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CRITICAL ITINERARIES OF MAPS WITH CONSTANT SLOPE

AND ONE DISCONTINUITY

MICHAEL BARNSLEY, WOLFGANG STEINER, AND ANDREW VINCE

Abstract. For a function from the unit interval to itself with constant slope
and one discontinuity, the itineraries of the point of discontinuity are called
the critical itineraries. These critical itineraries play a significant role in the
study of β-expansions (with positive or negative β) and fractal transformations.
A combinatorial characterization of the critical itineraries of such functions is
provided.

1. Introduction

The dynamics of a function from the unit interval to itself is a topic with a long
history. While most results concern continuous functions, this paper deals with the
dynamics of the archetypal families of discontinuous dynamical systems illustrated
in Figure 1. These discontinuous functions with constant slope, formally defined
below, are often chosen as canonical representatives of conjugacy classes of Lorenz
maps [7, 9, 16]. The Lorenz maps serve as models for Poincaré return maps for
Lorenz flows [19] and play a central role in recent work in fractal geometry [1, 3].

Continuous non-differentiable transformations, used in digital imaging and 3D
printing applications, can be constructed using conjugate pairs of such discontinu-
ous systems [2]. Parameterized families of such discontinuous systems, and others
that are conjugate or semiconjugate to them, occur in models for a large class of en-
gineering applications such as circuits, electronics, control systems, and phenomena
such as earthquakes; see [11, 14, 24] and references therein.

The dynamics of β-transformations — functions of the type depicted in Figure 2
restricted to the inner square — are integral to the study of the representation of
the real numbers using non-integer bases. For positive β, there is a large literature
on this subject beginning with the pioneering work of Rényi and Parry [23, 21].
Generalizations such as linear mod one functions — depicted in the left and middle
panels of Figure 1 — have also been studied extensively; see for example [10, 6].
The study of negative β-transformations, which were often neglected, gained a new
momentum with the paper [13] by Ito and Sadahiro. Many arguments for positive
slopes easily adapt to negative ones, but some properties of the positive case are
not true for the negative slopes, see e.g. [17] and Example 3 in Section 3.

It is well known that the behavior of such discontinuous dynamical systems is
mediated by the critical itineraries, namely certain symbolic orbits that are defined
below. A similar situation occurs for the dynamics of continuous systems, for which
the canonical representative is the family of logistic maps La : [0, 1] → [0, 1], where
La(x) = ax(1 − x), a ∈ (0, 4]; see for example [4]. In this case, conditions under
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which a given continuous system is conjugate to a logistic map are well understood
in terms of a symbolic orbit of the critical point, x = 0.5. This symbolic orbit (which
is analogous to but not the same as the critical itineraries in the present work) have
been fully characterized [20]. The present paper provides an analogous, succinct,
complete characterization of the critical itineraries of the discontinuous systems
illustrated in Figure 1. While related results are present in the literature, many
discussed in Section 6, the present characterization appears new; in particular, the
case of negative slopes has not been treated elsewhere.

Figure 1. Maps with constant slope and one discontinuity.

In the left and middle images in Figure 1, the restriction to the dotted square is
(after proper renormalization) of the form βx+ α mod 1 with |β| > 1. This is true
in general when β > 1. For β < −1, however, the right image in Figure 1 gives
an example where the situation is different, hence the class of functions that we
consider is larger than that of the maps βx+ α mod 1 with one discontinuity.

It is convenient to consider generalized β-transformations of the form

fβ,p : R → R, x 7→















βx if x < p,

βx or β(x− 1) if x = p,

β(x− 1) if x > p,

with β, p ∈ R, and |β| > 1. More precisely, we define two functions fβ,p,± by

fβ,p,−(p) = βp, fβ,p,+(p) = β(p− 1), fβ,p,−(x) = fβ,p,+(x) = fβ,p(x) for x 6= p.

For the trajectories fn
β,p,±(p) of the discontinuity to be bounded, we need that

(1.1) β > 1, 1 ≤ p ≤ 1

β − 1
, or β < −1,

β2 + β − 1

β2 − 1
≤ p ≤ 1

β2 − 1

(which implies that |β| ≤ 2). For these parameters, we have

fβ,p
([

0, β
β−1

])

=
[

0, β
β−1

]

and fβ,p
([

β
β2−1 ,

β2

β2−1

])

=
[

β
β2−1 ,

β2

β2−1

]

when β > 1 and β < −1, respectively. The restriction of fβ,p to the respective
interval has the form of a map in Figure 1. Moreover, every expanding map from
the unit interval to itself with constant slope and one discontinuity is conjugate to
the restriction to some interval of some function fβ,p,− or fβ,p,+.

The trajectories of points in R by fβ,p,± can be coded by elements of

Ω = {0, 1}ω,
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which denotes the set of infinite words (or sequences) c = c0c1c2 · · · on the alphabet
{0, 1}. For x ∈ R, the two itineraries of x are

τβ,p,−(x) = c0c1 · · · with cn =

{

0 if fn
β,p,−(x) ≤ p,

1 if fn
β,p,−(x) > p,

τβ,p,+(x) = c0c1 · · · with cn =

{

0 if fn
β,p,+(x) < p,

1 if fn
β,p,+(x) ≥ p.

The two itineraries of the point of discontinuity p play a special role. Call τ− :=
τβ,p,−(p) and τ+ := τβ,p,+(p) the critical itineraries of fβ,p. The pair (τ−; τ+) is
also referred to as the kneading invariant of fβ,p. For β > 1, the critical itineraries
are equal to the limit itineraries limx↑p τβ,p,±(x) and limx↓p τβ,p,±(x). For β < −1,
this relation is not necessarily true, see Observation 1 in Section 3.

The main result in this paper is a combinatorial characterization of the critical
itineraries of a function fβ,p. The possible pairs (τ−; τ+) are exactly those which
are lex-admissible or alt-admissible, as defined in Section 2. As a corollary to the
main result, we get a characterization of the critical itineraries of βx + α mod 1
(when this map has only one discontinuity).

For the particular case p = 1, 1 < β ≤ 2, the critical itineraries were already
described in [21]. Indeed, we have β Tβ(x) = fβ,1,+(βx) for all x ∈ [0, 1), where Tβ

is the greedy β-transformation, defined by Tβ(x) := βx − ⌊βx⌋; see also Figure 2.
Here, since τβ,1,+(1) = 1000 · · · , it is sufficient to study τβ,1,−(1) = 0 τβ,1,−(β).

Figure 2. Greedy β-transformation and Ito-Sadahiro’s (−β)-transformation.

For p = 1
1−β , −2 < β < −1, we have β Tβ(x) = fβ,p,+(βx) for all x ∈

[

β
1−β ,

1
1−β

)

,

where Tβ is the β-transformation defined in [13] by Tβ(x) := βx− ⌊βx− β
1−β ⌋ (for

negative β). The critical itineraries of these maps were characterized in [27]. Here,
we have τβ,p,−(p) = 00 τβ,p,−(β

2p) and τβ,p,+(p) = 1 τβ,p,+(β
2p).

2. Admissible pairs of words

The lexicographic order on Ω is the total order defined by a < b if a 6= b

and an < bn where n is the least index such that an 6= bn. The alternating

lexicographic order on Ω is the total order defined by a < b if a 6= b and
(−1)n (an−bn) < 0, where n is the least index such that an 6= bn (with a = a0a1 · · · ,
b = b0b1 · · · ). We use the notation

(a,b) := {c ∈ Ω : a < c < b}
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for the open interval with respect to the specified order (lexicographic or alternating
lexicographic); likewise for the closed and half open intervals.

Let S denote the shift operator on Ω, i.e., S(c0c1c2 · · · ) = c1c2c3 · · · . For a set
X ⊆ Ω, let

ΩX :=
{

c ∈ Ω : Sn(c) 6∈ X for all n ≥ 0
}

.

