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Abstract

Networks of ontologies are made of a collection of logic theories, called ontologies,
related by alignments. They arise naturally in distributed contexts in which theories
are developed and maintained independently, such as the semantic web. In networks
of ontologies, inconsistency can come from two different sources: local inconsistency
in a particular ontology or alignment, and global inconsistency between them. Belief
revision is well-defined for dealing with ontologies; we investigate how it can apply to
networks of ontologies. We formulate revision postulates for alignments and networks
of ontologies based on an abstraction of existing semantics of networks of ontologies.
We show that revision operators cannot be simply based on local revision operators
on both ontologies and alignments. We adapt the partial meet revision framework to
networks of ontologies and show that it indeed satisfies the revision postulates. Finally,
we consider strategies based on network characteristics for designing concrete revision
operators.

1. Introduction

Knowledge may be organised in a distributed way in which independent theories
are related by correspondences between theory features (formulas, predicates). Rela-
tions between different theories may have different nature: refinement, competing the-
ories, complementary theories, etc. We call a set of theories related by such relations a
network of ontologies. The notion of networks of ontologies relies on minimal assump-
tions regarding ontologies and alignments: their semantics must define a consequence
relation which is a closure relation. Alignments independently express constraints on
acceptable models of ontologies.

One motivation and inspiration for this work is the management of networks of
ontologies in the semantic web. The semantic web relies on knowledge deployed and
connected over the web. This knowledge is based on ontologies expressed in logical
languages, such as RDF, RDF Schema and OWL [27, 2]. Because of the multiplic-
ity of ontologies, they may be connected through alignments expressing correspon-
dences between their concepts. This allows for translating assertions across ontologies
or merging them.

Problems arise when a modification in an ontology or an alignment leads to incon-
sistency. For instance, it happens everyday that new objects occur and are reported,
such as a particular building in a given city. Such a building may belong to a category
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in an ontology for civil engineering, for instance, glass-walled building. Glass-walled
buildings in this ontology may be considered by a particular ontology alignment as
subsumed by energy-inefficient buildings in an energy saving ontology. But because
this building is engineered with particular active components, it is in fact assigned to
the energy-efficient buildings in that same ontology. However, energy-efficient and
energy-inefficient buildings are considered exclusive. Hence, this small network of
(two) ontologies may be interpreted as inconsistent, because the same building belongs
to two disjoint classes. Something has to be done for restoring consistency and still
accommodating this new building. It may consist of modifying the ontologies (the
two classes are not exclusive), the data (this building is not to be considered as a glass-
walled building) or the alignment (not all glass-walled buildings are energy-inefficient).

Belief and knowledge revision have been introduced for dealing with such prob-
lems in logical theories. They provide operators to modify a theory in a way which is
consistent and as minimal as possible.

This work investigates the design of belief revision operators for networks of on-
tologies and considers the problems specific to this broader context. There may be
several ways to achieve this:

• Combine local revision operators to achieve global revision. We show that, al-
ready for the reasonable case of partial meet revision, this is not a viable strategy.

• Consider a network of ontologies as a single “regular” theory to which classi-
cal belief revision is applied. Although this is in theory possible, this does not
preserve the structure of the network of ontologies.

Instead, we show how belief revision operators, constrained by the structure of net-
works of ontologies, may be defined. This preserves the opportunity to ground op-
erators on the structure of these networks. Moreover, this does not require encoding
the problem in a classical revision problem, and decoding it into a revised network of
ontologies.

From the standpoint of belief revision, we thus introduce a novel way to consider
several independently managed theories (loosely) related by constraints which helps
exploiting them together.

In particular, we consider what are revision operators in a network of ontologies,
how to define postulates governing the behaviour of such operators and how to de-
sign them. We raise issues specific to networked ontologies and show how differences
between ontologies and alignments can be used for designing specific operators. Al-
though we go as far as providing concrete revision operators, this work primarily aims
at highlighting the principles and issues of applying revision to networks of ontologies.

For dealing with this problem, we first introduce networks of ontologies and align-
ments through their syntax and semantics (§2) and recall the principles of knowledge
revision and update (§3). We then introduce two revision operators, based on align-
ments and ontologies, as well as associated consequences and two notions of con-
sistency (§4). We provide revision postulates for these operators mirroring the ba-
sic Alchourrón-Gärdenfors-Makinson (AGM) postulates and show that such operators
generalise local operators (§5). We discuss the use of these local operators for defin-
ing global operators and provide definitions of partial meet revision for networks of
ontologies (§6). Finally, we provide several minimality criteria specific to networks of
ontologies (§7). Relation to other work is discussed (§8) before concluding.
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2. Networks of ontologies

We first precisely define what alignments and networks of ontologies are through
their syntax (§2.1) before addressing their semantics (§2.2). There is no “standard”
semantics for networks of ontologies, so we provide here an abstract view that aims at
covering those which have been proposed so far. Based on this framework, we define
the notions of closure from this semantics (§2.3) and we set constraints that must be
satisfied by such a semantics to support the results of this paper (§2.4).

We consider ontologies as logical theories. The semantics of an ontology o is only
considered in this paper through its set of models (M(o)) and its induced consequence
relation (⊧). Such a relation satisfies three properties (o, o′ are ontologies, i.e., sets of
assertions, δ and γ are assertions):

extensivity {δ} ⊧ δ
monotony if o ⊧ δ then o ∪ o′ ⊧ δ
idempotency if o ⊧ δ and o ∪ {δ} ⊧ γ then o ⊧ γ

We assume a consequence closure function Cnω(o) = {δ ∣ o ⊧ δ}.
Although the word ontology is used here and examples are given with respect to a

minimal ontology language. Results in this paper rely only on the consequence relation
induced by model theory. They apply to many types of logical theories. In particular,
the remainder will use classical revision operators in ontologies.

2.1. Alignments and networks of ontologies

Alignments express the correspondences between entities of different ontologies
[17]. Given an ontology o in a language L, we use an entity language (QL(o)) for
characterising those entities that will be put in correspondence. The entity language
can be simply made of all the terms or formulas of the ontology language based on the
ontology vocabulary. It can restrict them to the named terms or, on the contrary, extend
them to all the queries that may be expressed on this vocabulary. Alignments express
relations between such entities through a finite set Θ of relations which are independent
from ontology relations.

Definition 1 (Alignment, correspondence). Given two ontologies o and o′ with associ-
ated entity languagesQL andQ′

L′ and a set of alignment relations Θ, a correspondence
is a triple: ⟨e, e′, r⟩ ∈ QL(o)×Q′

L′(o′)×Θ expressing that the relation r holds between
entity e and e′. An alignment is a set of correspondences between two ontologies.

For the sake of examples, we will consider that ontologies are description logic the-
ories (T-box and A-box) and their entities are named classes and individuals. Classes
are denoted by lower case letters, sometimes subscripted by an integer referring to their
ontology, and individuals are denoted by i. In the examples, we will only consider =,
≤, ≥ and � for relations of Θ. They will be interpreted as relations expressing equiv-
alence, subsumption and disjointness between classes. This simple language suffices
to exhibit the problems considered in this paper. However, results are not restricted to
such languages and relations.

Example 1 (Alignment). The alignment A1,3 of Figure 1 (p.4), is described by:

{⟨e1, f3,≥⟩, ⟨b1, e3,≥⟩}
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also described as:

A1,3 ={
e1 ≥ f3,
b1 ≥ e3

}
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Figure 1: A network of ontologies made of three ontologies (o1, o2, and o3) and three alignments (A1,2,
A1,3, and A2,3).

The above definition can be generalised to an arbitrary number of alignments and
ontologies captured in the concept of a network of ontologies (or distributed system
[24, 21]), i.e., sets of ontologies and alignments.

Definition 2 (Network of ontologies). A network of ontologies ⟨Ω,Λ⟩ is made of a
finite set Ω of ontologies and a set Λ of alignments between these ontologies. We
denote by Λ(o, o′) the set of alignments in Λ between o and o′.

Example 2 (Network of ontologies). Figure 1 presents three ontologies (in all exam-
ples, c ⊑ c′ denotes subsumption between concepts c and c′, c�c′ denotes disjointness
between concepts c and c′, and i ⊏− c denotes membership of individual i to concept c):

o1 ={
b1 ⊑ a1, c1 ⊑ a1

d1 ⊑ c1, e1 ⊑ c1
}

o2 ={
b2 ⊑ a2, c2 ⊑ a2, g2 ⊑ b2
d2 ⊑ c2, e2 ⊑ c2, f2 ⊑ b2

}

o3 =
⎧⎪⎪⎪⎨⎪⎪⎪⎩

b3 ⊑ a3, c3 ⊑ a3, g3 ⊑ b3
d3 ⊑ c3, e3 ⊑ c3, f3 ⊑ b3
i ⊏− e3, b3�c3

⎫⎪⎪⎪⎬⎪⎪⎪⎭

4



together with three alignments A1,2, A2,3, and A1,3. These alignments can be de-
scribed as follows:

A1,2 ={ b1 ≤ d2 }
A2,3 ={ c2 ≤ b3 }
A1,3 ={ e1 ≥ f3, b1 ≥ e3 }

Hereafter, we consider normalised networks of ontologies, i.e., networks with ex-
actly one alignment between each pair of ontologies.

Definition 3 (Normalised network of ontologies). A network of ontologies ⟨Ω,Λ⟩ is
said normalised if and only if for any two ontologies o and o′, ∣Λ(o, o′)∣ = 1.

In a normalised network of ontologies, we denote by λ(o, o′) the unique alignment
between o and o′.

Comparing networks of ontologies and their models is not in general simple. We
define syntactic subsumption between unrestricted networks of ontologies.

Definition 4 (Syntactic subsumption between networks of ontologies). Given two net-
works of ontologies, ⟨Ω,Λ⟩ and ⟨Ω′,Λ′⟩, ⟨Ω,Λ⟩ is syntactically subsumed by ⟨Ω′,Λ′⟩,
denoted by ⟨Ω,Λ⟩ ⊑ ⟨Ω′,Λ′⟩, iff ∃⟨h, k⟩, a pair of morphisms: h ∶ Ω Ð→ Ω′ and
k ∶ Λ Ð→ Λ′ such that ∀o ∈ Ω, ∃h(o) ∈ Ω′ and o ⊆ h(o) and ∀A ∈ Λ(o, o′),
∃k(A) ∈ Λ′(h(o), h(o′)) and A ⊆ k(A).

We note: ⟨Ω,Λ⟩ ≡ ⟨Ω′,Λ′⟩ iff ⟨Ω,Λ⟩ ⊑ ⟨Ω′,Λ′⟩ and ⟨Ω′,Λ′⟩ ⊑ ⟨Ω,Λ⟩; ⟨Ω,Λ⟩ ⊏
⟨Ω′,Λ′⟩ iff ⟨Ω,Λ⟩ ⊑ ⟨Ω′,Λ′⟩ and ⟨Ω′,Λ′⟩ /⊑ ⟨Ω,Λ⟩.

A network of ontologies is syntactically subsumed by another network if any on-
tology (respectively any alignment) of the former has a counterpart in the latter one
which contains at least all of its axioms (respectively correspondences) and the graph
structure of the former network is preserved in the latter. It is possible that several
ontologies have the same counterpart as long as these conditions are met.

This definition is purely syntactic because semantically equivalent networks may
not be syntactically subsumed (it suffices to use one ontology whose axioms are equiv-
alent but different).

The empty network of ontologies ⟨∅,∅⟩ (containing no ontology and no alignment)
is subsumed by any other network of ontologies.

2.2. Semantics of networks of ontologies
The semantics of aligned ontologies, or networks of ontologies, must remain com-

patible with the classical semantics of ontologies: connecting ontologies to other on-
tologies should not radically change the manner to interpret them.

