N

N

Generation of local and expected behaviors of a smart
card application to detect software anomaly
Germain Jolly, Baptiste Hemery, Christophe Rosenberger

» To cite this version:

Germain Jolly, Baptiste Hemery, Christophe Rosenberger. Generation of local and expected behaviors
of a smart card application to detect software anomaly. International Conference on Availability,
Reliability and Security (ARES), International Workshop on Software Assurance (SAW), Aug 2015,
Toulouse, France. hal-01188609

HAL Id: hal-01188609
https://hal.science/hal-01188609
Submitted on 31 Aug 2015

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépot et a la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche francais ou étrangers, des laboratoires
publics ou privés.

https://hal.science/hal-01188609
https://hal.archives-ouvertes.fr

Generation of local and expected behaviors of
a smart card application to detect software anomaly

Germain Jolly*, Baptiste Hemery* and Christophe Rosenberger*
*Normandie Université, Caen, France;
UNICAEN, GREYC, F-14032 Caen, France;
ENSICAEN, GREYC, F-14032 Caen, France;
CNRS, GREYC, F-14032 Caen, France

Abstract—The electronic payment transaction involves the use
of a smart card. A card application is a software, corresponding
to standards and non-proprietary and proprietary specifications,
and is stored in the smart card. Despite increased security with
Europay Mastercard Visa (EMV) specifications, attacks still exist
due to anomalies in the card application. The validation of the
card application enables the detection of any anomaly, improving
the overall security of electronic payment transactions. Among
the different ways of validating a card application, we can use
the verification of required behaviors. These behavior can be
materialized as properties of commands sent by the terminal and
responses from the smart card, using the Application Protocol
Data Unit (APDU) from the 1SO/IEC 7816 standard [1]. However,
the creation of these behaviors is complicated. We propose in this
article a way to automatically create such behaviors by using a
genetic algorithm technique.

I. INTRODUCTION

According to Eurosmart [2], 7.23 billions smart cards were
used for payment, transport, access and other uses worldwide
in 2013. Theses smart cards are based on standard, such
as ISO/IEC 7816, and specifications, such as the defined by
Europay Mastercard Visa (EMV), which define security and
interoperability for payment. In 2012, the number of EMV
smart cards was 1.62 billions and the adoption rate was 44.9%
[3].

In addition of these specifications, each smart card applica-
tion has its own proprietary specification, e.g. VIS specification
for visa application and M/CHIP specification for MasterCard
application. It allows the creation of theoretical secured smart
card application.

However, before being used in everyday life, a smart card
must be validated and certified. Several specific firms can
verify and validate a product by evaluating the conformance
of the product to the standards and specifications it follows
[4].

We believe that this conformance evaluation might be
realized by a software observer, listening the communication
between the terminal and the smart card. If the communication
violates some properties, the observer might declare the smart
card non-certified. This requires being able to produce the said
properties.

We present in this article an automated approach to produce
properties. The generation uses genetic algorithm technique to
generate random properties, and select the correct ones.

This remaining of the paper is organized as follow
section 2 presents the context of the study, i.e. the studied
standards and specifications. Section 3 presents how smart
cards are produced and evaluated throughout their life. Section
4 presents our approach concerning the automated generation
of properties. Finally, we give some results in section 5, and
conclude in section 6.

II. CONTEXT OF THE STUDY
A. Electronic payment transactions

1) Payment transaction specifications: An electronic pay-
ment transaction [5], i.e. the transaction between a terminal
and a smart card, allows a payment with the smart card. A
payment transaction is composed of several transaction units.
A smart card, which is a passive device, is powered by the
terminal and automatically responds to it after receiving a
command, according to the card application.

The communication, between a terminal and a smart card,
is defined by the ISO/IEC 7816 standard [1], complemented
by ISO/IEC 14443 for contactless payment transactions [6].
Additionally, Europay Mastercard Visa (EMV) specifications
aim to facilitate the interoperability and acceptance of secure
payment transactions [7]. These specifications are managed
by the EMVco agency, which includes MasterCard, Visa, JCB
international and American Express (Europay was absorbed by
MasterCard). Moreover, each manufacturer of smart cards has
its own specifications. For example, M/CHIP specification for
MasterCard application or VIS specification for visa applica-
tion.