Note that ΩX is shift invariant in the sense that S(ΩX) = ΩX .
For Λ ⊆ Ω, let

Λn :=
{

u ∈ {0, 1}n : uc ∈ Λ for some c ∈ Ω
}

be the set of length n prefixes of words in Λ, and let |Λn| denote the cardinality
of Λn. The exponential growth rate g(Λ) of Λ ⊆ Ω is given by

g(Λ) := lim
n→∞

n

√

|Λn|,

if the limit exits. In particular, the limit exists for Λ = Ω(a,b) (see e.g. [18]), and

h
(

Ω(a,b
)

:= log g
(

Ω(a,b)
)

is the topological entropy of Ω(a,b) considered as a symbolic dynamical system with
the shift map S operating on it (and Ω equipped with the product topology of the
discrete toplogy).

Let A := {0, 1}. The set of finite words over A is denoted by A∗ =
⋃

n≥0 A
n.

The length of a word u ∈ A∗ is denoted by |u|, i.e., |u| = n if u ∈ An. The Kleene
star B∗ =

⋃

n≥0 B
n is also used for sets of words B ⊂ A∗; it denotes the set of finite

concatenations of elements from B. The set of infinite concatenations of elements
from B is denoted by Bω. For u ∈ A∗ with |u| ≥ 1, the only element of {u}ω is
the periodic infinite word u := uuu · · · ∈ Ω.

Definition 1. Call a pair of words (a;b) with a ∈ 0Ω, b ∈ 1Ω, lex-admissible

if the properties (1)–(3) below hold for the lexicographic order, alt-admissible if
(1)–(3) hold for the alternating lexicographic order.

(1) Sn(a) /∈ (a,b] and Sn(b) /∈ [a,b) for all n ≥ 0, i.e., a ∈ Ω(a,b], b ∈ Ω[a,b),

(2) g
(

Ω(a,b)
)

> 1,

(3) if a,b ∈ {u,v}ω for some finite words u ∈ 0 {0, 1}∗, v ∈ 1 {0, 1}∗, with
u ∈ Ω(u,v], v ∈ Ω[u,v), and g

(

Ω(u,v)
)

= g
(

Ω(a,b)
)

, then a = u and b = v.

Example 1 (Pairs with zero exponential growth rate). It is not hard to find ex-
amples of a,b ∈ Ω satisfying condition (1) but g

(

Ω(a,b)
)

= 1. There are trivial

examples such as a = 0 with arbitrary b satisfying (1), and this is also the case
when a,b are the critical itineraries of the function x+ α mod 1 with irrational α.

We define the value of a sequence c = c0c1c2 · · · ∈ Ω in base β by

〈c〉β :=

∞
∑

n=0

cn
βn

.

3. Main results

Our main result is the following theorem, which is proved in Section 4.
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Theorem 1. Two words a,b ∈ Ω are the critical itineraries of fβ,p for some β > 1,
1 ≤ p ≤ 1

β−1 , if and only if the pair (a;b) is lex-admissible.

Two words a,b ∈ Ω are the critical itineraries of fβ,p for some β < −1,
β2+β−1
β2−1 ≤ p ≤ 1

β2−1 , if and only if the pair (a;b) is alt-admissible.

In either case, we have |β| = g
(

Ω(a,b)
)

, p = 〈a〉β = 〈b〉β, and 〈a〉γ 6= 〈b〉γ for
all γ ∈ R with sgn(γ) = sgn(β) and |γ| > |β|.

The following theorem, which is proved in Section 5, shows that the conditions
for β > 1 can be simplified. In fact, the equality g

(

Ω(u,v)
)

= g
(

Ω(a,b)
)

in (3) is

automatically satisfied for the lexicographic order (except for u = 0 or v = 1, where
g
(

Ω(u,v)
)

= 1).

Theorem 2. A pair of words (a;b) with a ∈ 0Ω, b ∈ 1Ω, is lex-admissible if and
only if properties (1) and (2) of Definition 1 and property (3’) below hold for the
lexicographic order.

(3’) If a,b ∈ {u,v}ω for some finite words u ∈ 01 {0, 1}∗, v ∈ 10 {0, 1}∗, with
u ∈ Ω(u,v] and v ∈ Ω[u,v), then a = u and b = v.

The following corollary of Theorem 1 characterizes the critical itineraries of
βx+ α mod 1, i.e., the itineraries of the discontinuity point of the maps

Tβ,α,+ : [0, 1) → [0, 1), x 7→ βx+ α− ⌊βx+ α⌋,
Tβ,α,− : (0, 1] → (0, 1], x 7→ βx+ α− ⌈βx+ α⌉+ 1,

with β > 1, 0 ≤ α ≤ 2−β, or β < −1, −β−1 < α < 1. For these parameters, both
maps Tβ,α,− and Tβ,α,+ have a unique discontinuity point, which is at (1−α)/β
when β > 1 and at −α/β when β < −1. We define the itinerary of x ∈ [0, 1)
under Tβ,α,+ as c0c1 · · · ∈ Ω with cn = sgn(β) ⌊β T n

β,α,+(x) + α⌋, and the itinerary

of x ∈ (0, 1] under Tβ,α,− as c0c1 · · · ∈ Ω with cn = sgn(β) (⌈β T n
β,α,−(x) + α⌉ − 1).

Corollary 1. Two words a,b ∈ Ω are the critical itineraries of βx+ α mod 1 for
some β > 1, 0 ≤ α ≤ 2 − β, if and only if the pair (a;b) is lex-admissible. In this
case, we have β = g

(

Ω(a,b)
)

and α = (〈a〉β − 1) (β − 1) = (〈b〉β − 1) (β − 1).
Two words a,b ∈ Ω are the critical itineraries of βx+α mod 1 for some β < −1,

−β − 1 < α < 1, if and only if the pair (a;b) is alt-admissible, S2(a) < S(b),
and S2(b) > S(a) (in the alternating lexicographic order). In this case, we have
β = −g

(

Ω(a,b)
)

and α = 〈a〉β (1− β) = 〈b〉β (1 − β).

As mentioned in the Introduction, what we call critical itineraries are not nec-
essarily the limit itineraries from the left and right to p, when β is negative. The
relation between these two notions is described by the following observation.

Observation 1. Let β < −1, β2+β−1
β2−1 ≤ p ≤ 1

β2−1 . If a := τβ,p,−(p) is periodic

with odd period length, let u be its primitive period. If b := τβ,p,+(p) is periodic
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with odd period length, let v be its primitive period. Then

lim
x↑p

τβ,p(x) =











a if a is not periodic with odd period length,

ub if a is periodic with odd period length, but b is not,

uv if a and b are periodic with odd period length,

lim
x↓p

τβ,p(x) =











b if b is not periodic with odd period length,

va if b is periodic with odd period length, but a is not,

vu if a and b are periodic with odd period length.

Remark 1. For the greedy β-transformation, we have the following: The pairs of
critical itineraries of fβ,1, 1 < β ≤ 2, are exactly the pairs (0c; 10) with c ∈ 1Ω
and 10 6= Sn(c) ≤ S(c) for all n ≥ 1 (w.r.t. the lexicographic order); cf. [21].

For the cases corresponding to Ito-Sadahiro’s (−β)-transformations, we obtain
the following characterization from [27]. Let d = 100111001001001110011 · · · ∈ Ω
be the word starting with ϕn(1) for all n ≥ 0, where ϕ denotes the morphism on
{0, 1}∗ defined by ϕ(1) = 100, ϕ(0) = 1. Then the critical itineraries of fβ,1/(1−β),
−2 ≤ β < −1, are exactly the pairs (00c; 1c) with c ∈ 1Ω such that Sn(c) ≤ c for
all n ≥ 1, c > d, and c /∈ {u00,u1}ω for all u ∈ {0, 1}∗ with u1 > d, and the pairs
(00w; 1w) with w ∈ 1 {0, 1}∗ such that Sn(w1) ≤ w1 for all n ≥ 1, w1 > d, and
w1 /∈ {u00,u1}∗ for all u ∈ {0, 1}∗ \ {w} with u1 > d, where the inequalities refer
to the alternating lexicographic order.

