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Abstract(15 

 16 

Satellite data, with their spatial and temporal coverage, are particularly well suited for the 17 

analysis and characterization of space-time-varying relationships between geophysical processes. In 18 

this study, we investigate the forecasting of a geophysical variable using both satellite observations 19 

and model outputs.  The studied latent-regime models aim here at identifying time-varying regime 20 
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shifts within a dataset which is a key of interest for geophysical processes driven by the seasonal 21 

variability. As a specific example, we study the daily concentration from 2007 to 2009 of mineral 22 

suspended particulate matters estimated from the satellite-derived MODIS, MERIS and SeaWiFS 23 

dataset, in coastal waters adjacent to the Gironde River mouth (South West of France). We clearly 24 

show that the forecast of the high resolution suspended particulate matter dataset using 25 

environmental data (wave height, wind strength and direction, tides and river outflow) and a multi-26 

regime model is significantly improved compared with a classical multi-regression and a Support 27 

Vector Regression model. Each regime is here characterized by a regression function and a 28 

covariance structure.  29 

From an analytical point of view, we compare the results obtained with four models: 30 

homogeneous and non-homogeneous Markov-switching models, with and without an 31 

autoregressive term, i.e. the suspended matter concentration observed the day before. Inclusion of 32 

an autoregressive term is motivated by the strong natural autocorrelation level depicted by 33 

geophysical time series, but, one may avoid this term if, for example, the observations are no more 34 

available during specific conditions or periods. With the evaluated models, best results are obtained 35 

with a mixture of 3 regimes for both autoregressive and non-autoregressive models. Prediction 36 

performance at day+1, using the non-autoregressive models and a validation dataset, reached 80% 37 

of the observed variance, compared to 32% for a standard single-regime (regression) analysis, and 38 

40 % for a Support Vector Regression.  Inclusion of an autoregressive term increases results to 93% 39 

of explained variance for the mixture model compared to 80% without autoregressive term and 85% 40 

using a Support Vector Regression. These results stress the potential of the identification of 41 

geophysical regimes to improve the forecasting, or the inversion, of a high resolution geophysical 42 

variable using both observations and model outputs. We also show that for short periods of lack of 43 

observations (less than 15 days), estimations using the autoregressive term are better than without. 44 

In this case the autoregressive term and the transition probabilities between regimes are estimated 45 

using available model outputs. 46 



Index term: 1) Satellite-derived suspended matter time series analysis. 2) Statistical forecasting. 3) 47 

Regime-switching latent regression models. 4) Joint analysis of satellite-derived products and 48 

operational model outputs. 5) Gironde river plume.   49 

1 Introduction(50 

 51 

The forecasting of a geophysical variable using statistical models is an alternative to model-52 

based approaches which typically involve complex simulation and/or assimilation [1, 2]. For 53 

instance, coupled hydrodynamic and sediment transport models can be used to estimate the 54 

concentration of suspended particulate matters within the water column [3] while statistical 55 

approaches may use available satellite and model data to predict the same variable [4]. Many 56 

statistical approaches have been proposed and evaluated to forecast or infer a studied variable from 57 

predictors. Among them, linear multivariate regression [5] and non-linear (polynomial) multivariate 58 

regression [6] are the most known. Numerous specific models dedicated to time-series analysis such 59 

as AutoRegressive Moving Average (ARMA) and AutoRegressive Integrated Moving Average 60 

(ARIMA) models [7] have also been developed initially to address financial time series. These 61 

latest, which aim at studying the behavior of a time series without considering forcing factors, have 62 

also been applied to geophysical time series [8]. Non-linear regressions, based on supervised 63 

learning strategies, such as Neural Networks [9] and Support Vector Regressions (SVR) [10] may 64 

provide relevant alternatives to estimate a variable from predictors. In the context of geophysical 65 

studies, they may nevertheless suffer from two major drawbacks. First, though relevant regression 66 

performances may be reported, these models are not physically interpretable and may be very 67 

sensitive to the training dataset. Second, multi-regime dynamics, often exhibited by geophysical 68 

processes driven by the seasonality [11], cannot be addressed by non-linear models, contrary to 69 

latent-regime models as demonstrated in our study.  70 
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We propose here to characterize time-varying relationships between a variable and its forcing 71 

parameters using latent-regime models, and hence optimize forecasting results. As an illustration, 72 

we address the concentration of inorganic suspended particle matters (SPIM), estimated from 73 

satellite data using a regional algorithm [12, 13], and observed in the mouth of the Gironde estuary. 74 

