Bertrand Saulquin 
email: bertrand.saulquin@acri-st.fr
  
Ronan Fablet 
  
Pierre Ailliot 
  
Grégoire Mercier 
  
David Doxaran 
  
Antoine Mangin 
  
Odile Fanton D'andon 
  
Characterization of time-varying regimes in remote sensing time series: application to the forecasting of satellite-derived suspended matter concentrations

à la diffusion de documents scientifiques de niveau recherche, publiés ou non, émanant des établissements d'enseignement et de recherche français ou étrangers, des laboratoires publics ou privés.

shifts within a dataset which is a key of interest for geophysical processes driven by the seasonal variability. As a specific example, we study the daily concentration from 2007 to 2009 of mineral suspended particulate matters estimated from the satellite-derived MODIS, MERIS and SeaWiFS dataset, in coastal waters adjacent to the Gironde River mouth (South West of France). We clearly show that the forecast of the high resolution suspended particulate matter dataset using environmental data (wave height, wind strength and direction, tides and river outflow) and a multiregime model is significantly improved compared with a classical multi-regression and a Support Vector Regression model. Each regime is here characterized by a regression function and a covariance structure.

From an analytical point of view, we compare the results obtained with four models: homogeneous and non-homogeneous Markov-switching models, with and without an autoregressive term, i.e. the suspended matter concentration observed the day before. Inclusion of an autoregressive term is motivated by the strong natural autocorrelation level depicted by geophysical time series, but, one may avoid this term if, for example, the observations are no more available during specific conditions or periods. With the evaluated models, best results are obtained with a mixture of 3 regimes for both autoregressive and non-autoregressive models. Prediction performance at day+1, using the non-autoregressive models and a validation dataset, reached 80% of the observed variance, compared to 32% for a standard single-regime (regression) analysis, and 40 % for a Support Vector Regression. Inclusion of an autoregressive term increases results to 93% of explained variance for the mixture model compared to 80% without autoregressive term and 85% using a Support Vector Regression. These results stress the potential of the identification of geophysical regimes to improve the forecasting, or the inversion, of a high resolution geophysical variable using both observations and model outputs. We also show that for short periods of lack of observations (less than 15 days), estimations using the autoregressive term are better than without.

In this case the autoregressive term and the transition probabilities between regimes are estimated using available model outputs.

Index term: 1) Satellite-derived suspended matter time series analysis. 2) Statistical forecasting. 3) Regime-switching latent regression models. 4) Joint analysis of satellite-derived products and operational model outputs. 5) Gironde river plume.

Introduction(

The forecasting of a geophysical variable using statistical models is an alternative to modelbased approaches which typically involve complex simulation and/or assimilation [1,[START_REF] Debreu | Two-way nesting in split-explicit ocean models: algorithms, implementation and validation[END_REF]. For instance, coupled hydrodynamic and sediment transport models can be used to estimate the concentration of suspended particulate matters within the water column [START_REF] Sottolichio | Modeling mechanisms for the turbidity maximum stability in the Gironde estuary, France[END_REF] while statistical approaches may use available satellite and model data to predict the same variable [START_REF] Rivier | Observed vs. predicted variability in non-algal suspended particulate matter concentration in the English Channel in relation to tides and waves[END_REF]. Many statistical approaches have been proposed and evaluated to forecast or infer a studied variable from predictors. Among them, linear multivariate regression [5] and non-linear (polynomial) multivariate regression [START_REF] Wecker | The Signal Extraction Approach to Nonlinear Regression and Spline Smoothing[END_REF] are the most known. Numerous specific models dedicated to time-series analysis such as AutoRegressive Moving Average (ARMA) and AutoRegressive Integrated Moving Average (ARIMA) models [START_REF] Box | Time Series Analysis: forecasting and control[END_REF] have also been developed initially to address financial time series. These latest, which aim at studying the behavior of a time series without considering forcing factors, have also been applied to geophysical time series [START_REF] Tesfaye | Identification of periodic autoregressive moving average models and their application to the modeling of river flows[END_REF]. Non-linear regressions, based on supervised learning strategies, such as Neural Networks [9] and Support Vector Regressions (SVR) [START_REF] Chih-Chung | A library for support vector machines Transactions on Intelligent Systems and Technology[END_REF] may provide relevant alternatives to estimate a variable from predictors. In the context of geophysical studies, they may nevertheless suffer from two major drawbacks. First, though relevant regression performances may be reported, these models are not physically interpretable and may be very sensitive to the training dataset. Second, multi-regime dynamics, often exhibited by geophysical processes driven by the seasonality [START_REF] Ailliot | Markov-switching autoregressive models for wind time series[END_REF], cannot be addressed by non-linear models, contrary to latent-regime models as demonstrated in our study.