It should be mentioned that f−2,1/3,+ is not conjugate to the map T−2 from [13,
27] because f−2,1/3,+(4/3) = −2/3 6= 4/3 = −2T−2(−2/3). The critical itineraries

of f−2,1/3 are (0010; 0010), which is a pair satisfying the conditions above. However,

the word 10 does not satisfy condition (1.8) in [27] because 10 ∈ {2, 10}ω.
Note also that the inequality c > d implies that g

(

Ω(00c,1c)
)

> 1. Moreover, it

is not necessary to verify the equation g
(

Ω(00c,1c)
)

= g
(

Ω(00u,1u)
)

here.

Example 2 (Primality Tester). The pair

a = 0 1 1 0 1 0 1 0 0 0 1 0 1 · · ·
b = 1 0 0 0 · · · ,

where an = 1 if and only if n + 1 is prime is lex-admissible. It is easy to check
conditions (1) and (3) of Definition 1. Concerning condition (2), we have Ω(a,b) ⊃
Ω(01,10) and thus g

(

Ω(a,b)
)

≥ g
(

Ω(01,10)
)

= (
√
5 + 1)/2. Therefore, a and b are

the critical itineraries of fβ,1, where β ≈ 1.79, as stated in Theorem 1. By the
definition of the critical itineraries, the natural number n is prime if and only if
fn−1
β,1,+(p) > p. In other words, to test whether n + 1 is prime, we apply the nth

iterate of fβ,1,+ to the point of discontinuity 1. If this iterate lies to the right of p,
then n is prime; otherwise, it is composite. Two comments are in order. First,
this result has little to do with number theory. Second, the method is numerically
problematic because β, being an irrational number, can be estimated to at most
finitely many places.

Example 3 (Words a,b ∈ {u,v}ω with g
(

Ω(a,b)
)

> g
(

Ω(u,v)
)

> 1 for the alternat-
ing lexicographic order). The following example illustrates that 〈a〉β = 〈b〉β does
not necessarily have a unique solution and that it might be difficult to avoid the
condition g(Ω(u,v)) = g(Ω(a,b)) in property (3) of Definition 1 for negative β. Let

u = 001100000, v = 110, a = uuv, b = vvu.
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By Lemma 3 below, we can calculate

g
(

Ω(a,b)
)

= −β > −γ = g
(

Ω(u,v)
)

,

with β ≈ −1.135888346 satisfying β9 = −β6 − 1, and γ ≈ −1.123732821 satisfying
γ5 = γ4 − γ2 + γ − 1. Note that 1/γ is a root of the power series K(z) defined by
a and b in Lemma 3, but the largest negative root is 1/β. Setting

p := 〈a〉β = 〈b〉β =
β8 + β5 + β4 − β2 − 1

β12 − 1
≈ 0.070528093,

q := 〈u〉γ = 〈v〉γ = 〈a〉γ = 〈b〉γ =
γ3 + γ2

γ3 − 1
≈ 0.064590878,

we have

τβ,p,−(p) = a, τβ,p,+(p) = b, τγ,q,−(q) = u, τγ,q,+(q) = v.

According to Corollary 1, a and b are the critical itineraries of βx+p(1−β) mod 1,
while u and v are the critical itineraries of γx+ q(1− γ) mod 1.

In this example, we have g
(

Ω(a,b)
)

= g
(
⋃∞

n=0 S
n{u,v}ω) > g

(

Ω(u,v)
)

> 1. Such

a situation cannot occur for positive β, where g
(
⋃∞

n=0 S
n{u,v}ω

)

≤ g
(

Ω(u,v)
)

always holds for u,v as in (3’); see the proof of Lemma 8.

4. Admissible pair = critical itineraries

4.1. Address space. The description of the address space of fβ,p is fairly standard
for positive β, see e.g. [15, Theorem 2.5] or [3, Theorem 5.1]. We include its proof
for completeness and to prepare the slightly more complicated case of negative β.

Lemma 1. Let β > 1, 1 ≤ p ≤ 1
β−1 , a := τβ,p,−(p), and b := τβ,p,+(p). Then the

address spaces of fβ,p,± are

τβ,p,−(R) = τβ,p,−
([

0, β
β−1

])

= Ω(a,b] and τβ,p,+(R) = τβ,p,+
([

0, β
β−1

])

= Ω[a,b),

with the lexicographic order on Ω. In particular, we have a ∈ Ω(a,b] and b ∈ Ω[a,b).
Moreover, we have g

(

Ω(a,b)
)

= β.

Proof. Let x ∈
[

0, β
β−1 ], and recall that fβ,p

([

0, β
β−1

])

=
[

0, β
β−1

]

for β > 1, 1 ≤ p ≤
1

β−1 . If τβ,p,−(x) agrees with a or b on the first n letters, then fn
β,p,−(x)−fn

β,p,±(p) =

βn(x− p). Therefore, since fn
β,p(x) is bounded, x < p implies that fn

β,p,−(x) ≤ p <

fn
β,p,−(p) for some n ≥ 1, and p < x implies that fn

β,p,+(p) < p < fn
β,p,−(x) for some

n ≥ 1, hence τβ,p,−(x) ≤ a if x ≤ p and τβ,p,−(x) > b if x > p. This gives that

Sn(τβ,p,−(x)) = τβ,p,−(f
n
β,p,−(x)) /∈ (a,b] for all n ≥ 0, i.e., τβ,p,−(x) ∈ Ω(a,b]. As

τβ,p,−(x) = 0 = τβ,p,−(0) for all x < 0, and τβ,p,−(x) = 1 = τβ,p,−
(

β
β−1

)

for all

x > β
β−1 , we obtain that τβ,p,−(R) = τβ,p,−

([

0, β
β−1

])

⊆ Ω(a,b].

To show the opposite inclusion, let c = c0c1 · · · ∈ Ω(a,b]. If c0 = 1, then let k1 be
the length of the maximal common prefix of c and b. Since c > b, we have ck1 = 1

and fk1

β,p,+(p) < p. Recursively, let kn+1 ≥ 1 be the length of the maximal common
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prefix of csncsn+1 · · · and b, with sn = k1 + · · ·+ kn. Then

〈c〉β − p =
〈cs1cs1+1 · · · 〉β − fk1

β,p,+(p)

βs1
>

〈cs1cs1+1 · · · 〉β − p

βs1
≥ · · ·

≥
〈csncsn+1 · · · 〉β − fkn

β,p,+(p)

βsn
>

〈csncsn+1 · · · 〉β − p

βsn

for all n ≥ 1. Since the latter quantity tends to 0 as n → ∞, we have 〈c〉β > p.
Similarly, we obtain that 〈c〉β ≤ p when c0 = 0. Therefore, we have τβ,p,−(〈c〉β) = c

for all c ∈ Ω(a,b], hence Ω(a,b] ⊆ τβ,p,−
([

0, β
β−1

])

.

By symmetry, we also get that τβ,p,+(R) = τβ,p,+
([

0, β
β−1

])

= Ω[a,b).

It is well known that g
(

τβ,p,−
([

0, β
β−1

]))

= β = g
(

τβ,p,+
([

0, β
β−1

]))

; see for

example [25, Proposition 3.7]. Finally,

Ω(a,b) = Ω(a,b] ∪Ω[a,b)

gives that g(Ω(a,b)) = g(Ω(a,b]) = g(Ω[a,b)) = β. �

The address space for negative β can be compared to [5, Theorem 10]; see also
[13, Theorem 10] for the case p = 1/(β − 1).

Lemma 2. Let β < −1, β2+β−1
β2−1 ≤ p ≤ 1

β2−1 . If a := τβ,p,−(p) is periodic with odd

period length, let u be its primitive period. If b := τβ,p,+(p) is periodic with odd
period length, let v be its primitive period. Then the address space of fβ,p,− is










Ω(a,b] if b is not periodic with odd period length,

Ω(a,b] \ {0, 1}∗ va if b is periodic with odd period length, but a is not,

Ω(a,b] \ {0, 1}∗ {vu,vu} if a and b are periodic with odd period length,

and the address space of fβ,p,+ is










Ω[a,b) if a is not periodic with odd period length,

Ω[a,b) \ {0, 1}∗ ub if a is periodic with odd period length, but b is not,

Ω[a,b) \ {0, 1}∗ {uv,uv} if a and b are periodic with odd period length,

with the alternating lexicographic order on Ω. In particular, we have a ∈ Ω(a,b] and
b ∈ Ω[a,b). Moreover, we have g

(

Ω(a,b)
)

= −β.