In this area, sediments are mainly exported from the Gironde estuary [13, 14] and SPIM 75 

concentration clearly depends on the local physical forcing: swell, tide, wind and river discharge. A 76 

minimum of energy has to be brought by waves and tides to re-suspend cohesive sediments 77 

accumulated at the bottom. Conversely, when sediments have been re-suspended in the water 78 

column by wave influence, their settling velocity depends on their size and density [15] and 79 

physico-chemical properties [16]. This example stresses that the relationships between the studied 80 

variable (SPIM) and the causing factors evolve in space and time and potentially requires advanced 81 

statistical methods to identify the underlying geophysical regimes.   82 

From a methodological point of view, “latent regime regressions” also referred as “clusterwise 83 

regressions” [17, 18] are particularly appealing to identify such non-linear and multi-regime 84 

patterns within a dataset. Each regime is associated with a linear regression and a non-linear 85 

relationship is thus estimated as a sum of linear contributions. Regarding the temporal dynamics of 86 

these regimes, we here consider Markovian processes [19], which state the transitions in time 87 

between two regimes. The standard Hidden Markov Model (HMM) and Non-Homogeneous 88 

Markov Model (NHMM) are evaluated [19]. The inclusion of an autoregressive term (HMM-AR) 89 

and (NHMM-AR) is also discussed. This aspect is motivated on the one hand by the strong 90 

autocorrelation level depicted by geophysical time series [20]. When the observation at t-1 is 91 

available, it is obvious, considering the strong natural autocorrelation of geophysical data that the 92 

forecast at time t should take into account the observation at time t-1. Conversely, for specific 93 

applications, or if the observations are not available during long periods (such as winter storms, or 94 

after a sensor failure), one may need to estimate the variable without using the observations of the 95 

ronan fablet

ronan fablet



previous days. We discuss here the choice between autoregressive or not autoregressive models for 96 

long lack of observation period using forecasting results from t+1 to t+15.  97 

Model parameter estimation is carried out from a dataset composed of 5862 time series of 1096 98 

points in the mouth of the Gironde estuary in the [3°W-1°E ; 45-46.5°N] area during the period 99 

2007-2009. Validation is performed on the same area for using the data for the year 2010. We used 100 

EOFs to reduce the dimension of the space-time observations. This is a usual approach in spatio-101 

temporal statistics [21, 22] although alternatives may be considered such as linear discriminant 102 

analysis [23], and, we could also introduce a latent variable to describe the regime at each location 103 

and interact with the regimes at other locations. Nevertheless, such models are known to be very 104 

difficult to fit on the data and remain a research challenge for statisticians. We infer our mixture 105 

model using the expansion coefficients of the first four modes of the EOF which explain 99% of the 106 

total variance. The variables used as predictors for the SPIM expansion coefficients (EC) are the 107 

wave height issued from a numerical model [24], the wind fields optimally interpolated from 108 

satellite observations [25], the tide coefficient [26] and the Gironde fresh water discharge (sum of 109 

the Garonne and Dordogne Rivers contributions).  110 

2 Methods(111 

2.1 Markov(switching(forecast(models(112 

 113 

We address here the study of a two dimensional scalar geophysical time series Y.  In a hidden 114 

Markov model framework (HMM; [19]), one states two different processes, the observed process Y 115 

and a hidden process Z. The observed process (here the turbidity) is assumed to be temporally 116 

dependent of the hidden process. The hidden process Zt is modeled as a first order Markov chain 117 

[19]. At a given time t, the hidden variable Zt = k is a discrete value which states the regime 118 
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characterized by a latent [17] regression model with coefficient Bk between the variable Yt and the 119 

predictor Xt. At time t, knowing regime variable Zt, the observed variable Yt is modeled as: 120 

(!""|"#"=$)="%"&$"       (1) 121 

where %"&$ is the regression function, which predicts variable Yt from some predictors Xt for 122 

regime Zt = k.  123 

Figure 1 shows a graphical representation of the conditional dependencies involved in the 124 

model, in the form of the general Directed Acyclic Diagram (DAG). It illustrates the interactions 125 

between the variable Yt,, the predictors Xt, the hidden regime Zt and the covariate St which acts on 126 

regime switching. Xt may contain lagged values of Yt (referred as autoregressive terms) and/or 127 

exogenous covariates such as wind or wave height. Figure 1 defines a general family of model 128 

which encompasses the most usual ones with regime switching. When no covariate is considered 129 

i.e., Zt only depends Zt-1, and, Yt, only depends on (Yt,-s ..Yt,-1) and Zt, we retrieve the usual Markov 130 

switching autoregressive (MS-AR). If we further assume that s=0 (without autoregressive 131 

component where Yt, only depends on Zt) then we obtain the Hidden Markov Models (HMMs). 132 

When Zt does not dependent on Zt-1, and the dependence on St is parameterized using indicator 133 

functions, we obtain the threshold autoregressive (TAR) model which is the other important family 134 

with regime switches in the literature. HMMs, MS-AR and TAR have been used in many fields of 135 

applications including geosciences [27]. 136 



 137 

Figure 1: Graphical representation of the various Markov-Switching Models considered in this 138 

work: the arrows state the conditional dependencies between the random processes in play, namely 139 

hidden regime process Z, observed process Y, prediction process X and regime change covariate 140 

process S.  141 

In the following equations (2 to 14), Xt and St are known, as they are either observations or 142 

numerical model outputs. Given (1) the conditional likelihood of the observation Yt given 143 

predictors Xt and regime Zt is expressed as [17]: 144 

PYtXt,Zt=k~N(XtBk,σk)         (2) 145 

where N represents the Gaussian probability density function with mean XtBk and covariance 146 