We propose here to characterize time-varying relationships between a variable and its forcing parameters using latent-regime models, and hence optimize forecasting results. As an illustration, we address the concentration of inorganic suspended particle matters (SPIM), estimated from satellite data using a regional algorithm [START_REF] Gohin | Satellite-derived parameters for biological modelling in coastal waters: illustration over the eastern continental shelf of the Bay of Biscay[END_REF][START_REF] Doxaran | Télédétection et modélisation numérique des flux sédimentaires dans l'estuaire de la Gironde[END_REF], and observed in the mouth of the Gironde estuary.

In this area, sediments are mainly exported from the Gironde estuary [START_REF] Doxaran | Télédétection et modélisation numérique des flux sédimentaires dans l'estuaire de la Gironde[END_REF][START_REF] Doxaran | Dynamics of the turbidity maximum zone in a macrotidal estuary (the Gironde, France): Observations from field and MODIS satellite data[END_REF] and SPIM concentration clearly depends on the local physical forcing: swell, tide, wind and river discharge. A minimum of energy has to be brought by waves and tides to re-suspend cohesive sediments accumulated at the bottom. Conversely, when sediments have been re-suspended in the water column by wave influence, their settling velocity depends on their size and density [START_REF] Bowers | The optical properties of mineral suspended particles: a review and synthesis[END_REF] and physico-chemical properties [START_REF] Eisma | Suspended matter particle size in some West-European estuaries; part II: a review on floc formation and break up[END_REF]. This example stresses that the relationships between the studied variable (SPIM) and the causing factors evolve in space and time and potentially requires advanced statistical methods to identify the underlying geophysical regimes.

From a methodological point of view, "latent regime regressions" also referred as "clusterwise regressions" [START_REF] Desarbo | A maximum likelihood methodology for clusterwise linear 469 regression[END_REF][START_REF] Tandeo | Segmentation of Mesoscale Ocean Surface Dynamics Using Satellite SST and SSH Observations Geoscience and Remote Sensing[END_REF] are particularly appealing to identify such non-linear and multi-regime patterns within a dataset. Each regime is associated with a linear regression and a non-linear relationship is thus estimated as a sum of linear contributions. Regarding the temporal dynamics of these regimes, we here consider Markovian processes [START_REF] Juang | Hidden Markov models for speech recognition[END_REF], which state the transitions in time between two regimes. The standard Hidden Markov Model (HMM) and Non-Homogeneous Markov Model (NHMM) are evaluated [START_REF] Juang | Hidden Markov models for speech recognition[END_REF]. The inclusion of an autoregressive term (HMM-AR) and (NHMM-AR) is also discussed. This aspect is motivated on the one hand by the strong autocorrelation level depicted by geophysical time series [START_REF] Frankignoul | Stochastic climate models. Part II: Application to SST anomalies and thermocline variability[END_REF]. When the observation at t-1 is available, it is obvious, considering the strong natural autocorrelation of geophysical data that the forecast at time t should take into account the observation at time t-1. Conversely, for specific applications, or if the observations are not available during long periods (such as winter storms, or after a sensor failure), one may need to estimate the variable without using the observations of the previous days. We discuss here the choice between autoregressive or not autoregressive models for long lack of observation period using forecasting results from t+1 to t+15.