2) 1SO/1IEC 7816: APDU communications: Communications
between terminals and the smart cards are based on APDU
command-response pair, respectively called command APDU
and response APDU, as shown in the figure 1

The terminal application, which is a software, sends
command APDU and the smart card application, a program,
automatically sends response APDU. A command APDU
contains four compulsory bytes: the class (CLA), the
instruction (INS) and two parameters Pl and P2. It then
optionally contains data sent to the card, the LC and UDC
fields, as well as maximal length of the expected result LE.
The payment application on the smart card detect the type
of the command (INS byte) and associated data (P1, P2 and
UDC); and delivers an optional response data UDR, followed

Parameters

el 1
Class Byte
== -
Command AppU: | €A || s || P || P2 || 1c | upc|| i

Response APDU : m

Fig. 1: Structure of APDU communication

Length of UDR

Status Words

by compulsory status word (SW1, Sw2), that indicates a
success or a failure of the command.

3) Terminal view (EMV specification): A payment is per-
formed by several command-response pairs between a terminal
and a card. Users, also known as cardholders, see three steps
on the terminal screen: first, the amount of the transaction
is showed; then, the user is verifying his pin code; finally, a
success message or an error message appears on the terminal.
Actually, there are more steps to do an EMV transaction. Figure
2 shows these steps.

Selection of the application ‘

)

Data Authentication ‘

)

Processing Restriction ‘

&

Cardholder Verification ‘

&

Terminal Decision ‘

T 4

Card Decision

T I

‘ Online Processing

|
|
F

Completion of the Transaction ‘

Fig. 2: Simplified EMV transaction

Each step of EMV processing, composed of several APDU
commands/responses pairs, has a specific purpose:

« Application selection: selection of the desired application
on the card;

o Data authentication: initiation of the transaction process
and computation of data authentication to ensure the
authenticity and the uniqueness of the card;

o Processing restrictions: checking the compatibility be-
tween the card and the terminal;

o Cardholder verification : verification of the carholder by
asking for a signature or a pincode;

o Terminal decision : safety measure performed by the
terminal to protect from fraud and decide for an online
or offline transaction;

o Card decision : safety measure performed by the card to
protect from fraud and decide for an online or offline
transaction,;

e Online processing : ask for an authorization of the user’s
bank’s;

o Completion of the transaction
payment if authorized.

the card emits the

4) Smart Card view (proprietary specification): To allow
a payment transaction, a smart card may contain an applica-
tion in conformance with EMV specifications. However, the
smart card application design is completed by proprietary
specifications. The smart card application can be seen as a
finite-state machine. This theoretical finite-state machine is
used by constructors to develop a payment application from
the specifications (e.g. Mastercard provides the M/CHIP state
machine[8] and Visa the VIS specification [9]).

B. Transactions in danger

Despite extensive security reached by several phases of
testing and certification, we can see that some attacks are
known [10]. There are attacks either for contact or contactless
smart cards. We can also discern invasive attacks (involving
partial or total destruction of the card) and non-invasive
attacks. Some attacks are exposed in [11], [12].

The more interesting attacks for our study aims the smart
card application. The logical attacks use the weaknesses of
the application, due to imprecise specification or inadequate
development [13], to realize unauthorized payments.

e Skimming: a very thin element is added on a smart card
reader to capture all transmitted data, e.g. card number.
With the use of a camera, we can have enough data to
pay on internet. [14].

¢ Yes card: is a partial copy of a smart card. However, when
there is the PIN verification, a false cryptogram is sent
to force the transaction without the right PIN code.

« Relay attack: we can relay the transaction and modify it,
e.g. change the amount [15].

o Cambridge attack: contrary to the Yes Card, we don’t
check the PIN code. On one hand, the terminal thinks
the card can only do signature verification and on the
other, the smart card thinks the PIN code verification is
performed [16].

III. EVALUATION OF THE SMART CARD APPLICATION
A. Cycle of life of a smart card

In figure 3, we can see a simplified smart card cycle of
life, based on the smart card handbook [17]. To evaluate and
validate the product, several tests are made during the different
steps of the life of a smart card [18]. All aspects of the
card (application, chip, personalization data) must be validated

which ensures a secure product. Once designed and validated,
the card is said certified.

