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Abstract: Integrated environmental modeling approaches, especially the agent-based modeling one, are increasingly 

used in large-scale decision support systems. A major consequence of this trend is the manipulation and 

generation of huge amount of data in simulations, which must be efficiently managed. Furthermore, 

calibration and validation are also challenges for Agent-Based Modelling and Simulation (ABMS) 

approaches when the model has to work with integrated systems involving high volumes of input/output 

data. In this paper, we propose a calibration and validation approach for an agent-based model, using a 

Combination Framework of Business intelligence solution and Multi-agent platform (CFBM). The CFBM is 

a logical framework dedicated to the management of the input and output data in simulations, as well as the 

corresponding empirical datasets in an integrated way. The calibration and validation of Brown Plant 

Hopper Prediction model are presented and used throughout the paper as a case study to illustrate the way 

CFBM manages the data used and generated during the life-cycle of simulation and validation.  

1 INTRODUCTION 

Integrated socio-environmental modeling in general 

and multi-agent based simulation approach applied 

to socio-environmental systems in particular are 

increasingly used as decision-support systems in 

order to design, evaluate and plan public policies 

linked to the management of natural resources 

(Laniak et al., 2013). For example, in the research 

about invasions of Brown Plant Hopper (BPH) and 

the impact of BPH on rice fields of the Mekong 

Delta region (Vietnam), researchers must develop 

and integrate several models (e.g. BPH growth 

model, light-trap model, BPH migration model). 

They must also integrate data from different data 

sources and analyze the integrated data at different 

scales. Such an integrated simulation system 

involving high volume of data raises two problems: 

how to manage and analyze outputs of simulation 

models considering such a high volume of input?  

Although computing power is increasing rapidly, 

to determine the accuracy of the simulation outputs 

from a large size of inputs with several parameters 

and to work on the high computational requirements 

in large systems are still the limitations of agent-

based modelling (Crooks and Heppenstall, 2012). 

When developing a simulation model, the modelers' 

ambition is to achieve a credible model. To obtain a 

credible model or to determine the accuracy of the 

simulation outputs, calibration and validation are 

two necessary processes (Donigian, 2002; Klügl, 

2008; Law, 2009). For instance, complex agent-

based models are usually executed with several 

parameters and generate a huge amount of data, 

which do not have exactly the same structure than 

observation data from real system and can be 

measured and validated in various conditions. In 

such case, calibration and validation are used to 

determine which inputs and outputs are appropriate 

regarding observation data (Ngo and See, 2012; 

Rogers and Tessin, 2004; Said et al., 2002). 

Furthermore, calibration and validation are among 

the greatest challenges in agent-based modelling 

(Crooks et al., 2008; Crooks and Heppenstall, 2012). 

Therefore, how to solve the two challenges 

(calibration and validation) of agent-based 

modelling and simulation when the model deals with 



integrated systems with a high volume of 

input/output data? 

In this article, we briefly describe a Combination 

Framework of BI solution and Multi-agent platform 

(CFBM). CFBM was designed and implemented in 

GAMA (Truong et al., 2013) and it can be used to 

model and execute agent-based simulation models, 

to handle data input/output of the models, and to 

conduct data analysis. Subsequently, we expose an 

approach for the calibration and validation of multi-

agent models by applying the CFBM, which 

proposes a solution to two of the limitations of 

agent-based modelling when working in integrated 

systems. In addition, a specific measure is presented, 

i.e. Jaccard index for ordered data sets, which has 

been used to evaluate the accuracy of simulation 

outputs.  

Hence the major contribution of this article is to 

propose an implemented framework (CFBM) to 

address two crucial issues in agent-based simulation 

that are the calibration and validation of such 

models. In order to demonstrate the feasibility and 

the interest of the application of such framework, we 

apply it to the calibration and validation of a Brown 

Plant Hoppe invasion model, which is described 

briefly.  