Model parameter estimation is carried out from a dataset composed of 5862 time series of 1096 points in the mouth of the Gironde estuary in the [3°W-1°E ; 45-46.5°N] area during the period 2007-2009. Validation is performed on the same area for using the data for the year 2010. We used EOFs to reduce the dimension of the space-time observations. This is a usual approach in spatiotemporal statistics [START_REF] Preisendorfer | Principal Component Analysis in Meteorology and Oceanography[END_REF][START_REF] Cressie | Statistics for Spatio-Temporal Data[END_REF] although alternatives may be considered such as linear discriminant analysis [START_REF] Abdi | Discriminant correspondence analysis[END_REF], and, we could also introduce a latent variable to describe the regime at each location and interact with the regimes at other locations. Nevertheless, such models are known to be very difficult to fit on the data and remain a research challenge for statisticians. We infer our mixture model using the expansion coefficients of the first four modes of the EOF which explain 99% of the total variance. The variables used as predictors for the SPIM expansion coefficients (EC) are the wave height issued from a numerical model [START_REF] Ardhuin | Semi-empirical dissipation source functions for ocean waves. Part I: Definition, calibration, and validation[END_REF], the wind fields optimally interpolated from satellite observations [START_REF] Bentamy | Gridded Surface Wind Fields from Metop/ASCAT Measurements[END_REF], the tide coefficient [START_REF]Courants de marée et hauteurs d'eau. La Manche de Dunkerque à Brest[END_REF] and the Gironde fresh water discharge (sum of the Garonne and Dordogne Rivers contributions).

Methods(

Markov(switching(forecast(models(

We address here the study of a two dimensional scalar geophysical time series Y. In a hidden Markov model framework (HMM; [START_REF] Juang | Hidden Markov models for speech recognition[END_REF]), one states two different processes, the observed process Y and a hidden process Z. The observed process (here the turbidity) is assumed to be temporally dependent of the hidden process. The hidden process Z t is modeled as a first order Markov chain [START_REF] Juang | Hidden Markov models for speech recognition[END_REF]. At a given time t, the hidden variable Z t = k is a discrete value which states the regime characterized by a latent [START_REF] Desarbo | A maximum likelihood methodology for clusterwise linear 469 regression[END_REF] regression model with coefficient B k between the variable Y t and the predictor X t . At time t, knowing regime variable Z t , the observed variable Y t is modeled as:

( "|" = )=" " (1)
where is the regression function, which predicts variable Y t from some predictors X t for regime Z t = k.

Figure 1 When Z t does not dependent on Z t-1, and the dependence on S t is parameterized using indicator functions, we obtain the threshold autoregressive (TAR) model which is the other important family with regime switches in the literature. HMMs, MS-AR and TAR have been used in many fields of applications including geosciences [START_REF] Tong | Non-linear time series, a dynamical systems approach[END_REF]. In the following equations (2 to 14), X t and S t are known, as they are either observations or numerical model outputs. Given (1) the conditional likelihood of the observation Y t given predictors X t and regime Z t is expressed as [START_REF] Desarbo | A maximum likelihood methodology for clusterwise linear 469 regression[END_REF]:

PYtXt,Zt=k~N(XtBk,σk) (2) 
where N represents the Gaussian probability density function with mean XtBk and covariance σ k . Hence, given predictors up to time t we can predict process Y from its expectation conditionally to process X:
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where K is the number of regimes. = = 0 is the posterior probability that the dynamical regime Z at time t is of type k [START_REF] Desarbo | A maximum likelihood methodology for clusterwise linear 469 regression[END_REF].

Markov=switching(priors(

Stating hidden regime process Z as a first-order Markovian process amounts to modeling the transition between successive regimes at time t and time t-1. In the simplest case, one assumes homogeneous transitions, i.e. time-independent and context-independent transitions, and the Markovian process is fully characterized by its transition matrix P(Z t =k | Z t-1 =l) for possible pairs of successive regimes (k, l). In the HMM setting the conditional distribution of Z t, given the past values Y s and Z s for s<t, is assumed to depend only on Z t-1 (Fig. 1):

0= = 0 0.. t)=0 =1 0 0= . ( 0= -10= . -1= 0 0.. t-1) (4) 
A NHMM extends this idea by allowing the transition matrix between the hidden states to depend on a set of observed covariates S t . Hughes and Guttorp [START_REF] Hughes | A Class of Stochastic Models for Relating Synoptic Atmospheric Patterns to Regional Hydrologic Phenomena[END_REF][START_REF] Hughes | Incorporating Spatial Dependence and Atmospheric Data in a Model of Precipitation[END_REF] highlighted the added value of the NHMM to characterize the links between the large-scale atmospheric measures and the small-scale spatially discontinuous precipitation field. In the NHMM settings, the transition matrix between states ( "= -1"= in ( 3) is now time-dependent and conditioned by the covariates S t :

0= = 0 0,.., t,00St)= =1 0"" 0= ,. ( 0= -1= ,"St. -1= "0 0".. t-1) (5) 
with:

( = 0 -10= ,00St= St00 0,= ,""" -10= 0.00 0= -10= 000/0 , St00 = 0,0" -10= 0.00 0= -10= (6) 
The non-homogeneous transition between states is derived from the likelihood of the covariate S t given the state transition (Z t , Z t+1 ). We suppose that the probability density function of the covariates during this change of state follows a normal distribution:

PSt0""Zt0=k,00Zt-10=l=Nµl,0k,0Σl,0k (7) 
Where N is a multivariate normal distribution with n means =µl,0 k,0 Σl,0 k, µ is here of dimension n, the number of covariates used to estimate the transitions. For a 'standard' multivariate gaussian distribution Σ l,k is a covariance matrix. In the present application, and to reduce the number of parameters to be estimated, we consider that the predictors are uncorrelated (null covariance) and their relative influence is identical (same variance), i.e. Σ l,k is a multiple of the identity matrix.

Estimation(of(the(model(parameters((

The considered models involve two categories of parameters: those of the observation model, θ k, namely regression coefficient B k and standard deviation σ k for each regime (Eq. 2) and those of the Markov-swtiching prior, namely θ s (Eq. 5). Given observed Y and X series, we proceed to the estimation of model parameters according to a classical maximum likelihood (ML) criterion using an iterative Expectation Maximisation (EM) procedure [START_REF] Dempster | Maximum likelihood from incomplete data via the EM algorithm[END_REF] expressed here without covariates:

=" PYtY0.."Yt-1,0θ (8) 
where θ = {θ s , θ k } is the set of parameters to be estimated. For a given initialization for the parameters the EM procedure iterates estimation steps (E-step) of the posterior regime likelihood "with the given modes and the maximisation step (M-step) for the update of the parameters given these posteriors. The algorithm iterates until convergence between steps n and n+1, i.e.

| ( )-( +1)|<10-3 . The posterior likelihood " (Eq 3&4) of the latent regime Z t , is estimated in the E-step using the classical forward-backward recursions [START_REF] Castino | Stochastic modelling of wind velocities time series[END_REF]32] given series X and Y and current parameter estimate θ k (n) , θ s (n) . The M-step re-estimates the parameters θ k (n+1) , θ s (k+1) .

For this, it is often possible to break the optimization problem into several lower dimensional optimization problems which are much quicker to solve [32]. More precisely, for all the models considered in this paper, it is possible to separate the parameters related to the evolution of the hidden Markov chain θ s , and the parameters related to the evolution of the observed process in each regime θ k : θ=0 00 log ( ( = 0 -10= ,00St,θ (n))

= , -10= "Y0.."YT,0St,0θ(n)00 (9)

θ "" 0(n+1)= = Y0.."YT,θ(n))0( -2)00000000000000000000000(10)0 0(n+1)= = Y0.."

YT,θ(n))00( -2)0000000000000000000000000000000000000000000(11)

(Forecasting(application(

The considered multi-regime regression models are applied to the short-term forecasting of series Y. More precisely, at a given time t, we aim at predicting variable Y at time t+dt. We typically assume that prediction variables X and covariates S, typically numerical simulations, are available up to time t+dt whereas the variable Y is only known up to time t. is estimated using X 0..t+dt and S 0.. +dt (for inhomogeneous transitions). Thus, Y +dt is given by the conditional expectation of variable Y t+dt given observations series up to time t and predictor series up to time t+ dt:

For HMM and NHMM it resorts to:

For autoregressive models HMM-AR and NHMM-AR, i.e. X t +dt contains Y t +dt -1 which is not available, is estimated using Y t .. , X t .. X t+dt-1 and . Estimated Y +dt resorts to:

It might be noted that these predictions actually account for the uncertainties in the determination of the underlying regimes. Contrary to deterministic methods, confidence interval and uncertainties on Y +dt can be derived [START_REF] Cappe | Inference in hidden Markov models[END_REF] which is a key issue for modeling considerations.

Model(performance(estimation((

A key issue in practice, which has received lots of attention in the last few years, is the problem of model selection which aims at finding the "optimal" number of predictors and covariates [START_REF] Castino | Stochastic modelling of wind velocities time series[END_REF].