σk. Hence, given predictors up to time t we can predict process Y from its expectation conditionally 147 

to process X: 148 



!"='"!"%"=$=1()#"=$%""."EYtXt,Zt=k=$=1()#"=$%""."XtBk""  (3) 149 

where K is the number of regimes.  )#"=$%"=*"$0  is the posterior probability that the 150 

dynamical regime Z at time t is of type k [17]. 151 

3 Markov=switching(priors(152 

 153 

Stating hidden regime process Z as a first-order Markovian process amounts to modeling the 154 

transition between successive regimes at time t and time t-1. In the simplest case, one assumes 155 

homogeneous transitions, i.e. time-independent and context-independent transitions, and the 156 

Markovian process is fully characterized by its transition matrix P(Zt =k | Zt-1 =l) for possible pairs 157 

of successive regimes (k, l). In the HMM setting the conditional distribution of Zt, given the past 158 

values Ys and Zs for s<t, is assumed to depend only on Zt-1 (Fig. 1): 159 

*"$0=)#"=$0!0..!t)=0+=1()!"0#"0=$.)(#"0=$#"−10=+.)#"−1=+0!0..!t−1)    (4) 160 

A NHMM extends this idea by allowing the transition matrix between the hidden states to 161 

depend on a set of observed covariates St. Hughes and Guttorp [28, 29] highlighted the added value 162 

of the NHMM to characterize the links between the large-scale atmospheric measures and the 163 

small-scale spatially discontinuous precipitation field. In the NHMM settings, the transition matrix 164 

between states )(#""=$#"−1"=+  in (3) is now time-dependent and conditioned by the covariates St:  165 

*"$0=)#"=$0!0,..,!t,00St)= 166 

+=1()!"0""#"0=$,.)(#"0=$#"−1=+,"St.)#"−1=+"0!0"..!t−1)          (5) 167 

with: 168 



)(#"=$0#"−10=+,00St=)St00#"0,=$,"""#"−10=+0.00)#"0=$#"−10=+000/0    169 

$,+)St00#"=$0,0"#"−10=+0.00)#"0=$#"−10=+       (6) 170 

The non-homogeneous transition between states is derived from the likelihood of the covariate 171 

St given the state transition (Zt, Zt+1). We suppose that the probability density function of the 172 

covariates during this change of state follows a normal distribution:  173 

PSt0""Zt0=k,00Zt−10=l=Nµl,0k,0Σl,0k          (7) 174 

Where N is a multivariate normal distribution with n means ,-=µl,0 k,0 Σl,0 k, µ is here of 175 

dimension n, the number of covariates used to estimate the transitions. For a ‘standard’ multivariate 176 

gaussian distribution Σl,k is a covariance matrix. In the present application, and to reduce the 177 

number of parameters to be estimated, we consider that the predictors are uncorrelated (null 178 

covariance) and their relative influence is identical (same variance), i.e. Σl,k is a multiple of the 179 

identity matrix.  180 

 181 

3.1 Estimation(of(the(model(parameters((182 

 183 

The considered models involve two categories of parameters: those of the observation model, θk, 184 

namely regression coefficient Bk and standard deviation σk for each regime (Eq. 2) and those of the 185 

Markov-swtiching prior, namely θs (Eq. 5). Given observed Y and X series, we proceed to the 186 

estimation of model parameters according to a classical maximum likelihood (ML) criterion using 187 

an iterative Expectation Maximisation (EM) procedure [30] expressed here without covariates: 188 

.,=""PYtY0.."Yt−1,0θ       (8) 189 



where θ = {θs, θk} is the set of parameters to be estimated.  For a given initialization for the 190 

parameters the EM procedure iterates estimation steps (E-step) of the posterior regime likelihood 191 

*"$"with the given modes and the maximisation step (M-step) for the update of the parameters given 192 

these posteriors. The algorithm iterates until convergence between steps n and n+1, i.e.  193 

|.,(/)−.,(/+1)|<10−3 . The posterior likelihood *"$"  (Eq 3&4) of the latent regime Zt, is 194 

estimated in the E-step using the classical forward-backward recursions [31, 32] given series X and 195 

Y and current parameter estimate θk
(n), θs

(n). The M-step re-estimates the parameters θk
(n+1), θs

(k+1). 196 

For this, it is often possible to break the optimization problem into several lower dimensional 197 

optimization problems which are much quicker to solve [32]. More precisely, for all the models 198 

considered in this paper, it is possible to separate the parameters related to the evolution of the 199 

hidden Markov chain θs, and the parameters related to the evolution of the observed process in each 200 

regime θk: 201 

θ=0012304,-00"log ()(#"=$0#"−10=+,00St,θ-(n)))#"=$,#"−10=+"Y0.."YT,0St,0θ(n)00 (9) 202 