When ontologies are independent, i.e., not related with alignments, it is natural
that their semantics is the classical semantics for these ontologies, i.e., a set of models
M(o). A model is a map m from the entities of an ontology to a particular domain D.
Such models have to apply to all the elements of the entity language QL(o) (when it
is larger than the ontology language, this is usually defined inductively on the structure
of its elements).

Different semantics provide alternative ways to record the constraints imposed by
alignments: through relations between domains of interpretation [24, 6], through equal-
ising functions [45, 43], by imposing equal [32] or disjoint [10] domains. These models
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have been compared elsewhere [45]; we provide an informal unified view of these se-
mantics.

For that purpose, each correspondence is interpreted with respect to three features:
a model for each ontology and a semantic structure, denoted by ∆ [44]. This loosely
defined semantic structure has two purposes:

• providing an interpretation to the correspondence relations in Θ (which are in-
dependent from the ontology semantics);

• memorising the constraints imposed on models by the alignments.

In this work, it can simply be considered that ∆ is used, in each semantics, to define the
satisfaction of a correspondence µ by two ontology models o and o′ (which is denoted
by mo,mo′ ⊧∆ µ).

Such a simple notion of satisfaction is provided by Example 3.

Example 3 (Interpretation of correspondences). In the language used as example, c
and c′ stand for classes and i and i′ for individuals. If mo and mo′ are respective
models of o and o′:

mo,mo′ ⊧∆ ⟨c, c′,=⟩ iff mo(c) =mo′(c′)
mo,mo′ ⊧∆ ⟨c, c′,≤⟩ iff mo(c) ⊆mo′(c′)
mo,mo′ ⊧∆ ⟨c, c′,≥⟩ iff mo(c) ⊇mo′(c′)
mo,mo′ ⊧∆ ⟨i, c′, ∈⟩ iff mo(i) ∈mo′(c′)
mo,mo′ ⊧∆ ⟨c, i′, ∋⟩ iff mo′(i′) ∈mo(c)
mo,mo′ ⊧∆ ⟨c, c′,�⟩ iff mo(c) ∩mo′(c′) = ∅

Hence, the semantics of two aligned ontologies may be given as a set of models
which are pairs of compatible models.

Definition 5 (Models of alignments). Given two ontologies o and o′ and an alignment
A between these ontologies, a model of this alignment is a triple ⟨mo,mo′ ,∆⟩ with
mo ∈ M(o),mo′ ∈ M(o′), and ∆ a semantic structure, such that ∀µ ∈ A,mo,mo′ ⊧∆

µ (denoted by mo,mo′ ⊧∆ A).

We note A ⊧ µ iff ∀⟨mo,mo′ ,∆⟩ such that mo,mo′ ⊧∆ A, mo,mo′ ⊧∆ µ. Simi-
larly as for ontologies, the semantics of alignments can be given by the relation ⊧ such
that (A and A′ are alignments and µ and ν are correspondences all between the same
pair of ontologies):

extensivity {µ} ⊧ µ
monotony if A ⊧ µ then A ∪A′ ⊧ µ
idempotency if A ⊧ µ and A ∪ {µ} ⊧ ν then A ⊧ ν

Similarly, we assume a consequence closure function Cnα(A) = {µ ∣ A ⊧ µ}.
Models of networks of ontologies extend models of alignments. They select com-

patible models for each ontology in the network [23]. Compatibility consists of satis-
fying all the alignments of the network.

Definition 6 (Models of networks of ontologies). Given a network of ontologies ⟨Ω,Λ⟩,
a model of ⟨Ω,Λ⟩ is a pair ⟨m,∆⟩ withm a family of models indexed by Ω with ∀o ∈ Ω,
mo ∈ M(o) such that for each alignmentA ∈ Λ(o, o′), mo,mo′ ⊧∆ A. The set of mod-
els of ⟨Ω,Λ⟩ is denoted byM(⟨Ω,Λ⟩).
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In this respect, alignments act as model filters for the ontologies. They select the
ontology interpretations which are coherent with the alignments. This allows for trans-
ferring information from one ontology to another since reducing the set of models
entails more consequences in each aligned ontology.

Example 4 (Model of a network of ontologies). Hence, a model for the network of
ontologies of Figure 1 with ∆ as defined in Example 3, is ⟨{m1,m2,m3},∆⟩ built on
any models m1, m2 and m3 of ontology o1, o2 and o3 such that m3(e3) ⊆ m1(b1) ⊆
m2(d2), m2(c2) ⊆m3(b3) and m3(f3) ⊆m1(e1).

2.3. Consistency, consequence and closure
A network of ontologies is consistent if it has a model. By extension, an ontology or

an alignment is consistent within a network of ontologies if the network of ontologies
is consistent. Hence even if an ontology is consistent when taken in isolation, it may
be inconsistent when inserted in a network of ontologies. Moreover, if one of the
ontologies in the network is inconsistent, then the network as a whole is inconsistent.

Example 5 (Inconsistency). A model of the network of ontologies presented in Exam-
ple 2 according to the interpretation of correspondence of Example 3, retains families
of models {m1,m2,m3} satisfying all alignments, i.e., in particular, satisfying:

m3(b3) ⊇m2(c2)
m2(c2) ⊇m1(b1)
m1(b1) ⊇m3(e3)

But, all models m3 of o3 must satisfy m3(b3) ∩m3(c3) = ∅, m3(i) ∈ m3(e3), and
m3(i) ∈ m3(c3). Moreover, all models m2 of o2 must satisfy m2(d2) ⊆ m2(c2).
Hence, m3(b3) ⊇ m1(b1), m3(b3) ⊇ m3(e3) and then m3(i) ∈ m3(b3), which is
contradictory with previous assertions. Thus, there cannot exist such a family of models
and there is no model for this network of ontologies.

In this example, taking any of the ontologies with only the alignments which in-
volve them, e.g., ⟨Ω,{A1,3,A2,3}⟩, is a consistent network of ontologies. The fol-
lowing examples will also consider the network of ontologies ⟨Ω′,Λ⟩=⟨{o1, o2, o

′

3},
{A1,2,A1,3,A2,3}⟩ such that o′3 is o3 ∖ {i ⊏− e3}.

So far, we have not defined what it means for a formula to be the consequence
of a network. There are two notions of consequences called ω-consequence and α-
consequence.

α-consequences are correspondences which are consequences of networks of on-
tologies [14].

Definition 7 (α-Consequence of networks of ontologies). Given a finite set of ontolo-
gies Ω and a finite set of alignments Λ between pairs of ontologies in Ω, a correspon-
dence µ between two ontologies o and o′ in Ω is an α-consequence of ⟨Ω,Λ⟩ (denoted
by ⊧Ω,Λ µ or ⟨Ω,Λ⟩ ⊧ µ) if and only if for all models ⟨m,∆⟩ of ⟨Ω,Λ⟩, mo,mo′ ⊧∆ µ.

The set of α-consequences between o and o′ is denoted by CnαΩ,Λ(o, o′). For
homogeneity of notation, we will use CnαΩ,Λ(A) for denoting CnαΩ,Λ(o, o′) when
A ∈ Λ(o, o′). The α-closure of a network of ontologies is its set of α-consequences:
the correspondences which are satisfied in all models of the network of ontologies.

From the alignment semantics, it is possible to decide if an alignment is a con-
sequence of another or if the alignment makes the set of ontologies and alignments
inconsistent.
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Example 6 (α-consequences). The closure ofA1,3 in the network of ontologies ⟨Ω′,Λ⟩
of Example 5 is:

CnαΩ′,Λ(o1, o
′

3) =

⎧⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎩

e1 ≥ f3, b1 ≥ e3

c1 ≥ f3, a1 ≥ f3

a1 ≥ e3, b1 ≤ b3
b1 ≤ a3, b1�c3
b1�d3, b1�e3

⎫⎪⎪⎪⎪⎪⎪⎪⎬⎪⎪⎪⎪⎪⎪⎪⎭
but, if the network is reduced to the two involved ontologies (o1 and o′3) only, the closure
would be:

Cnα
{o1,o′3},{A1,3}

(o1, o
′

3) =
⎧⎪⎪⎪⎨⎪⎪⎪⎩

e1 ≥ f3, b1 ≥ e3

c1 ≥ f3, a1 ≥ f3

a1 ≥ e3

⎫⎪⎪⎪⎬⎪⎪⎪⎭
It is thus clear that connecting more ontologies provides more information.

According to these definitions, Cnα(A) = Cnα
⟨{o,o′},{A}⟩(A) when A ∈ Λ(o, o′).

α-consequences of an alignment are defined as the α-consequences of the network
made of this alignment and the two ontologies it connects. The α-consequences of a
particular alignment are usually larger than the alignment (∀A ∈ Λ,A ⊆ Cnα(A) ⊆
CnαΩ,Λ(A)). If the alignment is not satisfiable, then any correspondence is one of its
α-consequences.

Similarly, the ω-consequences of an ontology in a network are formulas that are
satisfied in all models of the ontology selected by the network.

Definition 8 (ω-Consequence of an ontology in a network of ontologies). Given a
finite set of ontologies Ω and a finite set of alignments Λ between pairs of ontologies in
Ω, a formula δ in the ontology language of o ∈ Ω is an ω-consequence of o in ⟨Ω,Λ⟩
(denoted by o ⊧Ω,Λ δ) if and only if for all models ⟨m,∆⟩ of ⟨Ω,Λ⟩, mo ⊧ δ (the set of
ω-consequences of o is denoted by CnωΩ,Λ(o)).

The ω-closure of an ontology is the set of its ω-consequences. According to these
definitions, Cnω(o) = Cnω

⟨{o},∅⟩(o). These ω-consequences are larger than the classi-
cal consequences of the ontology (∀o ∈ Ω, o ⊆ Cnω(o) ⊆ CnωΩ,Λ(o)) because they rely
on a smaller set of models.

Example 7 (ω-consequences). The simple consequences of the ontology o′3 are:

Cnω(o′3) =

⎧⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎩

b3 ⊑ a3, c3 ⊑ a3, g3 ⊑ b3
d3 ⊑ c3, e3 ⊑ c3, f3 ⊑ b3
f3�c3, b3�c3 f3 ⊑ a3,
d3 ⊑ a3, e3 ⊑ a3, g3�c3
d3�b3, e3�b3 g3 ⊑ a3

⎫⎪⎪⎪⎪⎪⎪⎪⎬⎪⎪⎪⎪⎪⎪⎪⎭

while within ⟨Ω′,Λ⟩ of Example 5, there are even more consequences:

CnωΩ′,Λ(o′3) =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

b3 ⊑ a3, c3 ⊑ a3, g3 ⊑ b3
d3 ⊑ c3, e3 ⊑ c3, f3 ⊑ b3
f3�c3, b3�c3 f3 ⊑ a3,
d3 ⊑ a3, e3 ⊑ a3, g3�c3,
d3�b3, e3�b3 g3 ⊑ a3

b3 ⊒ e3

⎫⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎬⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎭
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We also use the notation Cnα
⟨Ω,Λ⟩ for CnαΩ,Λ and Cnω

⟨Ω,Λ⟩ for CnωΩ,Λ.
We can now define the closure of a network of ontologies by the network of ontolo-

gies which replaces each ontology by its ω-closure and each alignment by its α-closure:

Cn(⟨Ω,Λ⟩) = ⟨{CnωΩ,Λ(o)}o∈Ω,{CnαΩ,Λ(o, o′)}o,o′∈Ω⟩

Example 8 (Full network closure). Here is the closure of the network of ontologies
⟨Ω′,Λ⟩ of Example 5 (the first set is the syntactic form corresponding to the alignment
or ontology, the second set is what is added by the local closure and the last set what
is added by the ω-closure or α-closure):