Hereafter, we have chosen to use both the Bayes Information Criterion (BIC) and the explained variance (EVAR) as a first guides. BIC index generally permits to select parsimonious models which fit the data well [START_REF] Bhat | On the derivation of the Bayesian Information Criterion[END_REF]. It is defined as:

BIC = -2 log*(L) + p*log(S) ( 15 
)
Where L is the likelihood of the data, p is the number of parameters and S is the number of observations. The likelihood which is an output of the backward-forward recursions performed in the E-step. We also use the classical explained variance, EVAR, to characterize the model relevance:

0EVAR=1.-var0Y +1-Y +10/0var(Y +1) ( 16 
)
BIC and EVAR are partially linked [START_REF] Bhat | On the derivation of the Bayesian Information Criterion[END_REF]. BIC tends to penalize complex models whereas explained variance criterion only qualifies the result and may lead to the over-parameterization of a model that typically lead to errors when other dataset are tested using the same parameterization.

Therefore we consider both BIC and EVAR to assess the model performance.

The choice of the predictors and the covariates is performed here as follows. We first select as predictors the variable showing a significant correlation with the studied variable. Given these predictor datasets, we tested all the possible configurations and chose the predictors which provide the lower BIC on the training dataset and the greatest EVAR using the training (EVAR_train) and the validation dataset (EVAR_valid).

The(data( 4.1 The(studied(variable(

Non-algal SPM concentrations (SPIM) are estimated using an analytical algorithm [START_REF] Gohin | Satellite-derived parameters for biological modelling in coastal waters: illustration over the eastern continental shelf of the Bay of Biscay[END_REF] defined as the difference between total SPM and phytoplankton biomass, the latter derived from Chl-a. It incorporates mainly mineral SPM and smaller amounts of organic SPM not related to living phytoplankton. This method to derive non-algal SPM from remote-sensing reflectance is based on the inversion of a simplified equation of radiative transfer, assuming that chlorophyll concentration is known. This merged dataset consists of fields of non-algal surface SPM concentrations, derived from the Sea-viewing Wide Field-of-view Sensor (SeaWiFS), the Moderate Resolution Imaging Spectroradiometer (MODIS) and the Medium Resolution Imaging Spectrometer (MERIS) sensors, provided by the Ocean Colour TAC (Thematic Application Facility) of MyOcean, and interpolated with a kriging method [START_REF] Saulquin | Regional objective analysis for merging high-resolution MERIS, MODIS/Aqua, and SeaWiFS chlorophyll-a data from 1998 to 2008 on the European Atlantic shelf[END_REF] for the period 2007-2009 over the Gironde mouth river from 3°W-1°E ; 45-46.5°N. Finally 5682 continuous time series of 1096 days compose our initial dataset of mineral suspended matters concentration.

We first account for the space-time variability of the dataset, previously detrended and centered for each time series [START_REF] Saulquin | Detection of linear trends in multisensor time series in the presence of autocorrelated noise: Application to the chlorophyll-a SeaWiFS and MERIS data sets and extrapolation to the incoming Sentinel 3-OLCI mission[END_REF] using a EOF decomposition [START_REF] Preisendorfer | Principal Component Analysis in Meteorology and Oceanography[END_REF], expressed here using the matrix form:

Cov(SPIM)=UVU t ( 17 
)
where U is a here 5682*5682 matrix containing the spatial modes (Eigenvectors) of the covariance decomposition (ordered by percentage of explained variance). Associated with each spatial mode k, its expansion coefficient (also referred in the literature as principal component) is the time evolution of the k th mode:

EC_SPIM k,t = SPIM t * U k ( 18 
)
Figure 2 shows the four first spatial modes of the EOF decomposition. associated with the first four EOF modes depicted in Fig. 2, i.e. the time evolution of the spatial modes. The reconstruction of the SPIM variable from the estimated ECs is performed as:

SPIM 0=0 EC_SPIM0.0 (19) 
The total explained variance using the 4 first modes is shown Fig. 4. On average, the explained variance represents 99 % of the total variability on the areas with some local minima of 60% observed at the very near-shore and the Southwestern part of the area. 

Predictors(and(covariates(

The predictors X are the variables used in the estimation of Y and Z any time (Eq. 13 & 14). We used here wave height (WH) daily means of the Wave Watch 3 model (WW3; [START_REF] Ardhuin | Semi-empirical dissipation source functions for ocean waves. Part I: Definition, calibration, and validation[END_REF][START_REF] Tolman | A mosaic approach to wind wave modeling[END_REF]) provided by the IOWAGA and PREVIMER programs, Western and Northern winds interpolated from QuickSCAT and ASCAT observations in conjunction with ECMWF forecasting [START_REF] Bentamy | Gridded Surface Wind Fields from Metop/ASCAT Measurements[END_REF], provided by Ifremer, tide index (SHOM, 2000) at Bordeaux and the flow measurement of river la Gironde.