In the following sections, we first present the 

state of the art of works linking ABMS, BI and 

calibration and validation of simulation models 

(Section 2). The global architecture of the 

Combination Framework of BI solution and Multi-

agent platform is presented in Section 3. In Section 

4, we illustrate the calibration and validation 

approach for integrated agent-based simulation 

models. In Section 5, we apply the approach on an 

integrated simulation model, namely the BPH 

prediction model, in order to calibrate and validate 

the model on the GAMA simulation platform in 

order to illustrate the approach. Discussion and 

perspectives conclude this article. 

2 RELATED WORKS 

2.1 Integration of BI Solution into a 
Simulation System 

Data Warehouse (DW) and analysis tools such as BI 

solutions can help users to manage a large amount of 

simulation data and to make several data analyses 

that support the decision-making processes (Inmon, 

2005; Kimball and Ross, 2002). The combination of 

simulation tools and DW is on the increase and 

being applied in different areas. For example, 

although (Madeira et al., 2003; Sosnowski et al., 

2007) are only two applications of OLAP 

technologies to a specific problem, these works 

demonstrate that a multidimensional database is 

suitable to store several hundreds of thousands of 

simulation results. Simulation models, DW and 

analysis tools with OLAP technologies were also 

integrated in decision support systems or forecast 

systems (Ehmke et al., 2011; Vasilakis et al., 2008). 

In (Mahboubi et al., 2010), Mahboubi et al. also 

used data warehouse and OLAP technologies to 

store and analyze a huge amount of output data 

generated by the coupling of complex simulation 

models such as biological, meteorological and so on. 

In particular, the authors proposed DW and Online 

Analytical Processing tool (OLAP tool) for storing 

and analyzing simulation results.  

The mentioned state of the art demonstrates 

therefore the practical possibility and the usefulness 

of the combination of simulation, data warehouse 

and OLAP technologies. It also shows the potential 

of a general framework that has, as far as we know, 

not yet been proposed in the literature. 

2.2 Calibration and Validation 

What are calibration and validation? The calibration 

process is known as a test of a model with known 

input and output information. It is used to adjust or 

estimate factors for data which are not available. The 

validation process is the comparison of model results 

with numerical data independently derived from 

experiments or observations of the environment. 

These two definitions are taken from (Donigian, 

2002) who was citing (ASTM, 1984). In the 

validation of multi-agent simulation, there are two 

kinds of validation: internal validation and external 

validation (Amblard et al., 2007). These two 

processes are also presented in terms of "face 

validation" and "statistical validation" by (Klügl, 

2008). Internal validation is used to check the 

conformity between specifications and the 

implemented model. In the software engineering 

field, it is usually called verification and corresponds 

to the process which is used to compare the 

conceptual model to the computer-generated model. 

Internal validation corresponds to building the 

model right. External validation is used to check the 

similarities between the model and the real 

phenomenon. It is also named validation process in 

software engineering, so external validation 

corresponds to build the right model. In this paper, 

we address only the external validation. In the 

following, validation then means external validation 



of multi-agent models; and the calibration is the 

fine-tuning of the output of simulation model by a 

change in the values of parameters. The calibration 

involves the validation (especially the similarity 

evaluation which is present in both cases) to check 

the simulation outputs. 

To calibrate and validate a simulation model, 

modelers used several different methods: (Donigian, 

2002) used the "weight of evidence"; (Ngo and See, 

2012; Rogers and Tessin, 2004; Said et al., 2002) 

used generic algorithms to optimize the fitness value 

of parameters by comparison with the observations 

from real systems. In general, these researchers 

validate simulation outputs with empirical data and 

check fitness conditions by statistic methods such as 

Root Mean Squared Error (RMSE) (Ngo and See, 

2012; Willmott et al., 1985). Implementing 

calibration and validation model in Section 5, we 

tune values of parameters in their value domain 

(they were specified by expert biologist) by 

specifying the different values of all parameters and 

execute simulations with all possible cases (full 

experimental design in statistical terms). The Jaccard 

index (Jaccard, 1908), which can be found in 

(Niwattanakul et al., 2013; Rahman et al., 2010; 

Sachdeva et al., 2009) is used to estimate the 

similarity coefficient between two data sets. 