CnωΩ′,Λ(o1) = Cnω(o1) ={
b1 ⊑ a1, c1 ⊑ a1,
d1 ⊑ c1, e1 ⊑ c1

}⋃{ d1 ⊑ a1, e1 ⊑ a1 }

CnωΩ′,Λ(o2) = Cnω(o2) =
⎧⎪⎪⎪⎨⎪⎪⎪⎩

b2 ⊑ a2, c2 ⊑ a2,
g2 ⊑ b2, f2 ⊑ b2,
d2 ⊑ c2, e2 ⊑ c2,

⎫⎪⎪⎪⎬⎪⎪⎪⎭
⋃{ d2 ⊑ a2, e2 ⊑ a2,

f2 ⊑ a2, g2 ⊑ a2
}

CnωΩ′,Λ(o′3) =

⎧⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎩

b3 ⊑ a3, c3 ⊑ a3,
g3 ⊑ b3, d3 ⊑ c3,
e3 ⊑ c3, f3 ⊑ b3,
b3�c3

⎫⎪⎪⎪⎪⎪⎬⎪⎪⎪⎪⎪⎭

⋃

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

f3 ⊑ a3, g3 ⊑ a3,
d3 ⊑ a3, e3 ⊑ a3,
d3�b3, e3�b3,
d3�f3, d3�g3,
e3�f3, e3�g3,
f3�c3, g3�c3

⎫⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎬⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎭

⋃{b3 ⊒ e3}

The network does not introduce new assertions in the first two ontologies, but the last
one receives a new assertion. Similarly, for alignments, their local closure does not
provide new correspondences, but the α-closure becomes larger. These alignment clo-
sures are:

CnαΩ′,Λ(o1, o2) ={ b1 ≤ d2 }⋃{ b1 ≤ a2, b1 ≤ c2 }

CnαΩ′,Λ(o2, o
′

3) ={ c2 ≤ b3 }⋃

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

c2 ≤ a3, d2 ≤ a3, e2 ≤ a3

d2 ≤ b3, e2 ≤ b3,
c2�c3, c2�d3, c2�e3

d2�c3, d2�d3, d2�e3

e2�c3, e2�d3, e2�e3

d2 ≥ e3, c2 ≥ e3, a2 ≥ e3

⎫⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎬⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎭

CnαΩ′,Λ(o1, o
′

3) ={
e1 ≥ f3,
b1 ≥ e3

}⋃
⎧⎪⎪⎪⎨⎪⎪⎪⎩

c1 ≥ f3, a1 ≥ f3, a1 ≥ e3,
b1�c3, b1�d3, b1�e3,
b1 ≤ b3, b1 ≤ a3

⎫⎪⎪⎪⎬⎪⎪⎪⎭
Such a representation is highly redundant as closures usually are.

The closure of a network of ontologies may introduce non-empty alignments be-
tween ontologies which were not previously connected or empty. This is possible be-
cause constraints do not come locally from the alignment but from the whole network
of ontologies. Such a formalism contributes to the definition of the meaning of align-
ments: it describes what are the consequences of ontologies with alignments.

2.4. Semantic constraints
There has been many semantics proposed for alignments and networks of ontolo-

gies. For the sake of simplicity, we will only rely on the abstract framework given in
Section 2.2 as long as the semantics satisfies the three following properties:
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There exists a sound normalisation, i.e., each network of ontologies can be repre-
sented as a normalised network having exactly the same set of models:

1. ∀⟨Ω,Λ⟩, ∃⟨Ω,Λ′⟩ such that ∀o, o′ ∈ Ω, ∣Λ′(o, o′)∣ = 1 and M(⟨Ω,Λ⟩) =
M(⟨Ω,Λ′⟩);

Downward consistency preservation on normalised networks, so that if a network is
subsumed by a consistent network, then it is consistent:

2. If ⟨Ω,Λ⟩ ⊑ ⟨Ω′,Λ′⟩ and ⟨Ω′,Λ′⟩ is consistent, then ⟨Ω,Λ⟩ is consistent;

Cn is a closure operation on normalised networks:

3. ⟨Ω,Λ⟩ ⊑ Cn(⟨Ω,Λ⟩);
4. Cn(⟨Ω,Λ⟩) ⊑ Cn(Cn(⟨Ω,Λ⟩));
5. ⟨Ω,Λ⟩ ⊑ ⟨Ω′,Λ′⟩ ⇒ Cn(⟨Ω,Λ⟩) ⊑ Cn(⟨Ω′,Λ′⟩).

These are rather natural properties. The remainder of the paper relies only on these
properties. In [16], we show that these constraints are satisfied by those semantics
defined as in Section 2.2.

3. Belief revision

We study the design of belief revision operators for networks of ontologies. Our
goal is to show how such an operator can be designed and what issues this raises.
Hence, for the sake of simplicity and focus (on issues raised specifically by networks
of ontologies), we concentrate on classical belief revision.

Revision [1] considers a logical language and a consequence operation Cn which
is a closure operator over sets of formulas in this language. In this work, we will
take a semantic point of view and deal with semantic consequence. These notions are
equivalent when the syntactic Cn is complete with respect to the semantics.

Revision defines operators for modifying a theory (K) in the logic when some
action occurs, like the knowledge that an assertion (φ) must be believed (revision),
must not be believed (retraction), or does hold after a change (update). These operators
are constrained by several postulates.

We follow the 6 basic AGM postulates for revision [1] as reformulated by Bern-
hard Nebel [36] with, in parenthesis, the labels of the classification of Sven Ove Hans-
son [26, 18]. In these postulates, K is a deductively closed theory and K + φ denotes
Cnω(K ∪ {φ}). K+̇φ is the theory resulting from revising K with a new belief φ:

+̇1 (closure) K+̇φ ⊇ Cnω(K+̇φ), i.e., the result is deductively closed;

+̇2 (success) φ ∈K+̇φ, i.e., the new formula should be believed;

+̇3 (inclusion) K+̇φ ⊆K+φ, i.e., it should not provide more knowledge than the mere
addition of the formula;

+̇4 (vacuity) IfK+φ is consistent, thenK+̇φ ⊇K+φ, i.e., if the formula is compatible
with current beliefs, then simply add it;

+̇5 (consistency) If K+̇φ is inconsistent, then φ is inconsistent, i.e., revision should
not bring inconsistency;
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+̇6 (extensionality) If φ ≡ ψ, then K+̇φ ≡ K+̇ψ, i.e., revision should be semantically
neutral.

The main alteration brought by the semantic rewriting is that consistency is mentioned
explicitly.

In addition to these six basic postulates, the AGM framework comprises two sup-
plementary postulates which are dependent on the logical language used: they express
the relation between revision and conjunction. They can be expressed in this way:

+̇7 (superexpansion) K+̇(φ ∧ ψ) ⊆ (K+̇φ) + ψ;

+̇8 (subexpansion) if (K+̇φ) + ψ consistent, then K+̇(φ ∧ ψ) ⊇ (K+̇φ) + ψ;

Since we are relying on ontology languages which may not have explicit conjunction,
only the basic postulates will be considered.

This framework has been criticised and improved by other authors, and many other
operators have been proposed in different contexts [22]. However, the original idea has
remained because its simple definition in a few independent postulates is very appeal-
ing.

The same kind of framework has been introduced for defining an update operator
(K×̇φ) [31]. Revision and update can be contrasted by the following: revision opera-
tors change beliefs when knowledge about the domain has changed; update operators
change beliefs when the modelled domain has changed.

Another operator, contraction, is often considered (K−̇φ, i.e., what happens when
removing an assertion if one wants to guarantee that it is not deducible anymore). It is
straightforward to express contraction axioms semantically, like revision axioms:

−̇1 (closure) K−̇φ ⊇ Cnω(K−̇φ), i.e., the result is deductively closed;

−̇2 (success) if φ /∈ Cnω(∅), then φ /∈ K−̇φ, i.e., unless a tautology, the retracted
formula should not be believed;

−̇3 (inclusion) K−̇φ ⊆ K, i.e., it should not provide more knowledge than the initial
theory;

−̇4 (vacuity) If φ /∈ K then K−̇φ ⊇ K, i.e., if the formula is not entailed by current
beliefs, then they do not change;

−̇5 (recovery) K ⊆ (K−̇φ)+φ, i.e., contraction should not suppress more than can be
recovered;

−̇6 (extensionality) If φ ≡ ψ, then K−̇φ ≡ K−̇ψ, i.e., contraction should be semanti-
cally neutral.

It has been found that revision and contraction are inter-definable through the Lévi
identity:

K+̇φ = (K−̇¬φ) + φ
and its converse, the Harper identity:

K−̇φ = Cnω(K ∩ (K+̇¬φ))

However, this relies on a language with statement negation, so it is not directly usable
with all logics, such as description logics [20].

11



We focus on revision because, in the context of open systems like the semantic
web, the main problem is to accumulate knowledge rather than contract it. For the
same reason, we consider revision instead of update. Such operators still have their
utility and could certainly be developed along the methodology presented here. We do
not discuss these extensions further, instead we consider applying the most standard
theory to networks of ontologies.

Related principles have been proposed to account for belief base revision [36]
which, contrary to belief revision, does not apply to closed sets of formulas but sets of
axioms. Belief base revision has the advantage of being more practical (because users
do not manipulate closures), however it takes the risk to be syntax-dependent. On the
opposite, semantic revision [11] is syntax independent. In this paper, we consider plain
revision, i.e., revision applied to closed sets instead of base revision. However, while
the reasoning applies to closed sets, examples are always provided on bases (because
closed sets would be too large).

4. Revision in networks of ontologies

In the context of networks of ontologies, it is natural to define what must happen
when an ontology is revised and what are the consequences for the other parts of the
network. In addition, a network may be revised by an alignment.

Revision may be needed at two different occasions:

• When adding a formula φ in an ontology o, or
• When adding a correspondence µ in an alignment A.

Revision of a network by adding ontologies and alignments can also be considered.
However, adding new ontologies does not bring new problems if they are consistent.
Since they are not yet connected to other ontologies, they will be considered as con-
nected through empty alignments. We do not consider the operations of adding new
ontologies or alignments, because it is always possible to introduce empty ontologies
and alignments, which do not create inconsistency and to add axioms and correspon-
dences with the corresponding operators. Then adding alignments will be like revising
by modifying these initially empty alignments.

Hence, we only have to consider two operators:

• ⟨Ω,Λ⟩⊞̇φ/o: revising the ontology o by adding the formula φ;
• ⟨Ω,Λ⟩⊞̇µ/A: revising the alignment A by adding the correspondence µ;

with o ∈ Ω and A ∈ Λ.
Inconsistency may manifest itself in three ways:

ω-local Because an ontology has no (local) model anymore (only with the first opera-
tion);

α-local Because an alignment is inconsistent in itself, this may happen if it contains
contradictory statements (only with the second operation; see §5.1 for a discus-
sion about this);

global Because there is no model combination that satisfies all the alignments.

An operation can only trigger global inconsistency and one kind of local inconsistency.
Finally, revision can be achieved by two means:

• By retracting and adding axioms (⟨Ω ± φ′/o′,Λ⟩) for global and ω-local incon-
sistency;
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• By retracting and adding correspondences (⟨Ω,Λ±µ′/A′⟩) for global and α-local
inconsistency.

We consider addition of axioms and correspondences within revision, because in base
revision, it may be useful to complete the base so that it looses as little information as
possible. However, in regular (not base) revision, addition is useless because theories
are closed. Obviously, additions alone do not make a revision operator.