θ$""&$0(n+1)=01235/&$")#"=$Y0.."YT,θ(n))0(!"−&$%"2)0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0(10)06$0(n+1)=")#"=$Y0.."203 

YT,θ(n))00(!"−&$%"2)0000000000000000000000000000000000000000000(11)    204 

      205 

3.2 (Forecasting(application(206 

 207 

The considered multi-regime regression models are applied to the short-term forecasting of 208 

series Y. More precisely, at a given time t, we aim at predicting variable Y at time t+dt. We 209 

typically assume that prediction variables X and covariates S, typically numerical simulations, are 210 

available up to time t+dt whereas the variable Y is only known up to time t.  is estimated using 211 

X0..t+dt and S0.. +dt (for inhomogeneous transitions). Thus, Y"+dt is given by the conditional 212 



expectation of variable Yt+dt given observations series up to time t and predictor series up to time t+ 213 

dt: 214 

         (12) 215 

For HMM and NHMM it resorts to: 216 

      (13) 217 

For autoregressive models HMM-AR and NHMM-AR, i.e. Xt +dt contains Yt +dt -1 which is not 218 

available,  is estimated using Yt .. ,  Xt .. Xt+dt-1 and . Estimated Y"+dt resorts to: 219 

    (14) 220 

It might be noted that these predictions actually account for the uncertainties in the 221 

determination of the underlying regimes. Contrary to deterministic methods, confidence interval 222 

and uncertainties on Y"+dt can be derived [33] which is a key issue for modeling considerations. 223 

 224 

3.3 Model(performance(estimation((225 

 226 

A key issue in practice, which has received lots of attention in the last few years, is the problem 227 

of model selection which aims at finding the ”optimal” number of predictors and covariates [31]. 228 

Hereafter, we have chosen to use both the Bayes Information Criterion (BIC) and the explained 229 

variance (EVAR) as a first guides. BIC index generally permits to select parsimonious models 230 

which fit the data well [34]. It is defined as: 231 

BIC = − 2 log*(L) + p*log(S)         (15) 232 



Where L is the likelihood of the data, p is the number of parameters and S is the number of 233 

observations. The likelihood which is an output of the backward-forward recursions performed in 234 

the E-step. We also use the classical explained variance, EVAR, to characterize the model 235 

relevance: 236 

0EVAR=1.−var0Y"+1−Y"+10/0var(Y"+1)       (16) 237 

BIC and EVAR are partially linked [34]. BIC tends to penalize complex models whereas 238 

explained variance criterion only qualifies the result and may lead to the over-parameterization of a 239 

model that typically lead to errors when other dataset are tested using the same parameterization. 240 

Therefore we consider both BIC and EVAR to assess the model performance.  241 

The choice of the predictors and the covariates is performed here as follows. We first select as 242 

predictors the variable showing a significant correlation with the studied variable. Given these 243 

predictor datasets, we tested all the possible configurations and chose the predictors which provide 244 

the lower BIC on the training dataset and the greatest EVAR using the training (EVAR_train) and 245 

the validation dataset (EVAR_valid). 246 

 247 

4 The(data(248 

 249 

4.1 The(studied(variable(250 

 251 

Non-algal SPM concentrations (SPIM) are estimated using an analytical algorithm [12] defined 252 

as the difference between total SPM and phytoplankton biomass, the latter derived from Chl-a. It 253 

incorporates mainly mineral SPM and smaller amounts of organic SPM not related to living 254 



phytoplankton. This method to derive non-algal SPM from remote-sensing reflectance is based on 255 

the inversion of a simplified equation of radiative transfer, assuming that chlorophyll concentration 256 

is known.  This merged dataset consists of fields of non-algal surface SPM concentrations, derived 257 

from the Sea-viewing Wide Field-of-view Sensor (SeaWiFS), the Moderate Resolution Imaging 258 

Spectroradiometer (MODIS) and the Medium Resolution Imaging Spectrometer (MERIS) sensors, 259 

provided by the Ocean Colour TAC (Thematic Application Facility) of MyOcean, and interpolated 260 

with a kriging method [35] for the period 2007–2009 over the Gironde mouth river from 3°W-1°E ; 261 

45-46.5°N. Finally 5682 continuous time series of 1096 days compose our initial dataset of mineral 262 

suspended matters concentration. 263 

We first account for the space-time variability of the dataset, previously detrended and centered 264 

for each time series [37] using a EOF decomposition [21], expressed here using the matrix form: 265 