Similarly to the SPIM data, all the data were log transformed. For the wind data which is signed, the transformed log variable was signed negatively a posteriori to the log transformation. The WH first mode of the EOF decomposition explained 98 % of the total variance, 93% for the Northern wind (WND1), and 96% for the Western wind (WND2). Covariates are the normalized predictors used in the estimation but considered at t-2. This lag has been estimated as the optimal time-lag using BIC and EVAR results on the training dataset.

Results(

We summarize in Table 1 the prediction performance for the first four ECs of the SPIM issued from four models: HMM, NHMM, HMM-AR, and NHMM-AR. The number of considered modes for the mixture varies from 1 to 3. The one-mode models refer to a simple multivariate regression analysis. For each configuration we provide the BIC and EVAR_train on the training dataset (2007)(2008)(2009) and EVAR_valid on the validation dataset (2010). Note that the selection of the predictors and resulting covariates is achieved as a prior step as described in Section 2.6. The first mode of the EOF decomposition explains 85% of the total variance. EC_WH 1 and EC_WND2 1 (respectively the expansion coefficient of the first EOF of the Western winds) are identified as being the relevant predictors. This mode captures the mean seasonal variability of the SPIM, which is mainly driven by WH and the North Atlantic storms and at a second order by the Western winds.

For EC_SPIM 1 , when no autocorrelation term is used, the best fit is obtained for a 3-regime NHMM model (BIC= 9873, EVAR_train=90% and EVAR_valid=85%). When a first order autocorrelation term is added, the best fit is issued from a 3-regime HMM-AR model: BIC= 7997, EVAR_train = 98% and EVAR_valid = 97%. The lag-1 autocorrelation value is 0.85 for EC_SPIM 1 , and therefore the weight given Y t-1 is important compared to the other covariates, EC_WH 1 and EC_WND2 1. This stresses the fact that when available first autoregressive term should be included to enhance the performances pas clair

Text

The second mode of the EOF decomposition of the SPIM variability explains 7% of the total variance. The selected predictors are the first mode of the Western wind, the tide, and the river flow. The variability captured by EC_SPIM 2 relates to the local Westward wind, which is not captured by the WH model, and the very coastal variability introduced by the tide and the river outflow. For the non-AR models the selected model was the three-regime NHMM. It is interesting to note in this case that EVAR_valid increased from 50 to 73% between the HMM and the NHMM, highlighting the contribution of the non-homogeneous transition model. By contrast, the HMM-AR performed slightly better than the NHMM-AR. The third mode of the EOF decomposition of the SPIM variability explains 4% of the total variance. It captures some inter-annual and intra-seasonal variability of the latitudinal gradient of the SPIM. The selected predictors are EC_WH 1 , EC_WND1 1 (Northern) and the tide. Once again, three-regime NHMM and HMM-AR provide the best results.

Regarding the fourth mode of the EOF decomposition of the SPIM variability, which accounts 3% of the total variance, EC_WH 1 , EC_WND2 1 , the tide and the river flow are selected as contributive predictors. We reconstruct 75 % of EC_SPIM 3 variance of the validation dataset using a three-regime NHMM and 86% using a three-regime HMM-AR. We note that globally, the three indices (BIC, EVAR_train and EVAR_valid) tend to select the same models.

Example(with(the(estimation(of(EC_SPIM1(((

We report in Figure 5 the temporal evolution of the three regimes of the NHMM for EC_SPIM 1.

In table 2 are shown the corresponding coefficients for each predictor and the intercept. The first regime (light grey), characterized by high SPIM levels (intercept of 65), is referred as a 'winter regime'. The' winter regime' also strongly relates to the wave height (WH regression coefficient of 0.6). Dark grey periods (regime 3) are identified as a 'transition regime', and medium grey (regime 2) identified as the 'summer regime'. For regimes 2 and 3, the coefficients for WH decrease respectively to 0.12 and 0.09. In summer the energy brought by waves is not sufficient enough to re-suspend massively the sediments. It might be noticed that for all regimes the wind conditions show a small but significant effect on EC_SPIM 1 . When an autocorrelation term is added (HMM-AR, table 2), the AR(1) coefficient value is 0.86 for the regime 1 (winter), and 0.9 for regime 2 and 3 which underlies the natural higher autocorrelation level of SPIM when the concentration is low.