Example 9 (Inconsistency and recovery). In the following examples, we will consider
Λ′ = {A1,2,A

′

1,3 = {e1 ≥ f3},A2,3}, Ω′ = {o1, o2, o
′

3 = o3 ∖ {i ⊏− e3}}, Ω′′ = {o1, o
′′

2 =
o2 ∖ {d2 ⊑ c2}, o3}, Λ′′ = {A1,2,A1,3,A

′′

2,3 = ∅}, and Ω′′′ = {o1, o2, o
′′′

3 = o3 ∖
{b3�c3}},

Starting from the network of ontologies of Example 2, several situations may be
illustrated:

0. ⟨Ω,Λ′⟩⊞̇(i ⊏− b3)/o3 is an ontology revision that raises an ω-local inconsistency,
which may be solved by removing b3�c3 (and b3�e3) or i ⊏− e3 (and i ⊏− c3)
or e3 ⊑ c3 from o3, but cannot be solved by removing anything from the other
ontologies or alignments;

• Pure α-local inconsistency is more difficult to encounter due to the little expres-
siveness of alignments. However, Figure 2 illustrates this situation: the ontolo-
gies contain no assertions (beside that there are classes and individuals) and
the alignment imposes constraints that can be satisfied by no pair of models.
Hence, reducing this alignment to any three of its correspondences yields a con-
sistent alignment which, when adding the fourth one, results in an inconsistent
alignment. Consistency may be recovered by removing any of the four initial
correspondences and only in this way.

1. ⟨Ω′,Λ⟩⊞̇(i ⊏− e3)/o′3 is an ontology revision that raises a global inconsistency,
which may be solved locally by removing b3�c3 (and b3�e3) or e3 ⊑ c3 from o′3,
but can also be solved more globally, for instance, by removing (b1 ≤ d2) from
A1,2 (and several other assertions including i ⊏− b3 from o′3);

2. ⟨Ω,Λ′⟩⊞̇(b1 ≥ e3)/A′

1,3 is an alignment revision that raises a global inconsis-
tency that may be solved, for instance, by removing d2 ≥ b1 from A1,2 or d2 ⊑ c2
from o2, but cannot be solved by modifying A1,3 itself;

3. ⟨Ω′′,Λ⟩⊞̇(d2 ⊑ c2)/o′′2 is an ontology revision that raises a global inconsistency
(o2 is consistent) which may be solved, for instance, by removing b3�c3 (and
b3�e3) from o3 or b1 ≥ e3 from A1,3, but cannot be solved by modifying anything
in o2 itself.

The two last items have been chosen so that the global inconsistency cannot be solved
locally, but it may happen that global inconsistencies can be solved locally.

o o′
c c′

i i′

�

=

∋∈

Figure 2: Locally inconsistent alignment pattern.

A summary of the situation is presented in Figure 3: the two possible operators
(ontology or alignment revision) may entail three different types of inconsistency (two
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local and one global inconsistency). These three types of inconsistency can be resolved
by two types of modifications (in ontologies and/or alignments). Local inconsistencies
may only be raised by revision of the concerned ontology or alignment and only be
solved by applying change to this ontology or alignment. Global inconsistency may be
raised and solved by both operations, independently.

⟨Ω,Λ⟩

⊞̇φ/o

⊞̇µ/A

operator

ω-local

global
inconsistency

α-local

±φ′/o′

±µ′/A′

modification

Figure 3: Phenomena occurring when revising networks of ontologies.

The question that we consider is: can AGM revision postulates be applied to net-
works of ontologies?

5. Revision postulates for networks of ontologies

We first provide postulates for revising alignments which should be the counterpart
of postulates for revising ontologies (§5.1). We then provide postulates for revising
networks of ontologies depending on the type of formula used for revising: an ontology
formula or a correspondence (§5.2). Finally, we show that the global revision is a
generalisation of both local revisions (§5.3).

5.1. Local alignment revision postulates

As before, revision applies to closed theories, so it uses the previously defined
alignment closure (Cnα) which corresponds to the notion of closure in logical theories.
Hereby, A + µ denotes Cnα(A ∪ {µ}).

Like there are revision operators for ontologies, it is possible to consider an align-
ment revision operator whose goal is to add a new correspondence to an alignment.
Consider the operator ⊕̇ such that A⊕̇µ is the result of the revision of the alignment
A between ontology o and o′ by a new correspondence µ. Here are postulates corre-
sponding to those of AGM:

⊕̇1 (closure) A⊕̇µ ⊇ Cnα(A⊕̇µ)

⊕̇2 (success) µ ∈ A⊕̇µ, i.e., A⊕̇µ ⊧ µ

⊕̇3 (inclusion) A⊕̇µ ⊆ A + µ

⊕̇4 (vacuity) If A + µ consistent, then A⊕̇µ ⊇ A + µ;

⊕̇5 (consistency) If A⊕̇µ inconsistent, then µ is inconsistent

⊕̇6 (extensionality) If µ ≡ ν then A⊕̇µ ≡ A⊕̇ν

For an alignment to be inconsistent it is necessary that there is no model for this
alignment. This may be the case when it relates entities whose interpretation cannot be
related through the interpretation of the relation.
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As an example, algebras of relations may be used as a systematic treatment of re-
lations [15]. In such a case, the empty relation (which can be inferred) denotes the
inconsistency of the alignment: such a situation cannot exist and, hence, has no model.
A correspondence with the empty relation is already an inconsistent alignment on its
own. This can be obtained if the relations between classes can be strict containment,
interpreted as strict inclusion. In this case, if an alignment contains both correspon-
dences ⟨c, c′,⊏⟩ and ⟨c, c′,⊐⟩, then the alignment is inconsistent (the correspondence
⟨c, c′,∅⟩ can be deduced).

Such a revision operator is local in two senses: it is constrained only by the align-
ment and the two ontologies, and it only modifies the alignment. Instead we would like
to consider a revision of networks of ontologies.

5.2. Global revision postulates
Similarly as before, two addition operators (note the lack of the dot on ⊞) introduce

an axiom in an ontology or a correspondence in an alignment:

⟨Ω,Λ⟩ ⊞ φ/o = Cn(⟨Ω ∖ {o} ∪ {o + φ},Λ⟩)

and
⟨Ω,Λ⟩ ⊞ µ/A = Cn(⟨Ω,Λ ∖ {A} ∪ {A + µ}⟩)

Revision operators, both for alignments and ontologies, may be global, i.e., such
that the closure and consequence operator in the postulates are defined with respect to
the whole network of ontologies.

Consider the operator ⊞̇ such that ⟨Ω,Λ⟩⊞̇µ/A is the result of the revision of ⟨Ω,Λ⟩
by a new correspondence µ in the alignment A ∈ Λ, here are the AGM-like postulates:

⊞̇1 (closure) ⟨Ω,Λ⟩⊞̇µ/A ⊒ Cn(⟨Ω,Λ⟩⊞̇µ/A);

⊞̇2 (success) µ ∈ Cnα
⟨Ω,Λ⟩⊞̇µ/A

(o, o′) with o and o′ the ontologies aligned by A, i.e.,
⟨Ω,Λ⟩⊞̇µ/A ⊧ µ;

⊞̇3 (inclusion) ⟨Ω,Λ⟩⊞̇µ/A ⊑ ⟨Ω,Λ⟩ ⊞ µ/A;

⊞̇4 (vacuity) If ⟨Ω,Λ⟩ ⊞ µ/A consistent, then ⟨Ω,Λ⟩⊞̇µ/A ⊒ ⟨Ω,Λ⟩ ⊞ µ/A;

⊞̇5 (consistency) If ⟨Ω,Λ⟩⊞̇µ/A inconsistent, then µ is inconsistent;

⊞̇6 (extensionality) If µ ≡ ν, then ⟨Ω,Λ⟩⊞̇µ/A ≡ ⟨Ω,Λ⟩⊞̇ν/A;

The same can be obtained for ontology revision. Consider the operator ⊞̇ such that
⟨Ω,Λ⟩⊞̇φ/o is the result of the revision of ⟨Ω,Λ⟩ by a new formula φ in the ontology
o ∈ Ω, the postulates are:

⊞̇1 (closure) ⟨Ω,Λ⟩⊞̇φ/o ⊒ Cn(⟨Ω,Λ⟩⊞̇φ/o)

⊞̇2 (success) φ ∈ Cnω
⟨Ω,Λ⟩⊞̇φ/o

(o);

⊞̇3 (inclusion) ⟨Ω,Λ⟩⊞̇φ/o ⊑ ⟨Ω,Λ⟩ ⊞ φ/o

⊞̇4 (vacuity) If ⟨Ω,Λ⟩ ⊞ φ/o consistent, then ⟨Ω,Λ⟩⊞̇φ/o ⊒ ⟨Ω,Λ⟩ ⊞ φ/o;

⊞̇5 (consistency) If ⟨Ω,Λ⟩⊞̇φ/o inconsistent, then φ is inconsistent

⊞̇6 (extensionality) If φ ≡ ψ, then ⟨Ω,Λ⟩⊞̇φ/o ≡ ⟨Ω,Λ⟩⊞̇ψ/o
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In both cases, the principles are the same as for the local postulates:

⊞̇1 (closure) The revised network is closed (this is plain revision);

⊞̇2 (success) The new axiom or correspondence is consequence of the network after
revision;

⊞̇3 (inclusion) The consequences of the revision cannot extend beyond those of the
addition;

⊞̇4 (vacuity) The revised network is equivalent to the closure of the one resulting from
the addition, unless the latter is inconsistent;

⊞̇5 (consistency) The only reason why the result of revision may be inconsistent, is
because the new axiom or correspondence is itself inconsistent;

⊞̇6 (extensionality) Revision is syntax independent.

5.3. Properties

These network revision operators are generalisations of their local counterparts, in
the sense that, if the network of ontologies is reduced to one ontology or a pair of
aligned ontologies, then the simple use of valid revision operators on ontologies or
alignments are valid revision operators on the network.

Proposition 1. If +̇ satisfies +̇1–6, then the operation ⊞̇ defined as

⟨{o},∅⟩⊞̇φ/o = Cn(⟨{o+̇φ},∅⟩)

satisfies ⊞̇1–6.

The proof takes advantage of the following lemma:

Lemma 1. Let o and o′ be two ontologies,

if o ⊆ o′ then Cn(⟨{o},∅⟩) ⊑ Cn(⟨{o′},∅⟩)

Proof of Lemma 1. If o ⊆ o′ then ⟨{o},∅⟩ ⊑ ⟨{o′},∅⟩, because there exists a morphism
h mapping o to h(o) = o′ and this satisfies o ⊆ h(o). The conditions on k are trivially
valid. Then, by the third property of Cn as a closure, Cn(⟨{o},∅⟩) ⊑ Cn(⟨{o′},∅⟩).

Proof of Proposition 1. (⊞̇1): is satisfied because Cn is a closure operation (2nd con-
straint).

(⊞̇2): By +̇2, φ ∈ o+̇φ, thus φ ∈ Cnω(o+̇φ). SinceCnω(o+̇φ) ⊆ Cnω
⟨{o+̇φ},∅⟩(o+̇φ),

hence, φ ∈ Cnω
⟨{o+̇φ},∅⟩(o+̇φ) = Cnω

⟨{o},∅⟩⊞̇φ/o
(o).

(⊞̇3): By +̇3, o+̇φ ⊆ o + φ, hence Cn(⟨{o+̇φ},∅⟩) ⊑ Cn(⟨{o + φ},∅⟩) (by
Lemma 1). But ⟨{o},∅⟩⊞̇φ/o = Cn(⟨{o+̇φ},∅⟩) and ⟨{o},∅⟩ ⊞ φ/o = Cn(⟨{o +
φ},∅⟩), so ⟨{o},∅⟩⊞̇φ/o ⊑ ⟨{o},∅⟩ ⊞ φ/o.