Proof. Let x ∈
[

β
β2−1 ,

β2

β2−1

]

, and recall that fβ,p
([

β
β2−1 ,

β2

β2−1

])

=
[

β
β2−1 ,

β2

β2−1

]

for

β < −1, β2+β−1
β2−1 ≤ p ≤ 1

β2−1 . Since f
n
β,p,−(x)−fn

β,p,±(p) = βn(x−p) when τβ,p,−(x)

agrees with a or b on the first n letters, x < p implies that fn
β,p,−(x) ≤ p < fn

β,p,−(p)

for some even n ≥ 1 or fn
β,p,−(p) ≤ p < fn

β,p,−(x) for some odd n ≥ 1, hence

τβ,p,−(x) < a. Similarly, we have τβ,p,−(x) > b if x > p. This gives that τβ,p,−(x) ∈
Ω(a,b]. As τβ,p,−(x) = 01 = τβ,p,−

(

β
β2−1

)

for all x < β
β2−1 , and τβ,p,−(x) = 10 =

τβ,p,−
(

β2

β−1

)

for all x > β2

β2−1 , we obtain that τβ,p,−(R) = τβ,p,−
([

β
β2−1 ,

β2

β2−1

]

) ⊆
Ω(a,b]; in particular, a ∈ Ω(a,b] and, by symmetry, b ∈ Ω[a,b). If b is periodic with
odd period length, then 〈va〉β = p, but va 6= a = fβ,p,−(p), hence va does not
occur in the address space of fβ,p,−. If both a and b are periodic with odd period
length, then we can also exclude vu because 〈vu〉β = p.
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Now, let c = c0c1 · · · ∈ Ω(a,b], Ω(a,b] \ {0, 1}∗ va, and Ω(a,b] \ {0, 1}∗ {vu,vu},
respectively. If c0 = 1, then let k1 be the length of the maximal common prefix of
c and b. If k1 is even, then ck1 = 1 and fk1

β,p,+(p) < p. If k1 is odd, then ck1 = 0

and p ≤ fk1

β,p,+(p). Recursively, let sn = k1+ · · ·+kn and kn+1 ≥ 1 be the length of
the maximal common prefix of csncsn+1 · · · and b, if sn is even, the length of the
maximal common prefix of csncsn+1 · · · and a, if sn is odd and csncsn+1 · · · 6= a. If
csncsn+1 · · · 6= a all n ≥ 1, then

〈c〉β − p =
〈cs1cs1+1 · · · 〉β − fk1

β,p,+(p)

βs1
≥ 〈cs1cs1+1 · · · 〉β − p

βs1
≥ · · ·

≥
〈csncsn+1 · · · 〉β − fkn

β,p,±(p)

βsn
≥ 〈csncsn+1 · · · 〉β − p

βsn

for all n ≥ 2. Here, fkn

β,p,±(p) stands for f
kn

β,p,+(p) if sn−1 is even and for fkn

β,p,+(p)

if sn−1 is odd. Since the latter quantity tends to 0 as n → ∞, we have 〈c〉β ≥ p.
This inequality clearly also holds if csncsn+1 · · · = a for some n ≥ 1. It remains

to show that the inequality is strict, i.e., fkn

β,p,±(p) 6= p for some n ≥ 1. If b is
not periodic with odd period length, then this holds for n = 1. Assume that b

is periodic with primitive period v of odd length. Then c cannot start with vv

because this would imply c = v and thus c /∈ Ω(a,b]. Therefore, the only possibility
for fk1

β,p,+(p) = p is that k1 = |v| (and that ck1 = 0). Since we have excluded
that c = va, we have ck1ck1+1 · · · < a. If a is not periodic with odd period

length, we have thus fk2

β,p,−(p) 6= p. In the remaining case of a with primitive
period u of odd length, ck1ck1+1 · · · cannot start with uu, because this would

imply that ck1ck1+1 · · · = a. Thus the only possibility for fk2

β,p,−(p) = p is that

k2 = |u|. Repeating this argument and since c 6= vu, we obtain that 〈c〉β > p.

Since 〈c〉β ≤ p when c0 = 0, we get that τβ,p,−(〈c〉β) = c for all c ∈ Ω(a,b],

Ω(a,b]\{0, 1}∗ va, and Ω(a,b] \{0, 1}∗ {vu,vu} respectively, thus this set is equal to

τβ,p,−(R) = τβ,p,−
([

β
β2−1 ,

β2

β2−1

])

. By symmetry, τβ,p,+(R) = τβ,p,+
([

β
β2−1 ,

β2

β2−1

])

is Ω[a,b), Ω[a,b) \ {0, 1}∗ ub, and Ω[a,b) \ {0, 1}∗ {uv,uv}, respectively.
We have g

(

τβ,p,−
([

β
β2−1 ,

β2

β2−1

]))

= |β| = g
(

τβ,p,+
([

β
β2−1 ,

β2

β2−1

]))

by [25, Propo-

sition 3.7]. The exponential growth rate of Ω(a,b] is the same as that of Ω(a,b] \
{0, 1}∗ va and Ω(a,b] \ {0, 1}∗ {vu,vu}, and a symmetric relation holds for Ω[a,b).
Together with Ω(a,b) = Ω(a,b] ∪ Ω[a,b), this concludes the proof of the lemma. �

4.2. Kneading invariant. The idea for the following lemma goes back to [20];
see also [8, 6]. Contrary to the cited papers, we work directly with the symbolic
space and do not require it to be the address space of some map. The main novelty,
however, is the treatment of the alternating case.

Lemma 3. Let a = a0a1 · · · , b = b0b1 · · · ∈ Ω, with a0 = 0, b0 = 1, a,b ∈ Ω(a,b),
and g(Ω(a,b)) > 1, for the lexicographic or alternating lexicographic order on Ω. Set

K(z) :=

∞
∑

n=0

(bn − an) z
n = 〈b〉1/z − 〈a〉1/z .

In case of the lexicographic order, 1/g
(

Ω(a,b)
)

is the smallest positive root of K(z).

In the alternating case, −1/g
(

Ω(a,b)
)

is the largest negative root of K(z).
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Proof. Define the formal power series

L(z) :=

∞
∑

n=0

|Ln| zn, with Ln :=
{

u ∈ {0, 1}n : uc ∈ Ω(a,b) for some c ∈ Ω
}

,

and

Q(z) :=

∞
∑

n=0

|Qj| zj, with Qn :=
{

u ∈ {0, 1}n : ua ∈ Ω(a,b) and ub ∈ Ω(a,b)
}

.

We will prove that, for every n ≥ 0,

(4.1) 1 +

n
∑

j=0

|Qj| = |Ln+1|

for both lexicographic and alternating lexicographic order, as well as

(4.2)

n
∑

j=0

(bn−j − an−j) |Qj | = 1 and

n
∑

j=0

(−1)j (bn−j − an−j) |Qj| = (−1)n

for the lexicographic and alternating lexicographic order, respectively. By simple
formal power series calculations and since |L0| = 1 because L0 contains only the
empty word, we obtain from (4.1) that

1

1− z

(

1 +Q(z)
)

=
1

z

(

L(z)− 1
)

,

i.e., L(z)− 1
1−z = Q(z) z/(1− z). From (4.2), we get that

K(z)Q(z) =
1

1− z
and K(z)Q(−z) =

1

1 + z
,

respectively, with the second equation being equivalent toK(−z)Q(z) = 1
1−z . Then

(4.3) K(z)

(

L(z)− 1

1− z

)

=
z

(1 − z)2

in case of the lexicographic order, and

(4.4) K(−z)

(

L(z)− 1

1− z

)

=
z

(1− z)2

in the alternating case. Since the radius of convergence of L(z) is 1/g
(

Ω(a,b)
)

and

L(z) has a singularity at 1/g
(

Ω(a,b)
)

, the smallest positive root ofK(z) andK(−z),

respectively, is 1/g
(

Ω(a,b)
)

. It remains to prove (4.1) and (4.2).