Specification
1
=

Development
] |
) |
s =

Chip creation

3

’ Manufacturing ‘

i

’ Personnalization ‘

@ @ Next Step

[LLL[[[CLL
NNNRRRNNNN]

’ Marketing ‘ @ Next Step after test
JL 3 Fabrication of the chip
’ End of life ’

[] use of the chip

Fig. 3: Simplified cycle of life of a smart card

During the life of a product, we have to ask some ques-
tions [19]:

o Verification: Are we building the product right?

o Validation: Are we building the right product?

o Evaluation: How can we interpret the verification and
validation?

« Certification: Can the evaluation results done by a specific
firm be approved ?

Indeed, it is necessary to validate each step and each
element of a smart card. It is unrealistic to use a secure and
certified component with a poorly implemented program [20].
The program must be validated and certified. The creation
of the criteria for evaluating safety and security allowed
product certification [13]. Recognition of these criteria allows
mutual recognition between different structures and different
countries. We can talk about software evaluation when we
are evaluating software systems [21]. In fact, in this paper, we
focus on software evaluation but a real certification is not only
about the evaluation of software.

B. Certification

Certified products are tested by the certification laboratories,
and generally by the manufacturer during their creation. The
certification process gives the level of safety of a product,
and is realized by an external laboratory. EMVCo is providing
the EMVCo Security Evaluation Process to its member [22].
It ensures a robust security foundation for smart card and
related products. The card Type Approval process allows to
test compliance with the EMV specifications. To summarize,
EMVCo provides documents to test, evaluate and approve a

smart card but also a list of Approved Security Evaluation
Laboratories.

C. Smart card application assurance

The test mainly used to verify smart card applications is a
set of activities which try to highlight the differences between
the actual and the theoretical behaviors of the application
under test. To test an application, two elements are needed:

o The input vector: it’s the generation of tests to be applied
to the smart card;
e The verdict: it’s an oracle that hold the truth.

We particularly deal with the second problem. The idea is
to use a model of the system, it can be created in different
ways.. Indeed, this problem is the more important problem of
system test automation [23]. Specifically, in our field, a model
can be generated by several ways. Previously, work have been
done on generation using the documentation of a program
[24] but this work is limited due to inaccessible data values.
Another solution can be to send commands to the application
in order to create the needed model [25]. We can know the
full behavior of the application. A model can also be a second
version of the same program (e.g. a validated implementation
of the same application) as in [26]. In black-box, we can use
the generation of statements in [27]. With this study, we see
that the generation of the data, used by the oracle, is a main
topic [28] but not necessary mandatory to do good test [29].
The table 1 shows a comparison of these methods.

IV. GENERATION OF LOCAL AND REQUIRED BEHAVIORS

We present a method of oracle’s generation for a smart card
application. As we want to work with a black box approach,
the oracle cannot be another implementation or a formal model
which need more information than only documentation or
specification. Indeed, we place ourselves in the context where
we don’t know the inside of the card, only accessible by
specific certification firm. We are building the oracle as a
collection of local and expected behavior. It consists in the
generation of assertions on the APDU communication, and
more specifically on the command-response pair.

A. Context

This approach is based on Assertion Based Design [30],
[31]. We can apply the principles of this method on the field
of smart card. Indeed, the APDU command-response pairs
implicitly define a clock on which we can define sequences.
The properties are defined on several clock cycles and there are
sequences of fields of several APDU command-response pairs
involved in the property. Figure 4 presents the verification of
a property that lasts for three clock cycles. If a property is not
verified, we can alert the user that the smart card application
might be defective.