(⊞̇4): If ⟨{o},∅⟩ ⊞ φ/o is consistent, then o + φ is consistent because ⟨{o},∅⟩ ⊞
φ/o = Cn(⟨{o+φ},∅⟩) and the models of Cn(⟨{o+φ},∅⟩) are collections containing
only models of o + φ. +̇4 entails that o + φ ⊆ o+̇φ. By Lemma 1, this means that
Cn(⟨{o + φ},∅⟩) ⊑ Cn(⟨{o+̇φ},∅⟩), i.e., ⟨{o},∅⟩ ⊞ φ/o ⊑ ⟨{o},∅⟩⊞̇φ/o.
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(⊞̇5): If ⟨{o},∅⟩⊞̇φ/o is inconsistent, then Cn(⟨{o+̇φ},∅⟩) has no model, hence
⟨{o+̇φ},∅⟩ has no model either. This means that o+̇φ is inconsistent because there is
no alignment to constrain the models of o+̇φ. Hence, by +̇5, φ is inconsistent.

(⊞̇6): If φ ≡ ψ, then, by +̇6, o+̇φ ≡ o+̇ψ. Since ⟨{o},∅⟩⊞̇φ/o = Cn(⟨{o+̇φ},∅⟩)
and ⟨{o},∅⟩⊞̇ψ/o = Cn(⟨{o+̇ψ},∅⟩), by applying Lemma 1 in both directions, this
entails ⟨{o},∅⟩⊞̇φ/o ≡ ⟨{o},∅⟩⊞̇ψ/o.

The same applies for alignments:

Proposition 2. If ⊕̇ satisfies ⊕̇1–6, then the operation ⊞̇ defined as

⟨{o, o′},{A}⟩⊞̇µ/A = Cn(⟨{o, o′},{A⊕̇µ}⟩)

such that A is an alignment between o and o′, satisfies ⊞̇1–6.

We use a similar lemma as above:

Lemma 2. Let A and A′ be two alignments between two ontologies o and o′,

if A ⊆ A′ then Cn(⟨{o, o′},{A}⟩) ⊑ Cn(⟨{o, o′},{A′}⟩)

Proof of Lemma 2. If A ⊆ A′, then ⟨{o, o′},{A}⟩ ⊑ ⟨{o, o′},{A′}⟩, because there
exists h such that h(o) = o and h(o′) = o′ and k such that k(A) = A′ which sat-
isfy the conditions of Definition 4. Then, by the third property of Cn as a closure,
Cn(⟨{o, o′},{A}⟩) ⊑ Cn(⟨{o, o′},{A′}⟩).

Proof of Proposition 2. (⊞̇1): Cn(⟨{o, o′},{A⊕̇µ}⟩) ⊒ Cn(Cn(⟨{o, o′},{A⊕̇µ}⟩))
because Cn is a closure operation (2nd constraint).

(⊞̇2): By ⊕̇2, µ ∈ A⊕̇µ, hence, µ ∈ Cnα(A⊕̇µ). Moreover, Cnα(A⊕̇µ) =
Cnα
⟨{o,o′},{A⊕̇µ}⟩

(o, o′) = Cnα
Cn(⟨{o,o′},{A⊕̇µ})⟩

(o, o′) = Cnα
⟨{o,o′},{A}⟩⊞̇µ/A

(o, o′), be-
cause Cn is a closure operation (2nd constraint), so µ ∈ Cnα

⟨{o,o′},{A}⟩⊞̇µ/A
(o, o′).

(⊞̇3): By ⊕̇3, A⊕̇µ ⊆ A + µ, hence, Cn(⟨{o, o′},{A⊕̇µ}⟩) ⊑ Cn(⟨{o, o′},{A +
µ}⟩), by Lemma 2. Thus, ⟨{o, o′},{A}⟩⊞̇µ/A ⊑ ⟨{o, o′},{A}⟩ ⊞ µ/A.

(⊞̇4): By ⊕̇4, if A + µ is consistent, then A + µ ⊆ A⊕̇µ, hence by Lemma 2,
Cn(⟨{o, o′},{A + µ}⟩) ⊑ Cn(⟨{o, o′},{A⊕̇µ}⟩), which means that ⟨{o, o′},{A}⟩ ⊞
µ/A ⊑ ⟨{o, o′},{A}⟩⊞̇µ/A. Since if A+µ is not consistent, then ⟨{o, o′},{A}⟩ ⊞µ/A
is not consistent either, this proves the property.

(⊞̇5): ⟨{o, o′},{A}⟩⊞̇µ/A is inconsistent, so Cn(⟨{o, o′},{A⊕̇µ}⟩) has no model.
Consequently, ⟨{o, o′},{A⊕̇µ}⟩ has no model either. This means that there exists no
pair of models of o and o′ satisfying A⊕̇µ (though, by hypothesis, there are pairs of
models satisfying A). Hence A⊕̇µ is inconsistent and, by ⊕̇5, µ is inconsistent.

(⊞̇6): ⟨{o, o′},{A}⟩⊞̇µ/A = Cn(⟨{o, o′},{A⊕̇µ}⟩) and ⟨{o, o′},{A}⟩⊞̇ν/A =
Cn(⟨{o, o′},{A⊕̇ν}⟩). If µ ≡ ν, then by ⊕̇6, A⊕̇µ ≡ A⊕̇ν. Hence, by applying
Lemma 2 in both directions, this entails ⟨{o, o′},{A}⟩⊞̇µ/A ≡ ⟨{o, o′},{A}⟩⊞̇ν/A.

This last revision operation may not be the only one, but one that minimises modifi-
cations to the ontologies. Indeed, as soon as the ontologies and the new correspondence
are consistent, it is always possible to restore consistency through revising the align-
ments.

These properties are interesting in their own right but do not provide any concrete
global revision operation. It would be convenient to reduce revision in networks of on-
tologies to local operators for ontologies and alignments. However, this is not generally
possible as we will show in §6.2.
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6. Partial meet revision operators

We illustrate here how concrete revision operators may be defined for networks
of ontologies by reusing the classical framework of partial meet revision. For that
purpose, we first introduce such an operator for alignments (§6.1). We then consider the
definition of global revision operators based on the regular ontology revision operators
and this alignment revision operator (§6.2). Although such an operator can be defined,
it would be too local (disallowing ontology revision by an alignment change or vice
versa). Hence we introduce a partial meet revision operator for networks of ontologies
that works globally (§6.3).

6.1. Partial-meet revision operators for alignments
Partial-meet revision [1] is a very general form of revision operator satisfying the

postulates. Such an operator is grounded on a selection operation γ on the maximal
subsets of K which remain consistent when adding φ2 (denoted by K⊺φ):

K⊺φ = {K ′ ⊆K ∣ M(K ′ + φ) ≠ ∅ and ∀K ′′;K ′ ⊂K ′′ ⊆K,M(K ′′ + φ) = ∅}

Partial meet revision is defined by:

K⊕̇φ = ⋂γ(K⊺φ) + φ
such that if K⊺φ ≠ ∅, then γ(K⊺φ) ≠ ∅.

When γ selects all sets in K⊺φ, then the operator is called full meet revision and
when it selects only one such set, it is the maxichoice revision.

All ingredients for defining partial meet revision on alignments are already avail-
able:

• Alignments can be considered as closed by the Cnα function;
• Models for alignments have been defined in §2;
• Inclusion for defining ⊺ is simply set inclusion.

Hence, a partial meet revision operator on alignments can be defined as:

A⊕̇µ = ⋂γ(A⊺µ) + µ

such that

A⊺µ = {A′ ⊆ A ∣ M(A′ ⊕ µ) ≠ ∅ and ∀A′′;A′ ⊂ A′′ ⊆ A,M(A′′ ⊕ µ) = ∅}

Proposition 3. Partial meet revision on alignments satisfies the six basic revision pos-
tulates for alignment revision.

Proof. ⊕̇1:

A⊕̇µ = ⋂γ(A⊺µ) + µ
= Cnα(⋂γ(A⊺µ) ∪ {µ})(Definition +)
= Cnα(Cnα(⋂γ(A⊺µ) ∪ {µ}))(because Cnα closure)
= Cnα(A⊕̇µ)

2This was defined slightly differently with negated formulas [38]. We adopt a different and semantic
formulation based on consistency for avoiding the definition of negation in alignments.

18



⊕̇2: A⊕̇µ = ⋂γ(A⊺µ) + µ = Cnα(⋂γ(A⊺µ) ∪ {µ}) hence µ ∈ A⊕̇µ because it is
already in the set to be closed (and the closure only adds elements to this set).

⊕̇3: A⊕̇µ =⋂γ(A⊺µ)+µ ⊆A+µ because ∀A′ ⊆ A⊺µ,A′ ⊆ A, hence⋂γ(A⊺µ) ⊆
A.

⊕̇4: if A + µ is consistent, then A⊺µ = {A}, hence γ(A⊺µ) = ⋂γ(A⊺µ) = A, so
A + µ = A⊕̇µ.

⊕̇5: if A⊕̇µ is inconsistent, then A⊕̇µ = ⋂γ(A⊺µ) + µ is inconsistent. If µ is
consistent, then ∃A′ ⊆ A; A′ + µ consistent (at worst, A′ = ∅), then A⊺µ ≠ ∅, then
γ selects one such A′ (because otherwise, γ(A⊺µ) = ∅ which is prohibited by the
definition of γ). This implies that ⋂γ(A⊺µ) ⊆ A′, hence ⋂γ(A⊺µ) + µ is consistent.
This contradicts the hypothesis. Hence, if A⊕̇µ is inconsistent, then µ is.

⊕̇6: µ ≡ ν means that Cnα({µ}) = Cnα({ν}). Hence,M(A + µ) = M(A + ν)
(becauseA+µ = Cnα(A∪{µ}) = Cnα(A∪Cnα({µ})). This means thatA⊺µ = A⊺ν
and thus A⊕̇µ ≡ A⊕̇ν (with the same argument as before).

6.2. Local revision is not sufficient

A tempting approach to define revision operators for networks of ontologies would
be to start from local revision operators and apply them where (in the alignment or
ontology in which) revision occurs. This would have the benefit of defining revision
operators for networks of ontologies only by composing local revision operators. In-
deed, one would like that:

⟨Ω,Λ⟩⊞̇φ/o = Cn(⟨Ω ∖ {o} ∪ {o+̇φ},Λ⟩)

and, for alignment revision, that:

⟨Ω,Λ⟩⊞̇µ/A = Cn(⟨Ω,Λ ∖ {A} ∪ {A⊕̇µ}⟩)

Unfortunately, this does not work properly in general. There are two problems
related to the inconsistency and modification steps of Figure 3.

The first problem when considering networks of ontologies is that the notion of
consistency to take into account is now related to the network of ontologies and not
anymore to the locally affected ontology or alignment. It may happen that the added
formula or correspondence does not lead to any local inconsistency (see Example 10).

Example 10 (Local revision is not sufficient to solve global revision). This is the case,
in Example 5, if one starts with ⟨Ω,Λ′⟩ and wants to revise ⟨Ω,Λ′⟩⊞̇(b1 ≥ e3)/A′

1,3.
The resulting A1,3 is not inconsistent with respect to o1 and o3. In this case, by postu-
late ⊕̇3 and ⊕̇4, A′

1,3⊕̇(b1 ≥ e3) = A′

1,3 + (b1 ≥ e3) = A1,3 and the network as a whole
(⟨Ω,Λ⟩) would remain globally inconsistent.

This problem is relatively easy to solve by replacingM(K ′ + φ) andM(A′ + µ)
by M(⟨Ω,Λ⟩ + φ/K ′) and M(⟨Ω,Λ⟩ + µ/A′) in the definitions of K⊺φ and A⊺µ
respectively.