Consider first the lexicographic order, and order the elements of Ln+1 lexico-
graphically, from u(1) = 00 · · · 0 to u(|Ln+1|) = 11 · · · 1. For 1 ≤ k < |Ln+1|, let
u(k) = u

(k)
0 u

(k)
1 · · ·u(k)

n and

v(k) := u
(k)
0 u

(k)
1 · · ·u(k)

j−1 b0b1 · · · bn−j ,

where j is the minimal integer in [0, n] such that

(4.5) u
(k)
j u

(k)
j+1 · · ·u(k)

n = a0a1 · · · an−j .

(Such an integer exists because u(k) 6= 11 · · · 1 and u(k)c ∈ Ω(a,b) for some c ∈ Ω.)

We claim that u
(k)
0 u

(k)
1 · · ·u(k)

j−1 ∈ Qj. Since a,b ∈ Ω(a,b), we have to show that

u
(k)
i u

(k)
i+1 · · ·u

(k)
j−1 a /∈ (a,b) and u

(k)
i u

(k)
i+1 · · ·u

(k)
j−1 b /∈ (a,b)
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for all 0 ≤ i < j. If u
(k)
i = 1, then (4.5) and u(k)c ∈ Ω(a,b) imply that

u
(k)
i · · ·u(k)

j−1 b > u
(k)
i · · ·u(k)

j−1 a ≥ u
(k)
i · · ·u(k)

n c ≥ b.

Assume now that u
(k)
i = 0. Then u(k)c ∈ Ω(a,b) gives that u

(k)
i · · ·u(k)

n ≤ a0 · · · an−i.

We have u
(k)
i · · ·u(k)

j−1 a < u
(k)
i · · ·u(k)

j−1 b < a if u
(k)
i · · ·u(k)

j−1 < a0 · · · aj−i−1, and

u
(k)
i · · ·u(k)

n = a0 · · · aj−i−1 a0 · · · an−j otherwise, by (4.5). In the latter case, aj−i =

0 implies that u
(k)
i · · ·u(k)

n ≥ a0 · · · an−i, contradicting the minimality of j. Hence
we must have aj−i = 1 in this case, thus

u
(k)
i · · ·u(k)

j−1 a < u
(k)
i · · ·u(k)

j−1 b ≤ a.

This proves that u
(k)
0 · · ·u(k)

j−1 ∈ Qj , thus

(4.6) Ln+1 = {11 · · ·1} ∪
n
⋃

j=0

{

u0 · · ·uj−1 a0 · · · an−j : u0 · · ·uj−1 ∈ Qj

}

.

(The inclusion “⊇” is a direct consequence of the definition of Qj and Ln+1.)
Suppose that u0 · · ·ui−1 a0 · · · an−i = u0 · · ·uj−1 a0 · · · an−j with u0 · · ·ui−1 ∈ Qi,
u0 · · ·uj−1 ∈ Qj, 0 ≤ i < j ≤ n. Then we have a0 · · ·aj−i−1 = ui · · ·uj−1 ∈ Qj−i,
thus a0 · · ·aj−i−1 b ≤ a, contradicting that aj−i = a0. Therefore, the union in (4.6)
is disjoint, which gives (4.1) for the lexicographic order.

For 1 ≤ k < |Ln+1|, we have v(k) ∈ Ln+1 since u
(k)
0 · · ·u(k)

j−1 ∈ Qj . As there can

be no element of Ln+1 between u(k) and v(k), we obtain that u(k+1) = v(k), thus

n
∑

j=0

(bn−j − an−j) |Qj | =
|Ln+1|−1
∑

k=1

(

u(k+1)
n − u(k)

n

)

= u(|Ln+1|)
n − u(1)

n = 1,

i.e., the left equation in (4.2) holds for the lexicographic order.

Consider now the alternating lexicographic order, and order the elements of Ln+1

with respect to this order, from u(1) = 01 · · · 0 to u(|Ln+1|) = 10 · · · 1 if n is even,
from u(1) = 01 · · · 01 to u(|Ln+1|) = 10 · · · 10 if n is odd. For 1 ≤ k < |Ln+1|, let j
be the minimal integer in [0, n] such that u

(k)
j · · ·u(k)

n = a0 · · ·an−j and j is even,

or u
(k)
j · · ·u(k)

n = b0 · · · bn−j and j is odd, with u(k) = u
(k)
0 · · ·u(k)

n . (Such an integer

exists because u(k) is not the maximal element of Ln+1.) Set

v(k) := u
(k)
0 · · ·u(k)

j−1 b0 · · · bn−j and v(k) := u
(k)
0 · · ·u(k)

j−1 a0 · · · an−j

when j is even and odd, respectively.

We claim again that u
(k)
0 · · ·u(k)

j−1 ∈ Qj. Assume w.l.o.g. that j is even, the case
of odd j being symmetric. Let 0 ≤ i < j. If i is even, then we obtain as above that

u
(k)
i · · ·u(k)

j−1 b > u
(k)
i · · ·u(k)

j−1 a ≥ u
(k)
i · · ·u(k)

n c ≥ b if u
(k)
i = 1,

u
(k)
i · · ·u(k)

j−1 a < u
(k)
i · · ·u(k)

j−1 b ≤ a if u
(k)
i = 0.

If i is odd and u
(k)
i = 0, then

u
(k)
i · · ·u(k)

j−1 b < u
(k)
i · · ·u(k)

j−1 a ≤ u
(k)
i · · ·u(k)

n c ≤ a.

Assume now that i is odd and u
(k)
i = 1. Then u(k)c ∈ Ω(a,b) gives that u

(k)
i · · ·u(k)

n ≥
b0 · · · bn−i. If u

(k)
i · · ·u(k)

j−1 = b0 · · · bj−i−1, i.e., u
(k)
i · · ·u(k)

n = b0 · · · bj−i−1 a0 · · · an−j,
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then bj−i = 0 implies that u
(k)
i · · ·u(k)

n ≤ b0 · · · bn−i, contradicting the minimality
of j. Hence we must have bj−i = 1 in this case, thus

u
(k)
i · · ·u(k)

j−1 a > u
(k)
i · · ·u(k)

j−1 b ≥ b.

This proves that u
(k)
0 · · ·u(k)

j−1 ∈ Qj , thus

(4.7) Ln+1 =
{

u(|Ln+1|)
}

∪
⌊n/2⌋
⋃

j=0

{

u0 · · ·u2j−1 a0 · · ·an−2j : u0 · · ·u2j−1 ∈ Q2j

}

∪
⌊(n−1)/2⌋

⋃

j=0

{

u0 · · ·u2j b0 · · · bn−2j−1 : u0 · · ·u2j ∈ Q2j+1

}

.

Similarly to the lexicographic case, it is not possible that u0 · · ·u2i−1 a0 · · ·an−2i =
u0 · · ·u2j−1 a0 · · · an−2j with u0 · · ·u2i−1 ∈ Q2i, u0 · · ·u2j−1 ∈ Q2j, 0 ≤ 2i < 2j ≤
n. If u0 · · ·u2i−1 a0 · · · an−2i = u0 · · ·u2j b0 · · · bn−2j−1 with u0 · · ·u2i−1 ∈ Q2i,
u0 · · ·u2j ∈ Q2j+1, 0 ≤ 2i ≤ 2j < n, then a0 · · ·a2j−2i = u2i · · ·u2j ∈ Q2j−2i+1,
thus a0 · · · a2j−2i a ≤ a, contradicting that a2j−2i+1 = b0. Other cases of non-empty
intersections of two sets on the right hand side of (4.7) are excluded symmetrically,
thus (4.1) holds for the alternating lexicographic order too.