Cov(SPIM)=UVUt         (17) 266 

where U is a here 5682*5682 matrix containing the spatial modes (Eigenvectors) of the 267 

covariance decomposition (ordered by percentage of explained variance). Associated with each 268 

spatial mode k, its expansion coefficient (also referred in the literature as principal component) is 269 

the time evolution of the kth mode: 270 

EC_SPIM k,t = SPIM t * Uk        (18) 271 

Figure 2 shows the four first spatial modes of the EOF decomposition. Figure 3 depicts the four 272 

associated time series EC_SPIMi=1,4. The first mode (Fig.2a) comprises 85% of the total variance. It 273 

clearly addresses the seasonal cycle as shown in Fig. 3a where the switch between winter (high 274 

values of EC_SPIM1 correspond here to high values of SPIM observed in winter) and summer 275 

periods is clearly visible. The variability around the seasonal mean is captured by the other modes 276 

(Fig.2 c-e & Fig 3 c-e). Mode 2 refers to the inter-annual and the intra-seasonal variability in the 277 

shoreward gradient and represents 7% of the total variance. Mode 3 addresses some North-South 278 



gradients and represents 4% of the total variance and mode 4 is clearly influenced by the Gironde 279 

river (Fig. 2d), which brings sediments during water outflow, and represent 3% of the variance. By 280 

construction, EOF decomposition imposes the orthogonality [21] of the spatial modes (Fig. 2). 281 

  

  

Figure 2: spatial modes of the EOF decomposition of the SPIM observed from satellite from 282 

2007-2009 in the Gironde mouth river. From left to right and top to bottom the first four EOF 283 

modes account respectively for 85, 7, 4 and 3% of the total variance. 284 

b a 

c d 



  

  

Figure 3: EOF decomposition of the SPIM observed from satellite from 2007-2009 in the 285 

Gironde mouth river: from left to right and top to bottom, the expansion coefficients (EC_SPIM1-4) 286 

associated with the first four EOF modes depicted in Fig. 2, i.e. the time evolution of the spatial 287 

modes. The reconstruction of the SPIM variable from the estimated ECs is performed as: 288 

SPIM"0=0$EC_SPIM0.07$        (19) 289 

The total explained variance using the 4 first modes is shown Fig. 4. On average, the explained 290 

variance represents 99 % of the total variability on the areas with some local minima of 60% 291 

observed at the very near-shore and the Southwestern part of the area. 292 

a b 

c d 
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 293 

Figure 4: Variance explained by the four first modes of the EOF decomposition of the 294 

suspended matters. 295 

 296 

4.2 Predictors(and(covariates(297 

 298 

The predictors X are the variables used in the estimation of Y and Z any time (Eq. 13 & 14). We 299 

used here wave height (WH) daily means of the Wave Watch 3 model (WW3; [24, 36]) provided by 300 

the IOWAGA and PREVIMER programs, Western and Northern winds interpolated from 301 

QuickSCAT and ASCAT observations in conjunction with ECMWF forecasting [25], provided by 302 

Ifremer, tide index (SHOM, 2000) at Bordeaux and the flow measurement of river la Gironde. 303 

Similarly to the SPIM data, all the data were log transformed. For the wind data which is signed, the 304 

transformed log variable was signed negatively a posteriori to the log transformation. The WH first 305 

mode of the EOF decomposition explained 98 % of the total variance, 93% for the Northern wind 306 



(WND1), and 96% for the Western wind (WND2). Covariates are the normalized predictors used in 307 

the estimation but considered at t-2. This lag has been estimated as the optimal time-lag using BIC 308 

and EVAR results on the training dataset. 309 

 310 

5 Results(311 

 312 

We summarize in Table 1 the prediction performance for the first four ECs of the SPIM issued 313 

from four models: HMM, NHMM, HMM-AR, and NHMM-AR. The number of considered modes 314 

for the mixture varies from 1 to 3. The one-mode models refer to a simple multivariate regression 315 

analysis.  For each configuration we provide the BIC and EVAR_train on the training dataset 316 

(2007-2009) and EVAR_valid on the validation dataset (2010). Note that the selection of the 317 

predictors and resulting covariates is achieved as a prior step as described in Section 2.6. The first 318 

mode of the EOF decomposition explains 85% of the total variance. EC_WH1 and EC_WND21 319 

(respectively the expansion coefficient of the first EOF of the Western winds) are identified as 320 

being the relevant predictors. This mode captures the mean seasonal variability of the SPIM, which 321 

is mainly driven by WH and the North Atlantic storms and at a second order by the Western winds. 322 

For EC_SPIM1, when no autocorrelation term is used, the best fit is obtained for a 3-regime 323 

NHMM model (BIC= 9873, EVAR_train=90% and EVAR_valid=85%). When a first order 324 

autocorrelation term is added, the best fit is issued from a 3-regime HMM-AR model:  BIC= 7997, 325 

EVAR_train = 98% and EVAR_valid = 97%. The lag-1 autocorrelation value is 0.85 for 326 

EC_SPIM1, and therefore the weight given Yt-1 is important compared to the other covariates, 327 