The second problem is related to the way to apply revision. Because of the consis-
tency postulate (⊞̇5), it may happen that ⟨Ω,Λ⟩⊞̇φ/o is inconsistent with ⟨Ω,Λ⟩ while
o+̇φ is consistent. The inconsistency could be brought by the incompatibility of the
remaining models of o+̇φ with the rest of the network. The same may apply with
alignment revision: it may be the case that ⟨Ω,Λ⟩ is consistent, that A⊕̇µ is consistent
but that ⟨Ω,Λ⟩⊞̇µ/A = Cn(⟨Ω,Λ ∖ {A} ∪ {A⊕̇µ}⟩) is inconsistent.
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This is what happens in Example 10, the resulting network of ontologies would be
inconsistent, while the revising correspondence (b1 ≥ e3) and even the revised align-
ment (A1,3) would be consistent, thus violating ⊞̇5.

This shows that it is not safe to revise a network of ontologies with one formula or
one correspondence by only applying a local revision operator.

However, this does not prevent anyone from taking advantage of local revision
operators. Indeed, if applying such a local revision operator restores consistency, then
it will be a valid revision operator and even a minimal one with regard to the locality
of the changes that have been made (see §7). But there may be cases where more is
needed for restoring consistency.

6.3. Partial-meet revision operators for networks of ontologies
It is thus necessary to consider revision operators that encompass the whole net-

work of ontologies.
There can be two maximal consistent subnetwork operators depending on what is

to be revised (ontology or alignment):

Definition 9 (Maximal consistent subnetworks of ontologies). Given a network of on-
tologies ⟨Ω,Λ⟩, an ontology o ∈ Ω (resp. an alignmentA ∈ Λ) and an assertion φ (resp.
a correspondence µ), the set of maximal consistent subnetworks of ⟨Ω,Λ⟩ with respect
to φ in o (resp. µ in A) is defined by:

⟨Ω,Λ⟩ ã φ/o = {⟨Ω′,Λ′⟩ ⊑ ⟨Ω,Λ⟩;M(⟨Ω′,Λ′⟩ ⊞ φ/o) ≠ ∅, and

∀⟨Ω′′,Λ′′⟩; ⟨Ω′,Λ′⟩ ⊏ ⟨Ω′′,Λ′′⟩ ⊑ ⟨Ω,Λ⟩,M(⟨Ω′′,Λ′′⟩ ⊞ φ/o) = ∅}
⟨Ω,Λ⟩ ã µ/A = {⟨Ω′,Λ′⟩ ⊑ ⟨Ω,Λ⟩;M(⟨Ω′,Λ′⟩ ⊞ µ/A) ≠ ∅, and

∀⟨Ω′′,Λ′′⟩; ⟨Ω′,Λ′⟩ ⊏ ⟨Ω′′,Λ′′⟩ ⊑ ⟨Ω,Λ⟩,M(⟨Ω′′,Λ′′⟩ ⊞ µ/A) = ∅}

These operators return sets of networks of ontologies which are subnetwork of
⟨Ω,Λ⟩ and which are still consistent when the corresponding element is added.

Example 11 (Maximal consistent subnetworks). Consider the following particular re-
visions:

1. ⟨Ω′,Λ⟩⊞̇(i ⊏− e3)/o′3
2. ⟨Ω,Λ′⟩⊞̇(b1 ≥ e3)/A′

1,3,
3. ⟨Ω′′,Λ⟩⊞̇(d2 ⊑ c2)/o′′2 ,
4. ⟨Ω,Λ′′⟩⊞̇(c2 ⊑ b3)/A′′

2,3,
5. ⟨Ω′′′,Λ⟩⊞̇(b3�c3)/o′′′3 ,

of Example 9. All raise the same inconsistent network of ontologies: ⟨Ω,Λ⟩ described
in Example 5. The maximal consistent subnetworks of ⟨Ω,Λ⟩ are displayed in Table 1.

Most of the inferred assertions are in the alignments. BecauseCnωΩ,Λ(o3) is incon-
sistent, it is not possible to perform the revision without modifying it. On the contrary,
the closure of none of the other ontologies nor the alignments are inconsistent, hence
there may be revisions not involving their modification. Indeed, all sets alter o3 and
only one set, S4, is reduced to o3 modifications.

Example 12. Figure 4 displays an extreme example of a network. This network is in-
consistent in the interpretation of Example 3, though none of its ontologies nor align-
ments is inconsistent. The inconsistency manifests itself by starting with the network
without one of the correspondences and revising it by this correspondence. It can only
be solved by suppressing one of the other correspondences.

20



subset axioms consequences affects applicable
S1 b3�c3 b3�e3 c2�e3 d2�e3

b1�e3 c2�c3 d2�c3
b1�c3

o3 A1,3 A2,3 1, 2, 3, 4

S2 e3 ⊑ c3 i ⊏− c3 c2�e3 d2�e3

b1�e3

o3 A1,3 A2,3 1, 2, 3, 4, 5

S3 i ⊏− e3 i ⊏− b1 i ⊏− d2 i ⊏− c2 i ⊏− b3 o1 o2 o3 2, 3, 4, 5
S4 i ⊏− e3 i ⊏− c3 o3 2, 3, 4, 5
S5 b1 ≥ e3 i ⊏− b1 i ⊏− d2 i ⊏− c2 i ⊏− b3 o1 o2 o3 A1,3 1, 3, 4, 5
S6 d2 ≥ b1 i ⊏− d2 i ⊏− c2 i ⊏− b3 b1�c3

b1�e3

o2 o3 A1,2 A1,3 1, 2, 3, 4, 5

S7 d2 ⊑ c2 i ⊏− c2 i ⊏− b3 d2�c3
d2�e3 b1�c3 b1�e3

o2 o3 A1,2 A2,3 1, 2, 4, 5

S8 c2 ≤ b3 i ⊏− b3 c2�c3 c2�e3

d2�c3 d2�e3 b1�c3
b1�e3

o3 A1,3 A2,3 1, 2, 3, 5

Table 1: Maximal consistent subnetworks of ⟨Ω,Λ⟩ (obtained by removing from the closures, the elements
from axioms+consequences).

c c′

i′′

�
∈∋

o o′

o′′

Figure 4: Globally inconsistent alignment pattern.

For generalising partial meet revision, we need a conjunction (meet) operator be-
tween networks of ontologies. It could be introduced generally in a standard way from
subsumption, as the greatest common subsumee, but it would not necessarily be unique.
However, because we are in a specific situation – all considered networks of ontologies
subsume one specific network –, it is possible to use a fibred meet (denoted ⊓).

Definition 10 (Fibred meet of networks of ontologies [16]). Given a network of on-
tologies ⟨Ω,Λ⟩ and a finite family of networks of ontologies, {⟨Ωj ,Λj⟩}j∈J , such that
∃⟨hj , kj⟩j∈J , pairs of bijective morphisms: hj ∶ Ωj Ð→ Ω and kj ∶ Λj Ð→ Λ with
∀A ∈ Λ(o, o′), kj(A) ∈ Λ(hj(o), hj(o′)), the fibred meet of {⟨Ωj ,Λj⟩}j∈J with re-
spect to ⟨Ω,Λ⟩ is

⊓
j∈J

⟨Ωj ,Λj⟩ = ⟨{⋂
j∈J

h−1
j (o)}o∈Ω,{⋂

j∈J

k−1
j (A)}A∈Λ⟩

The fibred meet is a pull back in the category of networks of ontologies [16], hence
it is unique (up to homomorphisms). In the context of consistent subnetworks, a fibred
meet can be defined with the morphisms implicitly defined by the subnetwork relation.
We call such a fibred meet the normal fibred meet generated by subnetworks and note
it with ⊓̇. Such a fibred meet is well-defined and unique for any set of subnetworks of
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a particular generator network such as the set of maximal consistent subnetworks. The
normal fibred meet generated by consistent subnetworks is always consistent since it
is subsumed by consistent networks (downward consistency preservation). Moreover,
if the ontologies in the networks are closed, then the fibred meet is closed as well
(because it intersects closed networks). Hence, it is now possible to define partial meet
revision operators for networks of ontologies:

Definition 11 (Partial meet revision operators for networks of ontologies). Given a
network of ontologies ⟨Ω,Λ⟩, an ontology o ∈ Ω (resp. an alignment A ∈ Λ) and an
assertion φ (resp. a correspondence µ), partial meet revision is defined by:

⟨Ω,Λ⟩⊞̇φ/o = ⊓̇γ(⟨Ω,Λ⟩ ã φ/o) ⊞ φ/o

and
⟨Ω,Λ⟩⊞̇µ/A = ⊓̇γ(⟨Ω,Λ⟩ ã µ/A) ⊞ µ/A

Partial meet revision on networks of ontologies is indeed a valid revision operator.

Proposition 4. Partial meet revision on networks of ontologies satisfies the six basic
revision postulates for revision of networks of ontologies.

Proof. We provide first the proof for alignment revision, then ontology revision.

⊞̇1 (closure)

⟨Ω,Λ⟩⊞̇µ/A = ⊓̇γ(⟨Ω,Λ⟩ ã µ/A) ⊞ µ/A
= Cn(⟨Ω′,Λ′ ∖ {A} ∪ {A + µ}⟩)

with ⟨Ω′,Λ′⟩ = ⊓̇γ(⟨Ω,Λ⟩ ã µ/A)
= Cn(Cn(⟨Ω′,Λ′ ∖ {A} ∪ {A + µ}⟩))

because Cn is a closure operation

= Cn(⊓̇γ(⟨Ω,Λ⟩ ã µ/A) ⊞ µ/A)
= Cn(⟨Ω,Λ⟩⊞̇µ/A)

Hence, ⟨Ω,Λ⟩⊞̇µ/A ⊒ Cn(⟨Ω,Λ⟩⊞̇µ/A)

⊞̇2 (success) ⟨Ω,Λ⟩⊞̇µ/A = ⊓̇γ(⟨Ω,Λ⟩ ã µ/A)⊞µ/A =Cn(⟨Ω′,Λ′∖{A}∪{A+µ}⟩)
for ⟨Ω′,Λ′⟩ = ⊓̇γ(⟨Ω,Λ⟩ ã µ/A). Hence, if o and o′ are the ontologies involved
in µ, µ belongs to an alignment between o and o′ and so µ ∈ Cnα

⟨Ω,Λ⟩⊞̇µ/A
(o, o′)

(because Cnα is a closure operation). Thus, ⟨Ω,Λ⟩⊞̇µ/A ⊧ µ;

⊞̇3 (inclusion) ∀⟨Ω′,Λ′⟩ ∈ ⟨Ω,Λ⟩ ã µ/A, ⟨Ω′,Λ′⟩ ⊑ ⟨Ω,Λ⟩, hence ⊓̇γ(⟨Ω,Λ⟩ ã
µ/A) ⊑ ⟨Ω,Λ⟩. But, ⟨Ω,Λ⟩⊞̇µ/A = ⊓̇γ(⟨Ω,Λ⟩ ã µ/A)⊞µ/A, thus ⟨Ω,Λ⟩⊞̇µ/A
⊑ ⟨Ω,Λ⟩ ⊞ µ/A.

⊞̇4 (vacuity) If ⟨Ω,Λ⟩ ⊞ µ/A is consistent, then ⟨Ω,Λ⟩ ã µ/A = {⟨Ω,Λ⟩}, hence
γ(⟨Ω,Λ⟩ ã µ/A) = {⟨Ω,Λ⟩}, so ⊓̇γ(⟨Ω,Λ⟩ ã µ/A)⊞µ/A = ⟨Ω,Λ⟩⊞µ/A, i.e.,
⟨Ω,Λ⟩⊞̇µ/A = ⟨Ω,Λ⟩ ⊞ µ/A.