As in the lexicographic case, we have u(k+1) = v(k) for 1 ≤ k < |Ln+1|, thus
n
∑

j=0

(−1)j (bn−j − an−j) |Qj | =
|Ln+1|−1
∑

k=1

(

u(k+1)
n − u(k)

n

)

= u(|Ln+1|)
n − u(1)

n = (−1)n,

i.e., the right equation in (4.2) holds for the alternating lexicographic order. �

4.3. Monotonicity of 〈·〉β .

Lemma 4. For every β > 2, 〈·〉β and 〈·〉−β are strictly increasing functions on Ω,
for the lexicographic and alternating lexicographic order, respectively.

Proof. Let β > 2, and c,d ∈ Ω with c < d (for the lexicographic or alternating
lexicographic order). By removing the maximum initial portion of the strings where
c and d are equal, and exchanging the role of c and d if the length of this portion
is odd in the alternating case, we may assume w.l.o.g. that c starts with 0 and d

starts with 1. Then we have

〈c〉β ≤ 〈0 1〉β =
1

β − 1
< 1 = 〈1 0〉β ≤ 〈d〉β

in the lexicographic case, and

〈c〉−β ≤ 〈0 01〉−β =
1

β2 − 1
<

β2 − β − 1

β2 − 1
= 〈1 10〉−β ≤ 〈d〉−β

in the alternating case. This proves the lemma. �

Lemma 5. Let a ∈ 0Ω, b ∈ 1Ω, with a,b ∈ Ω(a,b) and g
(

Ω(a,b)
)

> 1, where Ω is
equipped with the lexicographic or the alternating lexicographic order.

In case of the lexicographic order, 〈·〉g(Ω(a,b)) is an increasing function on Ω(a,b).

In the alternating case, 〈·〉−g(Ω(a,b)) is an increasing function on Ω(a,b).
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Proof. In the following, we assume that Ω is equipped with the lexicographic order;
for the alternating case, we only have to change 〈·〉β to 〈·〉−β .

We show that 〈·〉β is strictly increasing on Ω(a,b) for all β > g
(

Ω(a,b)
)

. By
Lemma 4, this is true for β > 2. From Lemma 3, we know that 〈a〉β 6= 〈b〉β for all

β > g
(

Ω(a,b)
)

. By the continuity of 〈a〉β and 〈b〉β as functions of β > 1 and since

〈a〉β < b〉β for all β > 2, we obtain that 〈a〉β < 〈b〉β for all β > g
(

Ω(a,b)
)

.

Assume that c < d, but 〈c〉β ≥ 〈d〉β for some c,d ∈ Ω(a,b), β > g
(

Ω(a,b)
)

.
By removing the longest common prefix of c and d, we may assume w.l.o.g. that c
starts with 0 and d starts with 1. (In the alternating case, we also have to exchange
the role of c and d if the length of this prefix is odd.) Consider

∆(β) := max
{

〈c〉β − 〈d〉β : c,d ∈ Ω(a,b), c ≤ a, b ≤ d
}

(β > 1).

This function is well defined because {〈c〉β : c ∈ Ω(a,b)} is compact; ∆(·) is also
continuous. By Lemma 4, we have ∆(β) < 0 for β > 2, and we have assumed that
∆(β) ≥ 0 for some β > g

(

Ω(a,b)
)

. Therefore, there exists β > g
(

Ω(a,b)
)

such that

∆(β) = 0. Fix this β, and choose c,d ∈ Ω(a,b) with c ≤ a, b ≤ d, and 〈c〉β = 〈d〉β .
Since 〈a〉β < 〈b〉β , we have 〈c〉β > 〈a〉β or 〈b〉β > 〈d〉β . If 〈c〉β > 〈a〉β , then
removing the longest common prefix of a and c gives sequences c′,d′ ∈ Ω(a,b)

with c′ ≤ a, d′ ≥ b, and 〈c′〉β > 〈d′〉β , contradicting that ∆(β) = 0. Similarly,
〈b〉β > 〈d〉β leads to a contradiction. Therefore, we have shown that 〈·〉β is strictly

increasing on Ω(a,b) for all β > g
(

Ω(a,b)
)

.

By continuity in β, we obtain that 〈·〉g(Ω(a,b)) is increasing on Ω(a,b). �

4.4. Periodic critical itineraries. Next we show that condition (3) of Defini-
tion 1 is violated when (1) and (2) hold but a and b are not the critical itineraries
of some fβ,p.

Lemma 6. Let a ∈ 0Ω, b ∈ 1Ω, with a ∈ Ω(a,b], b ∈ Ω[a,b), and g
(

Ω(a,b)
)

> 1.

Set β := g
(

Ω(a,b)
)

when Ω is equipped with the lexicographic order, β := −g
(

Ω(a,b)
)

in case of the alternating lexicographic order, and p := 〈a〉β. If a 6= τβ,p,−(p) or
b 6= τβ,p,+(p), then we have a,b ∈ {u,v}ω for some u ∈ 0 {0, 1}∗, v ∈ 1 {0, 1}∗,
with u ∈ Ω(u,v], v ∈ Ω[u,v), g(Ω(u,v)) = g(Ω(a,b)), and a 6= u or b 6= v.

Proof. First note that 〈b〉β = 〈a〉β = p by Lemma 3. Assume that a 6= τβ,p,−(p);
the case of b 6= τβ,p,+(p) is symmetric. Write a = a0a1 · · · and τβ,p,−(p) = c0c1 · · · .
If a0 · · ·an−1 = c0 · · · cn−1, n ≥ 0, then fn

β,p,−(p) = 〈cncn+1 · · · 〉β = 〈anan+1 · · · 〉β .
By Lemma 5, 〈anan+1 · · · 〉β < p implies that an = 0, and 〈anan+1 · · · 〉β > p implies
that an = 1; hence an 6= cn is possible only when fn

β,p,−(p) = p. Since a 6= τβ,p,−(p)
and a0 = 0 = c0, the latter case occurs for some n ≥ 1. Choose m ≥ 1 minimal
such that fm

β,p,−(p) = p, and set u := a0 · · · am−1; then τβ,p,−(p) = u. Since a 6=
τβ,p,−(p), there exists some ℓ ≥ 1 such that a1 · · · aℓm−1 = u · · ·u = c0 · · · cℓm−1 and
aℓm = 1. Then we have 〈aℓmaℓm+1 · · · 〉β = p = 〈b〉β and aℓmaℓm+1 · · · > b since

a ∈ Ω(a,b]. Similarly as for a0a1 · · · and c0c1 · · · , we obtain that there exists some
n ≥ 1 such that aℓm · · ·aℓm+n−1 = b0 · · · bn−1 and 〈bnbn+1 · · · 〉β = p, hence we also

have fk
β,p,+(p) = p for some k ≥ 1. Let j ≥ 1 be minimal such that f j

β,p,+(p) = p,

and set v := b0 · · · bj−1. Then we have τβ,p,+(p) = v and a,b ∈ {u,v}ω.
Since u,v are the itineraries of fβ,p,±(p), we have u ∈ Ω(u,v], v ∈ Ω[u,v), and

g
(

Ω(u,v)
)

= |β| = g
(

Ω(a,b)
)

by Lemma 1 and 2, respectively. �
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Lemma 7. Let u ∈ 0 {0, 1}∗, v ∈ 1 {0, 1}∗, |β| > 1, with 〈u〉β = 〈v〉β =: p.
Then 〈c〉β = p for all c ∈ {u,v}ω.
If τβ,p,−(p) ∈ {u,v}ω, then τβ,p,−(p) = u.
If τβ,p,+(p) ∈ {u,v}ω, then τβ,p,+(p) = v.

Proof. Let c = c0c1 · · · ∈ Ω with c ∈ {u,v}ω. If c starts with u, then

〈c〉β − p = 〈c〉β − 〈u〉β =
〈c|u|c|u|+1 · · · 〉β − 〈u〉β

β|u|
=

〈c|u|c|u|+1 · · · 〉β − p

β|u|
.

Similarly, we have 〈c〉β −p = (〈c|v|c|v|+1 · · · 〉β −p)/β|v| if c starts with v, and thus

〈c〉β − p =
〈cncn+1 · · · 〉β − p

βn

for each n ≥ 1 such that c0 · · · cn−1 ∈ {u,v}∗. Since n is unbounded and 〈cncn+1 · · · 〉β
is bounded, we get that 〈c〉β = p.