Figure 4 compares the prediction of EC_ SPIM 1 using a single multivariate regression (green)

and the proposed multi-regime NHMM. In this case the explained variance value (Table 1) is of 37% for the multivariate regression model compared to 85% for the three-regime NHMM. To consider the model forecast performances, we report the short-term forecast results at different time steps (cf. Eq. 13 & 14). For the HMM-AR and NHMM-AR (Eq. 14) is the estimated value, the observation being not available (see § 3.2). Table 3 synthesizes the explained variance statistics using 3 regimes and the four tested models for the forecasting at t+1, t+5 and t+15 and the validation 2010 dataset (Eq. [START_REF] Juang | Hidden Markov models for speech recognition[END_REF].

The long term forecasting results are globally better with the NHMM. At t+15 using the NHMM we are able to forecast 74% of the variance for 2010 , compared with 40% for the HMM. In this case where the covariates and predictors (mode outputs for which the short term predictions are assumed to be available) are used in the estimation of the regime transition probability . For autoregressive models, at t+15, we were able to forecast 75% of the 2010 variance with the NHMM-AR compared with 70% with the HMM-AR. For the NHMM-AR the covariates help in the estimation of both and . At t+15 NHMM and NHMM-AR show equivalent results underlying the maximal time-step to consider for the between these two models. . We used the setting as following: model epsilon-SVR (s=3), linear or polynomial kernel (t=0 or 1) and the same inputs (predictors, covariables) for each EC. Parameters c and g [START_REF] Chih-Chung | A library for support vector machines Transactions on Intelligent Systems and Technology[END_REF] were optimised for each EC using the training dataset and the cross validation mode.

On the 2010 validation dataset, better forecast results reached 40% at t+1 of the EVAR (without AR) and 85% with an AR coefficient. The results were significantly worse than those obtained using the time-varying models for increasing time steps. The SVR can address non-linear relationships, it cannot nevertheless deal with multi-regime processes. By contrast, the latent-regime model addresses by nature multi-regime processes and can approximate non-linear relationships as a series of linear models.
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 1 Figure 1: Graphical representation of the various Markov-Switching Models considered in this
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 23 Figure 2: spatial modes of the EOF decomposition of the SPIM observed from satellite from

Figure 4 :

 4 Figure 4: Variance explained by the four first modes of the EOF decomposition of the
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 5 Figure 5: Estimation of the EC_SPIM 1 (in black) using EC_WH 1 , EC_WND2 1 and a single
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 6 Figure 6 illustrates the non-homogeneous transition used in the NHMM between the 'transition'
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 6 Figure 6: Non-homogeneous transition between 'transition regime' (Zt=3) (light grey Fig. 5)
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 7 Figure 7: Explained variance for the 2010 validation dataset reconstructed using the selected 3-

c d Table 3 :

 3 Validation results on year 2010. Explained variance (Eq.[START_REF] Eisma | Suspended matter particle size in some West-European estuaries; part II: a review on floc formation and break up[END_REF] for the forecast at t+1, t+5 and t+15 of the 2010 validation dataset. also evaluated to evaluate the performances of a non-linear model on the studied dataset. To perform the comparison, we train the SVR model (http://www.csie.ntu.edu.tw) for each EC using the same training dataset (2007-2009) and performed forecasting using the same validation dataset(2010)

  

  shows a graphical representation of the conditional dependencies involved in the model, in the form of the general Directed Acyclic Diagram (DAG). It illustrates the interactions between the variable Y t, , the predictors X t, the hidden regime Z t and the covariate S

t which acts on regime switching. X t may contain lagged values of Y t (referred as autoregressive terms) and/or exogenous covariates such as wind or wave height. Figure

1

defines a general family of model which encompasses the most usual ones with regime switching. When no covariate is considered i.e., Z t only depends Z t-1, and, Y t, only depends on (Y t,-s ..Y t,-1 ) and Z t , we retrieve the usual Markov switching autoregressive (MS-AR). If we further assume that s=0 (without autoregressive component where Y t, only depends on Z t ) then we obtain the Hidden Markov Models (HMMs).