⊞̇5 (consistency) Assuming that ⟨Ω,Λ⟩⊞̇µ/A is inconsistent, so ⊓̇γ(⟨Ω,Λ⟩ ã µ/A)⊞
µ/A is. If µ is consistent, then ∃⟨Ω′,Λ′⟩ ⊑ ⟨Ω,Λ⟩ such that ⟨Ω,Λ⟩ ⊞ µ/A
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consistent (at worst, ⟨Ω′,Λ′⟩ = ⟨∅,∅⟩)3, and then ⟨Ω,Λ⟩ ã µ/A ≠ ∅, then
γ(⟨Ω,Λ⟩ ã µ/A) ≠ ∅ (because it is prohibited by the definition of γ). Moreover,
∀⟨Ω′,Λ′⟩ ∈ γ(⟨Ω,Λ⟩ ã µ/A), ⟨Ω′,Λ′⟩ ⊞ µ/A is consistent, thus ⊓̇γ(⟨Ω,Λ⟩ ã
µ/A) ⊞ µ/A is consistent. This is because for any ⟨Ω′,Λ′⟩ ∈ γ(⟨Ω,Λ⟩ ã µ/A),
⊓̇γ(⟨Ω,Λ⟩ ã µ/A) ⊑ ⟨Ω′,Λ′⟩, hence, due to downward consistency preserva-
tion, since ⟨Ω′,Λ′⟩ ⊞ µ/A is consistent, ⊓̇γ(⟨Ω,Λ⟩ ã µ/A) ⊞ µ/A is consistent
too. This contradicts the hypothesis that ⟨Ω,Λ⟩ ⊞ µ/A is inconsistent. Hence, if
⊓̇γ(⟨Ω,Λ⟩ ã µ/A) ⊞ µ/A is inconsistent, then µ is.

⊞̇6 (extensionality) µ ≡ ν means that both correspondences raise the same constraints
on models, hence ⟨Ω,Λ⟩ ã µ/A = ⟨Ω,Λ⟩ ã ν/A, so ⊓̇γ(⟨Ω,Λ⟩ ã µ/A) =
⊓̇γ(⟨Ω,Λ⟩ ã ν/A), thus ⊓̇γ(⟨Ω,Λ⟩ ã µ/A)⊞µ/A ≡ ⊓̇γ(⟨Ω,Λ⟩ ã ν/A)⊞ν/A,
i.e., ⟨Ω,Λ⟩⊞̇µ/A ≡ ⟨Ω,Λ⟩⊞̇ν/A.

For ontology revision, this gives:

⊞̇1 (closure)

⟨Ω,Λ⟩⊞̇φ/o = ⊓̇γ(⟨Ω,Λ⟩ ã φ/o) ⊞ φ/o
= Cn(⟨Ω′ ∖ {o} ∪ {o + φ},Λ′⟩)

with ⟨Ω′,Λ′⟩ = ⊓̇γ(⟨Ω,Λ⟩ ã φ/o)
= Cn(Cn(⟨Ω′ ∖ {o} ∪ {o + φ},Λ′⟩))

because Cn is a closure operation

= Cn(⊓̇γ(⟨Ω,Λ⟩ ã φ/o) ⊞ φ/o)
= Cn(⟨Ω,Λ⟩⊞̇φ/o)

Hence, ⟨Ω,Λ⟩⊞̇φ/o ⊒ Cn(⟨Ω,Λ⟩⊞̇φ/o)

⊞̇2 (success) ⟨Ω,Λ⟩⊞̇φ/o = ⊓̇γ(⟨Ω,Λ⟩ ã φ/o) ⊞ φ/o = Cn(⟨Ω′ ∖ {o} ∪ {o + φ},Λ′⟩)
for ⟨Ω′,Λ′⟩ = ⊓̇γ(⟨Ω,Λ⟩ ã φ/o). Hence, φ belongs to the ontology oφ (the
ontology mapped to o in Ω′). Thus φ ∈ Cnω

⟨Ω,Λ⟩⊞̇φ/o
(oφ) (because Cnω is a

closure operation). Consequently, oφ ⊧
⟨Ω,Λ⟩⊞̇φ/o φ.

⊞̇3 (inclusion) ∀⟨Ω′,Λ′⟩ ∈ ⟨Ω,Λ⟩ ã φ/o, ⟨Ω′,Λ′⟩ ⊑ ⟨Ω,Λ⟩, hence ⊓̇γ(⟨Ω,Λ⟩ ã
φ/o) ⊑ ⟨Ω,Λ⟩. But, ⟨Ω,Λ⟩⊞̇φ/o = ⊓̇γ(⟨Ω,Λ⟩ ã φ/o) ⊞ φ/o, thus ⟨Ω,Λ⟩⊞̇φ/o ⊑
⟨Ω,Λ⟩ ⊞ φ/o.

⊞̇4 (vacuity) If ⟨Ω,Λ⟩ ⊞ φ/o is consistent, then ⟨Ω,Λ⟩ ã φ/o = {⟨Ω,Λ⟩}, hence
γ(⟨Ω,Λ⟩ ã φ/o) = {⟨Ω,Λ⟩}, so ⊓̇γ(⟨Ω,Λ⟩ ã φ/o) ⊞ φ/o = ⟨Ω,Λ⟩ ⊞ φ/o,
i.e., ⟨Ω,Λ⟩⊞̇φ/o = ⟨Ω,Λ⟩ ⊞ φ/o.

⊞̇5 (consistency) Assuming ⟨Ω,Λ⟩⊞̇φ/o inconsistent, then ⊓̇γ(⟨Ω,Λ⟩ ã φ/o) ⊞ φ/o
is inconsistent. If φ is consistent, then ∃⟨Ω′,Λ′⟩ ⊑ ⟨Ω,Λ⟩ such that ⟨Ω′,Λ′⟩ ⊞
φ/o consistent (at worst, ⟨Ω′,Λ′⟩ = ⟨∅,∅⟩), and then ⟨Ω,Λ⟩ ã φ/o ≠ ∅, then

3The proof of ⊞̇5 in Proposition 4 contains a shortcut. Although ⟨∅,∅⟩ ⊑ ⟨Ω,Λ⟩, it is not possible to
add µ inA (respectively φ in o) sinceA (respectively o) does not belong to∅. Instead, the worst case should
be ⟨Ω∅,Λ∅⟩, i.e., the network of ontologies indexed by Ω and Λ, in which ontologies and alignments are
empty, so it is trivially consistent. In this case, ⟨∅,∅⟩ ⊑ ⟨Ω∅,Λ∅⟩ ⊑ ⟨Ω,Λ⟩ and it is possible to perform
the addition to the alignment indexed by A (respectively the ontology indexed by o).
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γ(⟨Ω,Λ⟩ ã φ/o) ≠ ∅ (because of the definition of γ). Moreover, ∀⟨Ω′,Λ′⟩ ∈
γ(⟨Ω,Λ⟩ ã φ/o), ⟨Ω′,Λ′⟩ ⊞ φ/o is consistent, thus ⊓̇γ(⟨Ω,Λ⟩ ã φ/o) ⊞ φ/o is
consistent. This is because for any ⟨Ω′,Λ′⟩ ∈ γ(⟨Ω,Λ⟩ ã φ/o), ⊓̇γ(⟨Ω,Λ⟩ ã
φ/o) ⊑ ⟨Ω′,Λ′⟩, hence, by downward consistency preservation, since ⟨Ω′,Λ′⟩ ⊞
φ/o is consistent, ⊓̇γ(⟨Ω,Λ⟩ ã φ/o)⊞φ/o is consistent too. This contradicts the
hypothesis. Hence, if ⊓̇γ(⟨Ω,Λ⟩ ã φ/o) ⊞ φ/o is inconsistent, then φ is.

⊞̇6 (extensionality) φ ≡ ψ means that both correspondences raise the same constraints
on models, hence ⟨Ω,Λ⟩ ã φ/o = ⟨Ω,Λ⟩ ã ψ/o, so ⊓̇γ(⟨Ω,Λ⟩ ã φ/o) =
⊓̇γ(⟨Ω,Λ⟩ ã ψ/o), thus ⊓̇γ(⟨Ω,Λ⟩ ã φ/o) ⊞ φ/o ≡ ⊓̇γ(⟨Ω,Λ⟩ ã ψ/o) ⊞ ψ/o,
i.e., ⟨Ω,Λ⟩⊞̇φ/o ≡ ⟨Ω,Λ⟩⊞̇ψ/o.

Partial meet revision operators are among the most natural such operators: they
select maximal consistent sub-theories and intersect them. It is thus very satisfying to
obtain such operators for networks of ontologies under various semantics.

7. Minimality

The postulates, as usual, do not characterise a unique operator. Similarly, partial
meet revision depends on the γ selector. Since there may be several of them, it is
necessary to further define the actual operators. This is usually achieved through the
search for minimal change. Therefore the main question is: what should this operator
preserve as much as possible?

Any strategy used in classical belief revision can be applied: a straightforward so-
lution would be to minimise change in the set of models or in the set of consequences.
One may want to preserve as much as possible the global models and may even intro-
duce a distance between these models for measuring change [11]. It is also possible to
minimise changes on local models, e.g., minimising the number of ontologies whose
set of local models changes, or one may prefer to preserve the consequences of the
network of ontologies. This relies on preserving ω- and α-consequences. It may be
more useful to attempt to preserve ω-consequences only, because, most of the time, we
are interested in what can be considered as a belief at one point of the network.

In addition, networks of ontologies can offer more options in the choice of mini-
mality criteria:

confinement that the modification remains, as much as possible, local (the modifi-
cation is not propagated to other entities than the revised entity, ontology or
alignment, if there is a solution without doing it);

alignments-only that only alignments are modified: ontologies are the pillar of knowl-
edge and they can be modified only if nothing else is possible;

relations-only that, when revising an ontology, only its direct connections to the other
ontologies must be revised (typically when assuming that ontologies are inde-
pendent and that a change only affects its relations with others);

neighbourhood that an actor can only modify what it owns: its own ontology or the
alignments involving it.

Such strategies may directly define preselection functions (γ) over networks of
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ontologies in ⟨Ω,Λ⟩ ã φ/o or ⟨Ω,Λ⟩ ã µ/A:

γconfinedo (S) = {⟨Ω′,Λ⟩ ∈ S∣∃o′ ∈ Ω′; Ω′ ∖ {o′} = Ω ∖ {o}}
γconfinedA (S) = {⟨Ω,Λ′⟩ ∈ S∣∃A′ ∈ Λ′; Λ′ ∖ {A′} = Λ ∖ {A}}
γalonly(S) = {⟨Ω,Λ′⟩ ∈ S}
γrelonlyo (S) = {⟨Ω,Λ′⟩ ∈ S∣Λ′ ∖Λ′(o) = Λ ∖Λ(o)}

γneighbourA (S) = {⟨Ω′,Λ′⟩ ∈ S∣∃A′ ∈ Λ′(o, o′); Ω′ ∖ {o, o′} = Ω ∖ {o, o′}
and Λ′ ∖ {A′} = Λ ∖ {A}}

γneighbouro (S) = {⟨Ω′,Λ′⟩ ∈ S∣∃o′ ∈ Ω′; Ω′ ∖ {o′} = Ω ∖ {o}
and Λ′ ∖Λ′(o′) = Λ ∖Λ(o)}

Some are dependent on the entity, o or A that is affected by the revision operation. In
such a case, the corresponding function is indexed by these entities.

These preselection functions filter those networks of ontologies satisfying the net-
work-based minimality presented before. They can be turned into a proper selection
function γ which returns the results of the preselection if it is not empty and the whole
set S otherwise.

Such selection functions can also be combined with other more classical minimality
functions introducing a comparison over the pieces of networks of ontologies affected
by revision. In general, such preferences would boil down to minimising the number
of affected entities (ontologies or alignments) because minimising the way they are af-
fected is accounted by the fact that sub-networks are maximal (Definition 9). However,
it is always possible to consider those o-neighbourhood preferred subnetworks which
minimise the number of affected alignments or those which minimise the changes in
the ontology o.