We propose to generate properties thanks to a certified
smart card. Once properties are generated, we can use them to
automatically compute the level of confidence we can have for
an other smart card, as we can see in figure 5. The observer
application listen the APDU communication between a card

TABLE I: Oracle generation methods

Reference BlackBox Method Use Date
Peters and Pranas[24] YES Generation from documentation Easy but limited 1998
Aarts et al. [25] YES Model Inference Easy 2013
Alimi et al. [26] NO Reference Implementation Need to develop 2014
Pacheco and Ernst [27] YES Set of assertions Need a model 2013
Loyoal et al. [28] NO Assertion-based Oracle Use of DODONA | 2014
IS T TS T =T 2 option (GPO) command in the M/CHIP specification. Thus,
I v v V! v p (GPo) pectiica:
'0 123 4 5i6 7 N this property means that after that the application is selected,
| : :)
= = = = = T . only the GPO command can alter the application’s state. If the
: : Warning command is not accepted, it’s not the GPO command.
: ! Property The property P, is more elaborate:
I . -
I
Ty -»sc Violation

I Property defined on

i
ﬂ Command U Response { _ | three clock cycles

Fig. 4: Detection using APDU communication

and a terminal. The more properties are satisfied, the higher
is the conformance of the card being tested.

A [
[—]
B

Terminal Application

o mm
IX .f]
I I:>®|:>

Observer Application IG)

-5 —

Certified Smart Card :

Property Generator

Fig. 5: Link between the generator and the observer

B. Properties: local and required behaviors

Properties correspond to local and required behavior. They
are local as they verified for few command-response pairs
among all those involved to realize a payment, with a sliding
windows strategy. It is also required as if the property is not
satisfied, it indicates that the application card is faulty.

A property can be seen as a first order logic predicate. For
example, the property P;:

((SW1(1) =90) and (SW2(1) =00)) or
(INS(0) =A%) (1)

defines the required transition between two states of the
finite-state machine that card application must follow: (1) the
application is selected and (2) the application is initiated. The
fact that swl and Sw2 equals respectively 790’ and ’00”
means that the command has been accepted by the card appli-
cation. The INS set to A8’ corresponds to the Get Processing

((SW1(1) =90) and (SW2(1) = 00) and
(SW1(3) #£ 90) and (SW2(3) # 00) and
(SW1(5) = 90) and (SW2(5) = 00)) or
(INS(0) = A8) and (INS(2) = A8) and (INS(4) = AS8)
)

This property is an extension of P;. Once the GPO has been
accepted, a second GPO must be rejected, and thus the card
returns to the state where the application is selected, where a
third GPO can be accepted. This property permits to detect an
error of implementation in the application, where the second
GPO might be accepted instead of being rejected.

We can see these two properties as partial machine states,
and are presented in figure 6.

ﬂelecte&\ ﬂelecte&\
\acce pty \acce pted

GPO GPO

/ GPO \J /" ero
accepted &ccepted
\\\""7”'/ Initiation \""*”'/

Command

Else

(a) The P statechart (b) The P» statechart

Fig. 6: Properties P, and P, as partial finite state machine

The fact is we cannot generate all possible behaviors. First,
all behaviors are not relevant, and thus it is not necessary to
generate all of them. Second, it is a combinatorial problem to
generate all property. For example, if the application have four
possible INS commands, and two responses (accepted or not),
we have a minimum of 8 properties for one command-response
pair, if we consider simple property like P;. By choosing to
study the application with behavior of up to three command-
response pairs, we get a minimum of 8 + 82 + 8% = 584
possible properties given by the specifications. Knowing that
we have to manage more than four INS command, more than
two possible responses, and that we have to take into account
the CLA, P1 and P2 bytes, the number of properties quickly
becomes too large to study.

C. Generation of property: proposed approach

The approach we propose allows us to automate the gener-
ation of relevant properties. In order to do this, we randomly
generate properties, and then we select the most relevant ones
with respect to transaction logs between a terminal and the
certified application.

The generation and selection of properties is made by a
genetic algorithm [32]. A genetic algorithm is an optimization
method, and works on the same principle as the natural
evolution. Among the advantages of the genetic algorithm, we
can cite that fact that it will randomly generate a high number
of possible properties, and that it can generate several distinct
correct properties at each run. In order to do this, we ran-
domly create a population of properties, and we measure their
performance with a fitness measure. Once all the population
has been evaluated, we keep the best properties for the next
generation, and we replace the missing one either by creating
randomly new properties, mutate one of the kept properties,
or fuse two of them. After several generation, we stop the
evolution of properties, and the best one is added to the base
of selected properties.