EC_WH1 and EC_WND21. This stresses the fact that when available first autoregressive term 328 

should be included to enhance the performances 329 
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The second mode of the EOF decomposition of the SPIM variability explains 7% of the total 330 

variance. The selected predictors are the first mode of the Western wind, the tide, and the river 331 

flow. The variability captured by EC_SPIM2 relates to the local Westward wind, which is not 332 

captured by the WH model, and the very coastal variability introduced by the tide and the river 333 

outflow. For the non-AR models the selected model was the three-regime NHMM. It is interesting 334 

to note in this case that EVAR_valid increased from 50 to 73% between the HMM and the NHMM, 335 

highlighting the contribution of the non-homogeneous transition model. By contrast, the HMM-AR 336 

performed slightly better than the NHMM-AR.  337 

Table 1: Model performance for each EOF mode of the SPIM variability. For each 338 

configuration we report the BIC (a) and the explained variance (EVAR_train, b) for the training 339 

dataset (2007-2009), and the explained variance (EVAR_valid, c) for the validation dataset (2010). 340 

In bold are highlighted for each EC the selected configurations (see § 5.2). 341 

Number of modes, M 
EC_SPIM 

1 2 3 1 2 3 

HMM 
(a) 11183 
(b)  37 
(c)  32 

HMM 
10037 

84 
70 

HMM 
9874 
85 
75 

HMM-AR 
8157 
92 
91 

HMM-AR 
7986 
95 
93 

HMM-AR 
7997 
98 
97 1 

NHMM  
11184 

37 
34 

NHMM  
10037 

84 
71 

NHMM  
9873 
90 
85 

NHMM-AR 
8171 
92 
90 

NHMM-AR 
7994 
92 
94 

NHMM-AR 
8018 
98 
97 

HMM  
9403 
18 
12 

HMM  
8579 
67 
33 

HMM  
8129 
76 
50 

HMM-AR 
7167 
90 
87 

HMM-AR 
7098 
91 
89 

HMM-AR 
7075 
92 
91 2 

NHMM  
9451 
18 
12 

NHMM  
8614 
67 
44 

NHMM  
8152 
79 
73 

NHMM-AR 
7188 
89 
88 

NHMM-AR 
7383 
90 
87 

NHMM-AR 
7070 
92 
90 

3 

HMM  
8840 
12 
7 

HMM  
8222 
57 
44 

HMM  
7844 
68 
72 

HMM-AR 
6723 
85 
84 

HMM-AR 
6632 
86 
91 

HMM-AR 
6630 
88 
92 
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 NHMM  
8866 
11 
16 

NHMM  
8246 
59 
45 

NHMM  
7862 
75 
76 

NHMM-AR 
6745 
88 
86 

NHMM-AR 
6673 
88 
91 

NHMM-AR 
6703 
88 
92 

HMM  
8248 
18 
28 

HMM  
7596 
60 
63 

HMM  
7285 
71 
72 

HMM -AR 
6398 
85 
86 

HMM -AR 
6416 
85 
86 

HMM -AR 
6313 
86 
86 4 

NHMM  
8276 
18 
28 

NHMM  
7628 
62 
59 

NHMM  
7267 
70 
75 

NHMM-AR 
6426 
85 
83 

NHMM-AR 
6445 
85 
83 

NHMM-AR 
6357 
86 
85 

 342 

The third mode of the EOF decomposition of the SPIM variability explains 4% of the total 343 

variance. It captures some inter-annual and intra-seasonal variability of the latitudinal gradient of 344 

the SPIM.   The selected predictors are EC_WH1, EC_WND11 (Northern) and the tide. Once again, 345 

three-regime NHMM and HMM-AR provide the best results.  346 

Regarding the fourth mode of the EOF decomposition of the SPIM variability, which accounts 347 

3% of the total variance, EC_WH1, EC_WND21, the tide and the river flow are selected as 348 

contributive predictors.  We reconstruct 75 % of EC_SPIM3 variance of the validation dataset using 349 

a three-regime NHMM and 86% using a three-regime HMM-AR. We note that globally, the three 350 

indices (BIC, EVAR_train and EVAR_valid) tend to select the same models. 351 

 352 

5.1 Example(with(the(estimation(of(EC_SPIM1(((353 

 354 

We report in Figure 5 the temporal evolution of the three regimes of the NHMM for EC_SPIM1.   355 

In table 2 are shown the corresponding coefficients for each predictor and the intercept. The first 356 

regime (light grey), characterized by high SPIM levels (intercept of 65), is referred as a ‘winter 357 

regime’. The’ winter regime’ also strongly relates to the wave height (WH regression coefficient of 358 

0.6). Dark grey periods (regime 3) are identified as a ‘transition regime’, and medium grey (regime 359 
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2) identified as the ‘summer regime’. For regimes 2 and 3, the coefficients for WH decrease 360 

respectively to 0.12 and 0.09. In summer the energy brought by waves is not sufficient enough to 361 

re-suspend massively the sediments. It might be noticed that for all regimes the wind conditions 362 

show a small but significant effect on EC_SPIM1. When an autocorrelation term is added (HMM-363 