If τβ,p,−(p) ∈ {u,v}ω, then τβ,p,−(p) starts with u, thus f
|u|
β,p,−(p) = p and

τβ,p,−(p) = u. Similarly, τβ,p,+(p) ∈ {u,v}ω implies that b = v. �

4.5. Proof of Theorem 1. Assume first that a = τβ,p,−(p) and b = τβ,p,+(p) for
some β, p. Then condition (1) of Definition 1 holds by Lemmas 1 and 2, respectively.
These lemmas also give that g

(

Ω(a,b)
)

= |β| > 1. If u,v are as in condition (3) of
Definition 1, then 〈u〉β = 〈v〉β by Lemma 3, and this value equals p by Lemma 7.
Lemma 7 also gives that a = u and b = v, thus condition (3) of Definition 1 holds.
Therefore, the pair (a;b) is lex-admissible if β > 1 and alt-admissible if β < −1.

Now, let (a;b) be lex-admissible and β := g(Ω(a,b)), or alt-admissible and β :=
−g(Ω(a,b)). By Lemma 6 and condition (3) of Definition 1, we have a = τβ,p,−(p)
and b = τβ,p,+(p), with p := 〈a〉β . Moreover, we have 1 ≤ 〈b〉β = p = 〈a〉β ≤ 1

β−1

in case β > 1, and 1 + β
β2−1 ≤ 〈b〉β = p = 〈a〉β ≤ 1

β2−1 in case β < −1.

4.6. Proof of Corollary 1. Let β > 1, 0 ≤ α ≤ 2−β, set p := α
β−1 +1 and define

the map ϕ : [0, 1] → [β(p−1), βp], x 7→ β(x+p−1). Then Tβ,α,± = ϕ−1 ◦fβ,p,±◦ϕ.
Therefore, τβ,p,−(p) and τβ,p,+(p) are the itineraries of ϕ−1(p) = (1 − α)/β under
Tβ,α,− and Tβ,α,+. Since each p ∈

[

1, 1
β−1

]

can be written as p = α
β−1 + 1 with

0 ≤ α ≤ 2− β, the critical itineraries of fβ,p are exactly those of βx+ α mod 1.
Now, let β < −1, −β − 1 < α < 1, set p := α

1−β and define the map ϕ :

[0, 1] → [βp, β(p − 1)], x 7→ β(p − x). Then Tβ,α,± = ϕ−1 ◦ fβ,p,± ◦ ϕ. Therefore,
the itineraries of ϕ−1(p) = −α/β under Tβ,α,− and Tβ,α,+ are a = τβ,p,−(p) and
b = τβ,p,+(p). Hence (a;b) is alt-admissible. Moreover, we have a ∈ 00Ω, b ∈ 11Ω,

and β+1
β−1 < p < 1

1−β holds if and only if f2
β,p,−(p) = β2p < β(p− 1) = fβ,p,+(p) and

f2
β,p,+(p) = β2p− β2 − β > βp = fβ,p,−(p), i.e., S

2(a) < S(b) and S2(b) > S(a).

On the other hand, let (a;b) be alt-admissible, S2(a) < S(b) and S2(b) > S(a),
and set β := −g

(

Ω(a,b)
)

, α := p (1−β) with p := 〈a〉β . We first show that a ∈ 00Ω
and b ∈ 11Ω. Assume that a starts with 01. Then each 0 in a or b is followed by
a 1. Moreover, S2(b) > S(a) implies that b starts with 111 or 101. In the latter
case we have a = 01 and b = 10, contradicting that g

(

Ω(a,b)
)

> 1. If b starts with

111, then we must have b = 1, hence each 1 in a is followed by a 0 as otherwise a

would end with b. This gives that a = 01, also contradicting that g
(

Ω(a,b)
)

> 1.
By symmetry, b cannot start with 10. Now, we obtain from the considerations in
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the previous paragraph that a,b are the critical itineraries of βx + α mod 1, with
β < −1, −β − 1 < α < 1.

5. Exponential growth rates

5.1. Lexicographic order. The following lemma is similar to [26, Theorem 3].

Lemma 8. Let a ∈ 0Ω, b ∈ 1Ω, u ∈ 01 {0, 1}∗, v ∈ 10 {0, 1}∗, such that a,b ∈
{u,v}ω, a ∈ Ω(a,b], b ∈ Ω[a,b), u ∈ Ω(u,v], and v ∈ Ω[u,v), where Ω is equipped
with the lexicographic order. Then

g
(

Ω(u,v)
)

= g
(

Ω(a,b)
)

.

Proof. Since

Ω(u,v) ⊆ Ω(a,b) ⊆ Ω(uv,vu),

it suffices to show that g
(

Ω(uv,vu)
)

= g
(

Ω(u,v)
)

.
First we prove that

(5.1) Ω(uv,vu) ∩ [u,v] ⊆ {u,v}ω.
Let c ∈ Ω(uv,vu) ∩ [u,v], and consider an arbitrary decomposition c = wd with
w ∈ {u,v}∗, d ∈ Ω. Assume that d starts with 0. Then c ∈ Ω(uv,vu) implies that
d ≤ uv and that d ≥ u when w ends with a word in v {u}∗. If w contains no
occurrence of v, i.e., w ∈ {u}∗, then we get d ≥ u from c ∈ [u,v]. Therefore, we
have u ≤ d ≤ uv, hence d starts with u. Symmetrically, we obtain that d starts
with v whenever it starts with 1. Therefore, (5.1) holds, and

Ω(u,v) ⊆ Ω(uv,vu) ⊆ Ω(u,v) ∪
∞
⋃

n=0

Ω(u,v)
n {u,v}ω,

where Ω
(u,v)
n denotes the set of length n prefixes of words in Ω(u,v). This implies

that g
(

Ω(u,v)
)

≤ g
(

Ω(uv,vu)
)

≤ max
(

g
(

Ω(u,v)
)

, g
(
⋃∞

n=0 S
n{u,v}ω

))

. Hence we

only have to show that g
(
⋃∞

n=0 S
n{u,v}ω

)

≤ g
(

Ω(u,v)
)

.
Next we prove that

(5.2) {r, s}ω ⊆ Ω(u,v),

where r is the longest common prefix of u and Sn(v), with n ≥ 1 such that Sn(v)
is maximal among all suffixes of v starting with 0, and s is the longest common
prefix of v and Sm(u), with m ≥ 1 such that Sm(u) is minimal among all suffixes
of u starting with 1. Note that r and s are finite words because Sn(v) < u by
v ∈ Ω[u,v) and Sm(u) > v by u ∈ Ω(u,v]. Moreover, Sn(v) starts with r0 and u

starts with r1, v starts with s0 and Sm(u) starts with s1. Therefore, we have

Sn(v) ≤ rSn(v) ≤ · · · ≤ r < s ≤ · · · ≤ sSm(u) ≤ Sm(u).

Since Sn(v) ∈ Ω(u,v) and u ∈ Ω(u,v), we have rc ∈ Ω(u,v) for all c ∈ Ω(u,v) with
c ∈ [Sn+|r|(v), S|r|(u)] ⊇ [Sn(v), Sm(u)]. Symmetrically, we also have sc ∈ Ω(u,v)

for all c ∈ Ω(u,v) ∩ [Sn(v), Sm(u)], thus

rc, sc ∈ Ω(u,v) ∩ [Sn(v), Sm(u)] for all c ∈ Ω(u,v) ∩ [Sn(v), Sm(u)].

By compactness of Ω, we get that (5.2) holds, thus g
(
⋃∞

n=0 S
n{r, s}ω

)

≤ g
(

Ω(u,v)
)

.

