local and nonlocal configuration on different kind of

data, through several examples.

In the case of image segmentation, several approaches

have become very popular, such as graph cuts [3], ran-

dom walk [12], shortest-path, watershed or framework

that unify some of the previous methods (as powerwa-

tershed) [6,25].



10 Matthieu Toutain et al.

4.3.1 Label diffusion algorithm

The presented algorithm to compute generalized dis-

tances on weighted graphs may also be used for the

task of image semi-supervised segmentation. This task

can be seen as a label diffusion one. To accomodate our

algorithm to the label diffusion, we rewrite it as fol-

lows: Let V = {u1, ..., un} be a finite set of data, where

each data ui is a vector of IRm, and let G = (V,E,w)

be a weighted graph such that data points are vertices

and are connected by an edge of E. The semi super-

vised segmentation of V consists in partitioning the set

V into k classes (known beforehand) given inital labels

for some vertices of V . The aim is then to estimate

the unlabeled data from the labeled ones. Let Cl be a

set of labeled vertices, these latter belonging to the lth

class. Let V0 =
⋃
{Cl}l=1,...,k be the set of initial labeled

vertices and let V \V0 be the initial unlabeled vertices.

Then, the vertex labeling is performed by k indepen-

dent distance computation from its corresponding set

of initial label vertices:{
Lw,∞fl(u) = −1 u ∈ V \V0
fl(u) = 0 u ∈ Cl.

(49)

At the end of the distance computation, the class

membership of a node u is given as the label of the

smallest distance function: arg minl∈1,...,k fl(u).

Fig. 5 Image segmentation using local and nonlocal graph
construction. See text for details.

4.3.2 Image segmentation

We illustrated this method on images in the Fig. 5. The

first image is the initial image with superimposed initial

labels. For the second image, we built an 8-adjacency

grid graph, with a weight function w(u, v) the color

similarity. For the third image, we built a nonlocal k-

nn graph, in patch space of the image the same way

as we did for the natural image distance computation

illustration (Fig. 3). We also illustrated the effects of us-

ing the nonlocal configuration of the graph using patch

distance segmentation

lo
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l
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n

o
n
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l
+

p
a
tc

h
s

Fig. 6 Segmentation of a texture image. First image is the
initial image with superimposed initial labels. First row is
computed using an 8-adjacency grid graph with color similar-
ity. Second row is computed using a k-nn graph with k = 15
in the patch space of the image. See text for more details.

similarity on a texture image (Fig. 6). As for Fig. 5,

the first image is the initial image with superimposed

inital labels. In the left column, the computed distance

is shown, and on the right the final segmentation. First

line shows the local results, also using an 8-adjacency

grid graph. The last row presents nonlocal results with

a 15×15 window and patchs of 9×9. These results show

the benefits of non-local configurations using patches,

especially for textured images, where classical methods

fail to find correctly the desired object.

To provide a quantitative assessment of the pro-

posed method, we use the Microsoft Grabcut database

[22], which is available online. We borrowed the results

of the experiments made by the authors of [6], where

they compare themselves with the previously cited meth-

ods : graph cuts [3], random walk [12], shortest-path,

and maximum spanning forest (MSF). We evaluated

our algorithm by quantifying the errors of the results

segmentation using some of the measure used in [6],

i.e. Boundary Error (BE), Rand Index (RI), and Global

Consistency Error (GCE). The Boundary Error between

two segmented images measures the average distance of

a boundary pixel in the first image and its closest in the

second image. The Rand Index counts the fraction of

pairs of pixels whose labels are consistent between the

computed segmentation and the ground truth. It takes

values in the range [0, 1]. The Global Consistency Er-

ror measures the extent to which one segmentation can
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Table 1 Grabcut assessment

BE RI GCE

Shortest paths 2.82 0.972 0.0233
Random walker 2.96 0.971 0.0234
MSF 2.89 0.971 0.0244
Power wshed 2.87 0.971 0.0245
Graph cuts 3.12 0.970 0.0249
∞-Poisson (α = 0) 1.25 0.977 0.0198
∞-Poisson (α = 0.4) 1.23 0.977 0.0198
∞-Poisson (α = 0.48) 1.21 0.977 0.02

be viewed as a refinment of the other. A good segmen-

tation is characterised by a BE and a GCE as small

as possible, and a RI as close to 1 as possible. For

this experiment, we built an 8-adjacency grid graph,

with w(u, v) = g1(u, v). The results of this experiment

are shown in table 1. As one can see, our algorithm is

slightly better through all the error measurments, de-

noting better segmentation on this dataset.

4.3.3 Data classification

We also experimented our method to perform data clus-

tering on samples picked from the MNIST database [16]

(Fig. 7), to show the adaptivity and behavior of the pro-

posed algorithm for high dimensional unorganised data

clustering. The method is similar to the image segmen-

tation case, and can be adapted straightforwardly: to

build the graph, each node represent an object of the

database. For this case, we represented each object by

its corresponding pixels vector. To compute the simi-

larity between objects, we used the g1 weight function,

with µ the L2 distance between each pixel vectors. We

then built a k-nn graph in this same space, that is rep-

resented in Fig. 7 (a). To achieve the clustering, two

vertices of each class were chosen randomly as initial

labels. Fig. 7 (b) shows the final clustering.

4.4 Computational efficiency

In this paragraph we discuss about the computational

efficiency and scalability of the algorithm. As the main

goal of this paper is to present an adaptation of the∞-

Poisson on graphs, in order to provide a way to compute

distances on graphs of arbitrary topology, we did not

focus on the optimal way to solve the equation and used

a simple time discretization method to get our iterative

algorithm. In a nutshell, by changing the parameter α,

the convergence rate is superlinear using α = 0 (Fig.

8(a)), and sublinear using α = 0.5(Fig. 8(c)).

(a)

(b)

Fig. 7 MNIST sample data clustering. The graph is a k-
nn graph. Images are represented as a vector of pixels and
similarity is computed using the L2 distance between these
vectors. Fig. (a) represents the graph with initial labels, while
Fig. (b) represents the semi-supervised classification using
these initials labels.

5 Conclusion

In this paper, by showing the link between the tug-of-

war game and the∞-Poisson equation, we were able to
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Fig. 8 Convergence rate of the proposed algorithm with dif-
ferent values of α (α = 0 in Fig. (a), 0.25 in Fig. (b), and 0.5
in Fig. (c)).

adapt its formulation on graph, and propose a finer ex-

pression of the∞-Laplace operator with gradient term,

by making the link with the biased version of the tug-of-

war game. We used this fomulation to adapt and extend

the∞-Poisson equation on graph, exhibiting some spe-

cial cases of the equation by making vary the gradient’s

coefficient, showing the link between this version of the

∞-Poisson equation and the eikonal equation. We used

this extension on graph to compute distances on data

that can be represented as a graph: images, 3D point

cloud, unorganised n-dimensional data. We have also

shown that this formulation can be used to compute

image segmentation and data clustering.
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