AR, table 2), the AR(1) coefficient value is 0.86 for the regime 1 (winter), and 0.9 for regime 2 and 364 

3 which underlies the natural higher autocorrelation level of SPIM when the concentration is low. 365 

Figure 4 compares the prediction of EC_ SPIM1 using a single multivariate regression (green) 366 

and the proposed multi-regime NHMM. In this case the explained variance value (Table 1) is of 367 

37% for the multivariate regression model compared to 85% for the three-regime NHMM.  368 

 369 

Figure 5: Estimation of the EC_SPIM1 (in black) using EC_WH1, EC_WND21 and a single 370 

regression (green) and a 3 regime NHMM (red). The nuances of grey in the background highlight 371 

the temporal distribution of the regimes. 372 

 373 



Table 2: Estimated regression parameters for each of the three regimes of the NHMM and the 374 

HMM-AR for the first mode of the SPIM EOF decomposition: regression parameters involve an 375 

intercept and the regression coefficients of the wave height and western wind velocity. 376 

 EC_WH1 EC_WND2 Intercept   

NHMM 
(1, winter) 0.6037 
(2, summer ) 0.0910 
(3, transition) 0.1210 

-0.0632 
0.0006 
0.0100 

65.0672 
-61.6442 
-24.6578 

 

 EC_WH1 EC_ WND2 Intercept  AR(1) 

HMM-AR 
(1) 0.2383 
(2) -0.0050 
(3) 0.0354 

-0.0033 
0.0168 
0.0035 

4.4694 
-3.9531 
0.6079 

0.86 
0.90 
0.90 

 377 

Figure 6 illustrates the non-homogeneous transition used in the NHMM between the ‘transition’ 378 

(Zt=3) and ‘winter’ (Zt =1) regimes. The probability of switching from regime 3 to 1 increases with 379 

wave height covariate WH1 with a probability of switching close to zero when WH1 is negative and 380 

a probability close to one for large WH1 values. 381 

 382 

Figure 6: Non-homogeneous transition between ‘transition regime’ (Zt=3) (light grey Fig. 5) 383 

and ‘winter regime’ (Zt=1) (light grey Fig. 5) as a function of the wave height covariate WH1.  384 

variance expliqué par chaque terme



5.2 Forcasting(of(the((SPIM((on(the(2010(validation(dataset(385 

 386 

We forecast SPIM fields from the reconstructed ECs and the selected models (Table 1 & Eq. 387 

19). Figure 7a&7b compare EVAR_valid of the initial field (SPIM) using the three-regime NHMM 388 

and NHMM-AR models selected in Table 1 for their results. On average we were able to predict at 389 

t+1 80% of the variance using the NHMM (Fig. 7a) and 90% using the NHMM-AR. The spatial 390 

distribution of the error is not homogeneous. Fig. 7a shows that EVAR_valid value is of 90% in the 391 

Northern part with nevertheless poorer results in the South. Fig. 7b shows that the AR1 component 392 

of the model increases EVAR for the whole area.  393 

We also considsr the results of a standard  multi-regression analysis. If only one regime is 394 

considerer NHMM and HMM resort to a strandard multivariate regression and NHMM-AR and 395 

HMM-AR to a strandard multivariate regression including an AR1 coefficient the transition 396 

probabilities being equal to 1. Fig. 7c shows the obtained results with the standard multivariate 397 

regression and Fig 7d the standard multivariate regression including an AR1. From Fig. 7c to 7a, the 398 

gain in explained variance is in mean about 250% (from in mean 32% Fig. 7c to 80% Fig. 7a) while 399 

for the AR models, the gain is about from 11% (from in mean 83% Fig. 7d to 93% Fig. 7b). 400 

 401 

  

a b 
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Figure 7: Explained variance for the 2010 validation dataset reconstructed using the selected 3-402 

regime NHMM (a) and NHMM-AR (b), compared with the standard multivariate regression 403 

without AR1 (c) and including an AR1 (d).  404 

To consider the model forecast performances, we report the short-term forecast results at 405 

different time steps (cf. Eq.13 & 14). For the HMM-AR and NHMM-AR  (Eq. 14) is the estimated 406 

value, the observation being not available (see § 3.2). Table 3 synthesizes the explained variance 407 

statistics using 3 regimes and the four tested models for the forecasting at t+1, t+5 and t+15 and the 408 

validation 2010 dataset (Eq. 19).  409 

The long term forecasting results are globally better with the NHMM. At t+15 using the 410 

NHMM we are able to forecast 74% of the variance for 2010, compared with 40% for the HMM. In 411 

this case where the covariates and predictors (mode outputs for which the short term predictions are 412 

assumed to be available) are used in the estimation of the regime transition probability . For 413 

autoregressive models, at t+15, we were able to forecast 75% of the 2010 variance with the 414 