Example 13 (Impact on the choices of minimality on the revision). Depending on the
different strategies, different maximal consistent subnetworks of Table 1 are selectable
as presented in Table 2. The example does not do justice to the proposed functions
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⟨Ω′,Λ⟩⊞̇(i ⊏− e3)/o′3 S2 S1, S2, S8 ∅ ∅ ∅ S1, S2, S8

⟨Ω,Λ′⟩⊞̇(b1 ≥ e3)/A′

1,3 S4 S4 ∅ ∅ n.a. S4

⟨Ω′′,Λ⟩⊞̇(d2 ⊑ c2)/o′′2 S4 S4 ∅ ∅ ∅ ∅
⟨Ω,Λ′′⟩⊞̇(c2 ⊑ b3)/A′′

2,3 S4 S4 ∅ ∅ n.a. ∅
⟨Ω′′′,Λ⟩⊞̇(b3�c3)/o′′′3 S4 S4 S4 ∅ ∅ S4

Table 2: Preferred subnetwork selected depending on the situation and the strategy. “Minimal” corresponds
to the minimal set of assertions to be retracted; “min-affect” to the minimal network elements affected. ∅
reveals the absence of preferred solutions.

because all inconsistencies are global; hence the consequences of revision are spread
globally. Confinement is only possible in Situation 5 and no inconsistency only affects
alignments.
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The confidence associated to correspondences [3] can also be used for choosing the
correspondences to remove (or rather, the quantity to maximise could be the confidence
in the remaining correspondences).

8. Related work

To our knowledge, there has not been work directly addressing revision of networks
of ontologies. We consider here related works under four different perspectives: revi-
sion within ontology and more precisely in ontology languages developed for the se-
mantic web (§8.1), distributed belief revision mostly considered in multi-agent systems
(§8.2), dealing with inconsistent alignments (§8.3), and dealing with inconsistency in
distributed semantic systems (§8.4).

8.1. Revision in ontology languages

The absence of inconsistency in RDF renders the update/revision problem trivial.
Hence, a form of contraction, that can be seen as a partial meet contraction, has been
proposed for RDF and RDF Schema [25]. This could however be a basis for updating
on the semantic web.

Concerning description logics, since the seminal work of Bernhard Nebel [36],
AGM principles have been generalised in two ways of interest here [20]:

• revision (or retraction) is applied to sets of formulas for supplementing the ab-
sence of explicit conjunction between statements in logics like description logics.
This is different from iterated revision because all formulas of the set are con-
sidered together instead of one after another. This could be applied to the work
presented here.

• revision is applied to so-called “Tarski frameworks”, i.e., logics approached un-
der the angle of their closure operation. This would fully apply to networks of
ontologies and this is the approach that has been followed here.

This work also shows that many description logics will not have any AGM operator.
However, this is achieved by using as sixth postulate, the recovery postulate ((K+̇φ) ∩
K =K−̇(¬φ)) involving negation, so that the problem comes from the logics not being
closed under negation when they contain role subsumption. This problem may be dealt
with by introducing a set of “unwanted consequences” [41] or pseudo-negations tied to
specific description logics [19], and adapting the postulates to this situation. Here we
choose to avoid negation and directly address inconsistency.

Operators have been designed for DL-Lite either using a variation of maxichoice
and partial-meet [7], or using a distance between model archetypes [42]. Both ap-
proaches apply to several formulas at once. Finally, interactive revision has also been
studied within one ontology [37]. They are the basis for local ontology revision.

8.2. Distributed belief revision

Distributed belief revision has been considered in various ways. In general, it ap-
plies to agents each having their own sets of beliefs and communicating through mes-
sage passing [33]. Hence, there are in general three main differences with revision in
networks of ontologies: (a) ontologies are not public and establishing global consis-
tency is difficult, (b) agent beliefs are different from ontologies in network of ontolo-
gies as they are competing theories of the world instead of complementary theories of
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the world, (c) alignments are, in general, ignored and theories are interpreted homoge-
neously in the same domain of interpretation. In contrast, networks of ontologies offer
heterogenous but public theories which become inconsistent when put together.

Some models deal with computing the reliability of agents in order to decide which
belief to drop depending on which agents communicated it [12]. Other models have
no direct communication between agents, besides enforcing the constraint that their
beliefs may be updated with common knowledge [8], i.e., a belief that belongs to the
beliefs of each agents and each agent believes that it belongs to other agents’ beliefs.
Work in this direction has been developed without this last constraint but satisfying base
revision postulates [4]. The revision operator remains local (no discussion is made of
join revision) but takes into account an epistemic modal operator expressing the belief
of other agents.

Finally a last model considers AGM revision in related ontologies [13]. Agent
ontologies are expressed in description logics and made of two parts: the knowledge
is the ontology and beliefs are axioms involving vocabularies from other ontologies.
These are akin of alignments. The semantics of the whole system is given by a tuple
of models but these are integrated, i.e., they share the same domain of interpretation
and must be consistent together. A local revision operator is given based on a distance
between tuples of models. It satisfies a principle of knowledge persistence, i.e., only
alignments are modified even if the change can be in an ontology. Global consistency
is thus not considered.

8.3. Inconsistency repair in alignments

Operators for restoring consistency when an alignment introduces inconsistency
have been introduced based on the notion of minimal conflict sets [39]. Consistency
is defined by the consistency of merging both ontologies and the translation of the
alignments into OWL axioms. This work only applies to two aligned ontologies instead
of a network. The operator is different from standard revision since it does not insist
that the new alignment be preserved but instead preserves the ontologies and reduces
the alignment. In addition, contrary to the original revision, the closure of an alignment
is not defined.

Recently, there has been extensive work on alignment repair or debugging.
Christian Meilicke [35, 34] introduced minimal incoherence/unsatisfiability pre-

serving sub-alignments (MIPS), i.e., a minimal set of conflicting correspondences, and
diagnosis, i.e., an inclusion minimal subset of an alignment whose removal would re-
store consistency and coherence. These notions are based on the theory of diagnosis
[40]. The relation between these concepts is that a minimal hitting-set (taking one
correspondence from each MIPS) will provide a diagnosis. The author then defines
the notion of optimality of a diagnosis with respect to the maximisation of the con-
fidence in the repaired alignment. This optimisation can be applied for choosing the
correspondence to remove from each MIPS independently (local optimal diagnosis) or
globally for extracting the diagnosis (global optimal diagnosis). Here the local/global
distinction refers to MIPS instead of parts of a network of ontologies. A globally op-
timal diagnosis is smaller than or equal to a locally optimal diagnosis. Algorithms are
given for locally optimal and globally optimal diagnoses. ContentMap [29] and then
LogMap [30] correct inconsistent alignments in a similar manner.

Debugging networks of taxonomies may be achieved by removing correspondences
or subsumption statements [28]. Taxonomies are ontologies reduced to the subsump-
tion relations so inconsistencies do not exist. Instead, users may assess correspon-
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dences or subsumption statements as wrong. The techniques are similar to those used
in alignment repair [35] but no experiment is reported on networks.

These works did not explicitly consider satisfying revision postulates and do not
typically fall into its realm because the alignment between two ontologies is given as
a whole instead of considering one correspondence or one assertion at once. At the
exception of the latter, repair is obtained exclusively by removing correspondences
from the alignment (the ontologies remain untouched). However, the various notions
of minimality introduced may be considered in revision as well.

8.4. Inconsistency and networks of alignments

There has been different work dealing with inconsistency within networks of on-
tologies. Surprisingly very few of them have considered the framework of belief revi-
sion.

In peer-to-peer query processing, some work has focussed on answering queries
in the presence of inconsistency. They usually do not plan to restore global consis-
tency, but to answer queries in spite of inconsistency. A decentralised algorithm has
been designed for detecting, at insertion time, sets of correspondences which together
render the network inconsistent [9]. Such sets are recorded as “nogoods”, so the net-
work as a whole remains inconsistent. The query answering algorithm only returns
answers which are supported independently of all inconsistent sets, i.e., supported by
a consistent subnetwork. In networks of peers embedding propositional logic theories,
consequences are supported by consistent subsets of peers’ ontologies entailing them
(using correspondences) [5]. Such support subsets are assigned priorities based on pri-
ority among the involved peers. A proposition is considered entailed if there exists a
support for it which has higher priority than all the supports for its negation.

Maciej Zurawski presented a framework for dealing with inconsistency in dis-
tributed knowledge [46]. He considers that ensuring global consistency4 is a too diffi-
cult task and tries to take this into account through two ideas:

1. Ensure consistency within a “sphere” which is a subset of ontologies and related
alignments (spheres can overlap and being included in one another);

2. Ensuring consistency only up to some degree, defined by the depth of the proof
tree, which measures the effort required for finding the inconsistency.

This could be used in revision as a minimality measure: not only consistency can be
detected within the current sphere, but modifications for restoring consistency should
be restricted, at first, to changes in the current sphere. Minimality can also be defined
as the minimum number of spheres affected by changes.

9. Conclusion

In this paper, we have considered the problem of adding new information in net-
works of ontologies under the light of belief revision. We have dealt with this problem
on the basis of the semantics of networks of ontologies. Given a semantics for these

4Consistency is defined there through correspondence composition: a loop in composition that comes
back to the starting point with a contradictory, i.e., empty, relation.
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networks, we have shown how to transpose classical belief revision postulates to net-
works of ontologies and to define revision operators. Although they extend local revi-
sion, local revision operators alone are not sufficient to revise networks of ontologies
according to such postulates.

We have defined partial meet revision operators for networks of ontologies. We
have also investigated modalities specific to networks of ontologies that can provide
a selection function between revisions. These can be used for further defining partial
meet revision operators.

The proposed belief revision postulates and operators should be seen as inspiration
for actual operators. Depending on the type of ontology language used (more or less
powerful description logics) and the type of semantics adopted for interpreting align-
ments, the proposed revision operators may be refined towards more concrete ones. It
may also be possible to guide users in choosing a particular revision from such prin-
ciples. They have already inspired efforts, in particular in alignments and ontology
debugging [34, 28]. These are usually offline operators, i.e., they are used at ontology
or alignment edition time, but they led to actual usable tools. Extending them to larger
networks should be possible, if not as interactive tools, as batch analysers.

Although we have considered belief revision in first instance, base revision may be
more adapted to ontologies and alignments in practical applications. Indeed, ontolo-
gies and alignments are usually not closed, and in particular not closed with respect
to the network they are involved in, and it may be more practical for users to revise
their syntactic formulation. This classical problem of belief/base revision takes a new
dimension with networks of ontologies: in classical logic, the syntactic form of an on-
tology corresponds to its closure. In networks of ontologies, several closures may be
considered (classical closure and ω-closure). Embedding an ontology in a network is
not a neutral operation and the syntactic form of theories may be more deeply affected
by revision. We consider this work as a first step to understanding revision in networks
of ontologies that may help consider the problems of base revision.

A last question worth considering is: does revision with the classical semantics, i.e.,
reducing the network of ontologies to a single ontology [6], can simulate the proposed
operators? We conjecture that this is not always the case since the structure on which
the choice is made (the network) disappears in this semantics.

This paper opens new perspectives on revision in networks of ontologies.
On the one hand, some questions already raised in classical revision have not been

addressed. For instance, we have not considered updating, though it would be very
useful when new datasets, alignments and ontologies are updated. It would also be in-
teresting to consider how to adapt the Levi and Harper identities, or similar constraints.

On the other hand, there are specific questions that depend on the non-controllability
of networks of ontologies. Hence, not only a whole part of the network may be non-
revisable, but it may be useful to design distributed revision operators in which ontol-
ogy “owners” would interact to revise, or not, their ontologies. One can even imagine
that each ontology is assigned a different operator. This would be useful when these
ontologies are expressed in different logics.
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