In Figure 7, we can see the genetic algorithm selecting prop-
erties and adding them to the database of selected properties.
On the left, we can see a file that is used to generate properties,
and evaluate them.

Transaction

(I (Apoy Frow)

[NNNENNN Pi: possible property
JEEEEER Pi* : validated property

_— ~—_Genetic Algorithm
NARANAN
(111 m
\ (A !
. [
(D m
S

[IIEETTINTLETINID

Process result
[LINCEEETENNTLEEINIID O W
[LINCEEETENNILEERNIID: I
(D Add 1111
[IITITEETTNNTLEIEINIID: (NNNNRNNNEN

Logs of transactions Collection of properties

Fig. 7: Proposed approach

This input file for the genetic algorithm is a transaction
log file, created from a communication between a terminal
and certified smart card. It is a sequence of APDU command-
response pairs, defined as follows:

—> APDU command
<- APDU response

-> :00|A4]104]00|A0 OO 00 00 04 10 10]00

<- :90|00|6F 3F 84 07 A0 00 00 00 04 10 10
A5 34 50 OA 4D 41 53 54 45 52 43 41 52 44
87 01 02 5F 2D 04 66 72 65 6E 9F 11 01 01
9F 12 OA 4D 41 53 54 45 52 43 41 52 44 BF
0C OA DF 60 02 OB 14 9F 4D 02 OB 14

-> :80|CA|9F 361100

<— :6A|88]|
-> :80|CA|9F 13|00
<— :6A|88]|

-> :80|CA|9F|17] |04
<- :90|00|9F 17 01 03
-> :80|CA|9F|4F| |13
- :90|00|9F 4F 10 9F 02 06 9F 27 01 9F 1A
02 5F 2A 02 9A 03 9C 01
-> :80|A8|00/00183 00100
<- :90/00177 OE 82 02 78 00 94 08 08 01 03

00 10 01 04 01
-> :00(88|00|00] |00
<- :67]00|

From this document, the generation algorithm will extract
all possible values for the different fields such as CLA, INS,
and will generate properties from this possibles values. The
fitness function will then evaluate is the generated properties
are relevant given this log file.

Once we have the generated properties, we produce an XML
file, compatible with the observation tool, as we can see on
Listing 1.

Listing 1: Template of properties as an XML file

<properties>
<property>
<step>
<instruction instruction="XXXX"/>
<parameters parameters="XXXX" />
<status status="XXXX"/>
</step>
<step>
<instruction
<require>
<status
</require>
</step>
</property>

instruction="XXXX"/>

status="XXXX"/>

V. EXPERIMENTATION AND RESULTS
A. Optimization

In order to define our genetic algorithm, we have to define
four functions: the generation, mutation and cross-over func-
tions are used to manipulate the population of properties, and
the fitness function enable the selection of properties among
the population. In our case, we have defined these functions
as follow:

o generation of initial population :

the log file.

o selection of individual : random selection biased by
the score of individuals. We are removing the lowest
individuals.

o mutation : a very small chance (0.1 to 1%) to randomly
change the composition of a individual is used to avoid
local convergence.

e cross-over : the last step consists of randomly chosen
individuals to cross in order to create best individuals.

« fitness : evaluation of the population using the values of
the fields constituting the commands and responses.

At each generation, all properties are evaluated with the

fitness function, and only properties with best score are

randomly chosen from

kept for the next generation. The score of a property is the
mean score of the command-response pairs it is composed
of. The score of a command-response pair is computed by
comparing the CLA, UDC, SW1 and SW2 fields to the one from
command-response pairs in the learning database. The more
correspondence are found between the command-response pair
fields and the learning database, the higher the score.

The population counts 100 properties, and 10% are selected
at each generation. After 10 generations, we keep the best
property among the population. The genetic algorithm can
be launched as many times as we want properties, one being
generated at each launch.

B. results

The generation of properties is effective. We can see in
Listing 2 an example of two generated properties with the
genetic algorithm.