NHMM-AR compared with 70% with the HMM-AR. For the NHMM-AR the covariates help in the 415 

estimation of both  and  . At t+15 NHMM and NHMM-AR show equivalent results underlying the 416 

maximal time-step to consider for the between these two models. 417 

c d 
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Table 3: Validation results on year 2010. Explained variance (Eq. 16) for the forecast at t+1, t+5 418 

and t+15 of the 2010 validation dataset. 419 

EVAR for the 2010 validation dataset 
 

HMM 
(t+1)   73 
(t+5)   63 
(t+15) 40 

 

HMM-AR 
93 
80 
70 

NHMM 
(t+1)   80 
(t+5)   77 
(t+15) 74 

NHMM-AR 
93 
82 
75 

 420 

SVR model was also evaluated to evaluate the performances of a non-linear model on the studied 421 

dataset. To perform the comparison, we train the SVR model (http://www.csie.ntu.edu.tw) for each 422 

EC using the same training dataset (2007-2009) and performed forecasting using the same 423 

validation dataset (2010). We used the setting as following: model epsilon-SVR (s=3), linear or 424 

polynomial kernel (t=0 or 1) and the same inputs (predictors, covariables) for each EC. Parameters 425 

c and g [10] were optimised for each EC using the training dataset and the cross validation mode.  426 

On the 2010 validation dataset, better forecast results reached 40% at t+1 of the EVAR (without 427 

AR) and 85% with an AR coefficient. The results were significantly worse than those obtained 428 

using the time-varying models for increasing time steps. The SVR can address non-linear 429 

relationships, it cannot nevertheless deal with multi-regime processes. By contrast, the latent-regime 430 

model addresses by nature multi-regime processes and can approximate non-linear relationships as 431 

a series of linear models. 432 

 433 
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6 Discussion(434 

 435 

We investigated the relevance of four regime-switching latent regression models, namely 436 

HMM, NHMM, HMM-AR and NHMM-AR to characterize time-varying linear relationships 437 

between the high resolution inorganic suspended matter concentration (SPIM), estimated from 2007 438 

to 2009 using MODIS, SeaWiFS and MERIS data in a coastal area, and its forcing conditions, i.e. 439 

the wave height, the Northern and Western winds, the tides and the river flow. The estimated 440 

regimes are then used to forecast the SPIM using the independent year 2010 dataset, from t+1 to 441 

t+15.  442 

An optimal number of three distinct geophysical regimes were needed to capture the different 443 

dynamics and optimize forecasting performance. Autoregressive and non-homogeneous model 444 

showed better performances. With the evaluated models and the 2010 validation dataset we were 445 

able to forecast at t+1 80 % of the variance explained using a NHMM and 93 % using a NHMM-446 

AR. In the latest case the strong natural autocorrelation of the studied signal is an important 447 

predictor to consider. The explained variance on the prediction at +1 for a standard multivariate 448 

regression was of 32% and 80% (with an AR1 term). Using a SVR we were able to forecast at t+1 449 

respectively 40% and 85% (with an AR1) of the explained variance.  450 

As illustrated for the first SPIM EOF component (Figure 5), the proposed multi-regime setting 451 

allowed us to identify three seasonally varying relationships between the observed turbidity, the 452 

wave height and the wind. We did not drive the model to account for seasonal regimes but we 453 

identified three seasonally-discriminated regimes, with two leading factors: the mean SPIM level 454 

(intercept) and the Western wave height.  These regimes identified directly physical behaviors, here 455 

the minimum of energy to be brought by the Western swell to re-suspend the sediments. This is 456 

regarded as a key feature of the latent-regime model compared to other non-linear regression 457 

models, such as Neural Networks [38] or SVR [10] which cannot address multi-regime 458 



relationships and are hardly interpreted in general. Using our dataset the non-linear SVR was not 459 

able to retrieve the regime changes.  460 

Regarding long-term forecast performance, at t+15 best results obtained were of 74% of 461 

explained variance for the NHMM and 75% for the NHMM-AR. For short period, typically from 1 462 

to 15 days, when the observed Y is not available, NHMM-AR provided the best results. In this case 463 

the predictors and covariates are used in the estimation of both  and  . At t+15 NHMM and NHMM-464 

AR showed similar results underlying the maximal time-step to consider, when no observation of Y 465 

is available, for the choice between these two models. 466 

In the future, we will address the forecasting of the chlorophyll-a using satellite-derived 467 

observations such as the photosynthetic available radiation, the temperature, the suspended matters 468 

(as index of available nutrients) and light attenuation [39]. In this more complicated case, second 469 

order relationships between the variable and its predictors have to be evaluated, the chlorophyll-a 470 

dynamic being not anymore a passive result of the forcing conditions, as expected with the SPIM, 471 

but having its proper characteristics depending on each phytoplankton specie. Extensions of the 472 

considered latent regime setting to other inverse problems in satellite sensing data analysis are also 473 

under investigation, such as latent regime inversion procedures for satellite-derived chlorophyll-a 474 

concentration to account for different water types (turbid or not turbid) and/or the presence of 475 

specific phytoplankton species. 476 
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