Table 1 :

 1 Model performance for each EOF mode of the SPIM variability. For each configuration we report the BIC (a) and the explained variance (EVAR_train, b) for the training dataset (2007-2009), and the explained variance (EVAR_valid, c) for the validation dataset (2010).In bold are highlighted for each EC the selected configurations (see § 5.2).

	Number of modes, M

Table 2 :

 2 Estimated regression parameters for each of the three regimes of the NHMM and the HMM-AR for the first mode of the SPIM EOF decomposition: regression parameters involve an intercept and the regression coefficients of the wave height and western wind velocity.

		EC_WH 1	EC_WND 2	Intercept	
		(1, winter) 0.6037	-0.0632	65.0672	
	NHMM	(2, summer ) 0.0910	0.0006	-61.6442	
		(3, transition) 0.1210	0.0100	-24.6578	
		EC_WH 1	EC_ WND 2	Intercept	AR(1)
		(1) 0.2383	-0.0033	4.4694	0.86
	HMM-AR	(2) -0.0050	0.0168	-3.9531	0.90
		(3) 0.0354	0.0035	0.6079	0.90

Discussion(

We investigated the relevance of four regime-switching latent regression models, namely HMM, NHMM, HMM-AR and NHMM-AR to characterize time-varying linear relationships between the high resolution inorganic suspended matter concentration (SPIM), estimated from 2007 to 2009 using MODIS, SeaWiFS and MERIS data in a coastal area, and its forcing conditions, i.e. the wave height, the Northern and Western winds, the tides and the river flow. The estimated regimes are then used to forecast the SPIM using the independent year 2010 dataset, from t+1 to t+15.

An optimal number of three distinct geophysical regimes were needed to capture the different dynamics and optimize forecasting performance. Autoregressive and non-homogeneous model showed better performances. With the evaluated models and the 2010 validation dataset we were able to forecast at t+1 80 % of the variance explained using a NHMM and 93 % using a NHMM-AR. In the latest case the strong natural autocorrelation of the studied signal is an important predictor to consider. The explained variance on the prediction at +1 for a standard multivariate regression was of 32% and 80% (with an AR 1 term). Using a SVR we were able to forecast at t+1 respectively 40% and 85% (with an AR 1 ) of the explained variance.

As illustrated for the first SPIM EOF component (Figure 5), the proposed multi-regime setting allowed us to identify three seasonally varying relationships between the observed turbidity, the wave height and the wind. We did not drive the model to account for seasonal regimes but we identified three seasonally-discriminated regimes, with two leading factors: the mean SPIM level (intercept) and the Western wave height. These regimes identified directly physical behaviors, here the minimum of energy to be brought by the Western swell to re-suspend the sediments. This is regarded as a key feature of the latent-regime model compared to other non-linear regression models, such as Neural Networks [START_REF] Schiller | Neural network for emulation of an inverse model operational derivation of Case II water properties from MERIS data[END_REF] or SVR [START_REF] Chih-Chung | A library for support vector machines Transactions on Intelligent Systems and Technology[END_REF] which cannot address multi-regime relationships and are hardly interpreted in general. Using our dataset the non-linear SVR was not able to retrieve the regime changes.

Regarding long-term forecast performance, at t+15 best results obtained were of 74% of explained variance for the NHMM and 75% for the NHMM-AR. For short period, typically from 1 to 15 days, when the observed Y is not available, NHMM-AR provided the best results. In this case the predictors and covariates are used in the estimation of both and . At t+15 NHMM and NHMM-AR showed similar results underlying the maximal time-step to consider, when no observation of Y is available, for the choice between these two models.

In the future, we will address the forecasting of the chlorophyll-a using satellite-derived observations such as the photosynthetic available radiation, the temperature, the suspended matters (as index of available nutrients) and light attenuation [START_REF] Saulquin | Estimation of the diffuse attenuation coefficient K-dPAR using MERIS and application to seabed habitat mapping[END_REF]. In this more complicated case, second order relationships between the variable and its predictors have to be evaluated, the chlorophyll-a dynamic being not anymore a passive result of the forcing conditions, as expected with the SPIM, but having its proper characteristics depending on each phytoplankton specie. Extensions of the considered latent regime setting to other inverse problems in satellite sensing data analysis are also under investigation, such as latent regime inversion procedures for satellite-derived chlorophyll-a concentration to account for different water types (turbid or not turbid) and/or the presence of specific phytoplankton species. 
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