Listing 2: Examples of generated properties

<properties>
<property>
<step>
<instruction instruction="0xA4"/>
<status status="0x6A82"/>
</step>
<step>
<instruction instruction="0xA8"/>
<status status="0x6985"/>
</step>
<step>
<instruction
<require>
<status
</require>
</step>
</property>
<property>
<step>
<instruction instruction="0xA4"/>
<status status="0x9000"/>
</step>
<step>
<instruction
<require>
<status
</require>
</step>
</property>
</properties>

instruction="0x20"/>

status="0x6985"/>

instruction="0xA4" />

status="0x9000" />

We can write these properties with the previous writting.
The first one, P3, means that if the selection of the application
(CA4’) has failed, then the GPO ("A8’) command and the
VERIFY (°20’) command can’t be accepted.

((SW1(1) #90) and (SW2(1) # 00) and
(SW1(3) #£ 90) and (SW2(3) # 00) and
(SW1(5) # 90) and (SW2(5) # 00)) or
(INS(0) = A4) and (INS(2) = A3) and (INS(4) = 20)
3)

The second property, the property P, means we can select
the application twice in a row. For this one, we have to capture
the parameters to specify which application can be selected

(we have verified the parameters used, i.e. the AID of the
application is the correct one in the log file).

((SW1(1) =90) and (SW2(1) = 00) and
(SW1(3) = 90) and (SW2(3) =00) or
(INS(0) = A4) and (INS(2) = A4)

“4)

The computation time is reasonable, as it takes approx-
imately 2 seconds to generate these two properties. The
produced XML file is valid, and works well with the observer
tool, as it is intended.

C. Discussion

The generation of properties using genetic algorithm is
functional. It is possible to generate as many properties as
required, and it is time effective.

However, there is still some place for improvements. The
first one concerns the generation function. For now, only the
INS byte and the two status word bytes are used. A proper
generation function should manipulate all possible byte, such
as CLA, P1, P2 as well as optional fields UDC, LE and UDR.
The cross-over and mutation functions should be modified
accordingly.

The second improvement concerns the fitness function. The
effectiveness of the genetic algorithm relies on this function.
Improving it would enable to have more meaningful generated
properties. For example, it could take into account same
additional data, provided by the user, that would give more
weight to some field value that are meaningful in a given
specifications. Moreover, it should not only take into account
the log file, but also the previously generated properties. This
would guarantee that generated properties are not redundant.

VI. CONCLUSION

We have seen that smart card industries, and more particu-
larly the payment one, rely their security on the standards and
specification, such as EMV. Before being released, a smart card
following these specifications must be validated by specialized
firms.

This validation is possible thanks to an observer, listening
the communication between a terminal and a smart card. The
product might be validated as long as all the defined properties
are validated by the observer. However, it is complicated to
generate theses properties, as it is a combinatorial problem.

The proposed approach enables the automated creation of
properties, thanks to genetic algorithms, to create a relevant
partial oracle to know if there is an anomaly on the smart card
application. However, there is still some place for improve-
ments. The perspectives are to improve the functions used by
the genetic algorithm. Particularly, the improvements of the
fitness function would give us more useful properties.

REFERENCES

[1] ISO/IEC 7816 - Identification cards, International Organization for
Standardization and the International Electrotechnical Commission Std.

[2] Eurosmart, http://www.eurosmart.com/publications/market-overview,
2014.

[3]
[4]
[5]

[6

—

[8

[t}

[9]
(10]

(11]
[12]

[13]

[14]

[15]

[16]

[17]

[18
[19]

EMVCo, http://www.emvco.com/, 2014.

S.c.d. 1 s. d.s. d. S. Carlos Martin, “évaluation et certification.”

K. Vedder and F. Weikmann, “Smart cardsrequirements, properties, and
applications,” in State of the Art in Applied Cryptography. Springer,
1998, pp. 307-331.

ISO/IEC 14443 - Identification cards — Contacless intergrated circuit
cards, International Organization for Standardization and the Interna-
tional Electrotechnical Commission Std.

EMV Integrated Circuit Card Specifications for Payment Systems, ver-
sion 4.3, EMVCo Std., 2011.

M/Chip 4 Card Application Specifications for Credit and Debit, Mas-
terCard International Std.

Visa Integrated Circuit Card Specifications, Visa Std., 2009.