It remains to prove that g
(
⋃∞

n=0 S
n{u,v}ω

)

≤ g
(
⋃∞

n=0 S
n{r, s}ω

)

. To this end,
we show that min(|r|, |s|) ≤ min(|u|, |v|) and max(|r|, |s|) ≤ max(|u|, |v|). The
latter inequality follows from the definition of r and s. If |u| = |v|, then the former
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inequality also holds. It remains to consider the case |u| 6= |v|; w.l.o.g. |u| < |v|.
Suppose that |r| > |u|. Then, for some k ≥ n, Sk(v) starts with ut0, with some
prefix t of u, while u starts with ut1. Write Sm(u) = w1c, with w a suffix of ut of
length at most |u|. As Sk+|ut|−|w|(v) starts with w0, and v ≤ Sk+|ut|−|w|(v), we
obtain that |s| ≤ |w| ≤ |u|. Therefore, we have min(|r|, |s|) ≤ min(|u|, |v|), which
concludes the proof of the lemma. �

5.2. Proof of Theorem 2. We show first that (3’) implies (3), when (1) and (2)
hold. We only have to show that each u satisfying the conditions of (3) starts with 01
(and, symmetrically, v starts with 10). If u started with 00, then we had u = 0 and
thus g

(

Ω(u,v)
)

= 1, contradicting the assumption that g
(

Ω(u,v)
)

= g
(

Ω(a,b)
)

> 1.
The converse implication is a direct consequence of Lemma 8.

5.3. Alternating lexicographic order. For the alternating case, the following
lemma and the subsequent remarks show that the condition g

(

Ω(u,v)
)

= g
(

Ω(a,b)
)

is often easy to verify. (Recall that g
(

Ω(u,v)
)

can be determined by Lemma 3.)
However, Example 3 in Section 3 shows that, contrary to the case of positive β, it
is not sufficient that a,b ∈ {u,v}ω and (u;v) is a pair of critical itineraries.

Lemma 9. Let a ∈ 0Ω, b ∈ 1Ω, u ∈ 0 {0, 1}∗, v ∈ 1 {0, 1}∗, such that a,b ∈
{u,v}ω, a ∈ Ω(a,b], b ∈ Ω[a,b), u ∈ Ω(u,v], and v ∈ Ω[u,v), where Ω is equipped
with the alternating lexicographic order. If g(Ω(u,v))−|u| + g(Ω(u,v))−|v| < 1, then

g
(

Ω(u,v)
)

= g
(

Ω(a,b)
)

.

Proof. Let

amin = u, amax = uv, bmin = vu, bmax = v, if |u| and |v| are even,

amin = uv, amax = uuv, bmin = vvu, bmax = vu, if |u| and |v| are odd,

amin = u, amax = uvu, bmin = vvu, bmax = vu, if |u| is even and |v| is odd,
amin = uv, amax = uuv, bmin = vuv, bmax = v, if |u| is odd and |v| is even.
Then amin ≤ a ≤ amax and bmin ≤ b ≤ bmax, thus

Ω(amin,bmax) ⊆ Ω(a,b) ⊆ Ω(amax,bmin)

and Ω(amin,bmax) ⊆ Ω(u,v) ⊆ Ω(amax,bmin). We first prove that

(5.3) Ω(amax,bmin) ∩ [amin,bmax] ⊆ {u,v}ω.
Let c ∈ Ω(amax,bmin)∩[amin,bmax], and consider an arbitrary decomposition c = wd

with w ∈ {u,v}∗, d ∈ Ω. Assume that d starts with 0. Then d starts with u

because amin ≤ d ≤ a. Here, the inequality amin ≤ d comes from the following
considerations. If |u| and |v| are even, then d ≥ u as in the proof of Lemma 8. If |u|
and |v| are odd, then d ≥ uv follows from c ∈ [uv,vu] when w ∈ {uv}∗ ∪v {uv}∗
and from c ∈ Ω(uuv,vvu) when w ends with a word in {u,vv} {uv}∗. If |u| is even
and |v| is odd, then d ≥ u follows from c ∈ [u,vu] when w ∈ {u}∗ ∪ v {u}∗ and
from c ∈ Ω(uvu,vvu) when w ends with a word in {uv,vv} {u}∗. Finally, if |u| is
odd and |v| is even, then d ≥ uv follows from c ∈ [uv,v] when w is the empty
word and from c ∈ Ω(uuv,vuv) when w ends with u or v. Symmetrically, we obtain
that d starts with v whenever it starts with 1. Therefore, (5.3) holds, and we have

Ω(amin,bmax) ⊆ Ω(amax,bmin) ⊆ Ω(amin,bmax) ∪
∞
⋃

n=0

Ω(amin,bmax)
n {u,v}ω,
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thus g(Ω(amax,bmin)) = max(g(Ω(amin,bmax)), g
(
⋃∞

n=0 S
n{u,v}ω)

)

.

Since g
(
⋃∞

n=0 S
n{u,v}ω

))

is the only solution of x−|u| + x−|v| = 1 with x ≥ 1,

g(Ω(u,v))−|u| + g(Ω(u,v))−|v| < 1 implies that g
(
⋃∞

n=0 S
n{u,v}ω

))

< g
(

Ω(u,v)
)

≤
g
(

Ω(amax,bmin)
)

, thus g
(

Ω(amax,bmin)
)

= g
(

Ω(amin,bmax)
)

, which gives that g
(

Ω(u,v)
)

=

g
(

Ω(a,b)
)

. �

From the proof of Lemma 9, we can also derive other conditions that guaran-
tee g

(

Ω(u,v)
)

= g
(

Ω(a,b)
)

, e.g., g(Ω(amin,bmax))−|u| + g(Ω(amin,bmax))−|v| ≤ 1, or

g(Ω(u,v))−|u| + g(Ω(u,v))−|v| ≤ 1 and g
(

Ω(u,v)
)

≤ g
(

Ω(a,b)
)

.

6. Lorenz Maps

A Lorenz map, as defined, e.g., in [12], is a function f : [0, 1] → [0, 1] satisfying:

(1) There exists a c ∈ (0, 1) such that f is continuous and strictly increasing
on [0, c) and on (c, 1];

(2) limx↑c f(x) = 1 and limx↓c f(x) = 0.

For β > 1, 1 ≤ p ≤ 1
β−1 , the restriction of fβ,p to

[

0, β
β−1

]

is thus conjugate to the

Lorenz map with constant slope β and c = β−1
β p.

In [12], the authors define a fairly weak notion of what it means for a Lorenz map
to be expanding. Specifically, a Lorenz map is said to be topologically expansive if
there exists an ǫ > 0 such that any two distinct forward orbits (x0, x1, x2, . . . ) and
(y0, y1, y2, . . . ) satisfy |xi − yi| ≥ ǫ for some i ≥ 0. They prove that a pair (a;b)
of binary strings is a pair of critical itineraries of a topologically expansive Lorenz
map if and only if (a;b) satisfy condition (1) in Definition 1.

In [7, 9], for example, the authors define a stronger notion of what it means for
a Lorenz map to be expanding. Specifically, a Lorenz map is an L1+ǫ map if f is
differentiable except at the point c of discontinuity and if there exists an ǫ > 0 such
that f ′(x) ≥ 1 + ǫ for all x 6= c. In [22], the author proves that if an L1+ǫ map f
is transitive, then f is topologically conjugate to a (generalized) β-transformation.
In [9], the authors give necessary and sufficient conditions for an L1+ǫ map to be
transitive in terms of its critical itineraries. In [7], the author gives necessary and
sufficient conditions for an L1+ǫ map to be topologically conjugate to a generalized
β-transformation in terms of its critical itineraries. There does not, however, seem
to be a characterization of the pairs of critical itineraries of an L1+ǫ map. The pair
(a;b) with

a = 011100, b = 100011,

is the pair of critical itineraries of an L1+ǫ map, but is not, according to the main
result of this paper, the pair of critical itineraries of a generalized β-transformation.
The pair (a;b) with

a = 011110, b = 10011110,

is an example of a pair of critical itineraries of a topologically expanding Lorenz
map, but not the pair of critical itineraries of an L1+ǫ Lorenz map. This can be
verified by noting that, if (a;b) were the pair of critical itineraries of an L1+ǫ map,
then by the criteria in [7], it would be the pair of critical itineraries of a generalized
β-transformation. But, by the main theorem of this paper, that is not the case.
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