S. J. Murdoch and R. Anderson, “Security protocols and evidence:
Where many payment systems fail,” in Financial Cryptography and Data
Security. Springer, 2014, pp. 21-32.

Joint Interpretation Librabry, “Application of attack potential to smart-
cards,” 1 2013, version 2.9.

A. C. Noubissi, A. Séré, J. Iguchi-Cartigny, J.-L. Lanet, G. Bouffard,
and J. Boutet, “Cartes a puce: Attaques et contremesures,” MajecSTIC,
vol. 16, p. 1112, 2009.

W. Rankl, Smart Card Applications: Design models for using and
programming smart cards, Wiley, Ed., 2007.

M. Bond, O. Choudary, S. J. Murdoch, S. Skorobogatov, and R. An-
derson, “Chip and skim: cloning emv cards with the pre-play attack,”
in Security and Privacy (SP), 2014 IEEE Symposium on. 1EEE, 2014,
pp. 49-64.

L. Francis, G. Hancke, and K. Mayes, “A practical generic relay attack
on contactless transactions by using nfc mobile phones,” International
Journal of RFID Security and Cryptography (IJRFIDSC), vol. 2, pp.
92-106, 2013.

S. J. Murdoch, S. Drimer, R. Anderson, and M. Bond, “Chip and pin
is broken,” in Security and Privacy (SP), 2010 IEEE Symposium on.
IEEE, 2010, pp. 433-446.

W. Rankl and W. Effing, Smart card handbook.
2010.

Joint Interpretation Librabry, “Guidance for smartcard evaluation,” 2010.
J. Radatz, A. Geraci, and F. Katki, “Ieee standard glossary of software

John Wiley & Sons,

[20]
[21]

[22]
[23]

[24]

[25]

[26]

[27]

(28]

[29]

(30]

[31]

(32]

engineering terminology,” IEEE Std, vol. 610121990, no. 121990, p. 3,
1990.

S. C. Alliance, “What makes a smart card secure?” 2008.

D. R. Wallace, D. R. W. L. M. Ippolito, B. B. Cuthill, and L. M. Ip-
polito, Reference information for the software verification and validation
process. DIANE Publishing, 1996.
http://www.emvco.com/approvals.aspx, 2015.

E. T. Barr, M. Harman, P. McMinn, M. Shahbaz, and S. Yoo, “The
oracle problem in software testing: A survey,” 2015.

D. K. Peters and D. L. Parnas, “Using test oracles generated from
program documentation,” Software Engineering, IEEE Transactions on,
vol. 24, no. 3, pp. 161-173, 1998.

F. Aarts, J. De Ruiter, and E. Poll, “Formal models of bank cards
for free,” in Software Testing, Verification and Validation Workshops
(ICSTW), 2013 IEEE Sixth International Conference on. IEEE, 2013,
pp- 461-468.

V. Alimi, S. Vernois, and C. Rosenberger, “Analysis of embedded
applications by evolutionary fuzzing,” in High Performance Computing
& Simulation (HPCS), 2014 International Conference on. 1EEE, 2014,
pp. 551-557.

C. Pacheco and M. D. Ernst, Eclat: Automatic generation and classifi-
cation of test inputs. Springer, 2005.

P. Loyola, M. Staats, I.-Y. Ko, and G. Rothermel, “Dodona: automated
oracle data set selection,” in Proceedings of the 2014 International
Symposium on Software Testing and Analysis. ACM, 2014, pp. 193—
203.

G. Fraser, M. Staats, P. McMinn, A. Arcuri, and F. Padberg, “Does
automated white-box test generation really help software testers?” in
Proceedings of the 2013 International Symposium on Software Testing
and Analysis. ACM, 2013, pp. 291-301.

H. D. Foster, A. C. Krolnik, and D. J. Lacey, Assertion-based design.
Springer Science & Business Media, 2004.

G. Jolly, S. Vernois, and J.-L. Lambert, “Improving test conformance
of smart cards versus emv-specification by using on the fly temporal
property verification,” in Recent Trends in Computer Networks and
Distributed Systems Security. Springer, 2014, pp. 192-201.

L. Davis et al., Handbook of genetic algorithms. Van Nostrand Reinhold

New York, 1991, vol. 115.