3 COMBINATION FRAMEWORK 

OF BUSINESS INTELLIGENCE 

SOLUTION AND 

MULTI-AGENT PLATFORM 

(CFBM) 

In this section, we demonstrate the logical 

framework to combine BI solution and Multi-agent 

platform. This framework has been implemented on 

the GAMA simulation platform (Truong et al., 

2013). The CFBM is designed to handle big data 

from different data sources and perform analyses on 

the integrated data from these sources. It is a 

solution to improve the weaknesses of ABMs when 

modelling is conducted on an integrated system.  In 

this framework, we use a BI solution as a database 

tool, a multi-agent platform as model design tool and 

model execution tool. For the execution analysis 

tool, we can either use OLAP analysis tool or use 

analysis features of the platform (implemented as an 

external plug-in for the platform, e.g. R scripts). 

The architecture of the CFBM is illustrated in 

Figure 1. It is formed by three systems and it 

supports four tools: model design tool, model 

execution tool, execution analysis tool and database 

tool. 

3.1 Simulation System 

The simulation system plays two roles: model design 

tool and model execution tool. It is composed of a 

multi-agent platform and a relational database. This 

system is an Online Transaction Processing (OLTP) 

or an operational source system. It is an outside part 

of the data warehouse (Kimball and Ross, 2002).  

 

Figure 1: Combination framework of BI solution and 

multi-agent platform architecture. 

Three layers with five components compose the 

simulation system. The simulation interface is the 

user environment that helps the modeler to design 

and implement his models, execute the models and 

visualize results. Multi-agent simulation models 

are a set of multi-agent based models. They are used 

to simulate the phenomena that the modeler aims at 

studying. The SQL-agent plays the role of the 

database tool and can access to the relational 

database. It is a particular kind of agent that supports 

Structured Query Language (SQL) functions to 



retrieve simulation inputs from simulation data or 

reality data, to store output simulation data into 

simulation data databases and to transform data (in 

particular the data type) from simulation model to 

relational database, and conversely. Reality data and 

Simulation data are relational databases. The reality 

database is used to store empirical data gathered 

from the target system that are needed for the 

simulation and analysis phases. Finally, Simulation 

data is used to manage simulation models, 

simulation scenarios and the output results of the 

simulation models. These two data sources will be 

used to feed the second part of the framework, 

namely the Data warehouse system 

The simulation system helps to implement 

models, execute simulations and handle their 

input/output data.  

3.2 Data Warehouse System 

The data warehouse system is conceptualized as a 

part of the BI solution. It is an important part to 

integrate data from different sources (simulation 

data, empirical data and others external data) and is 

used as data storage to feed data for decision support 

systems.  

The data warehouse system is divided into three 

parts. ETL (Extract-Transform-Load) is a set of 

processes with three responsibilities. First, it extracts 

all kind of data (empirical data and simulation data) 

from the simulation system. Second, ETL transfers 

the extracted data into an appropriate data format. 

Finally, it loads the transferred data into a data 

warehouse. Data warehouse is used to store 

historical data, which are loaded from simulation 

system by ETL. Data mart is a subset of data stored 

in the data warehouse and it is a data source for 

concrete analysis requirements. We can create 

several data marts depending on our analysis 

requirements. Data mart is a multidimensional 

database, which is designed based on 

multidimensional approach. It uses star joins, fact 

tables and dimension tables to present the data mart 

structure data. With a multidimensional structure, 

data mart is particularly useful in improving the 

performance of analytic processes. 

3.3 Decision Support System 

In CFBM, the decision support system plays the role 

of analysis tool. It is a software environment 

supporting analysis, decision-making features and 

the visualization of results. In our design, we 

propose to use existing OLAP analysis tools, or a 

multi-agent platform with analysis features or a 

combination of both options. The decision support 

system of CFBM is built on four parts. Analysis 

interface is a user interface used to handle analysis 

models and visualize results. Multi-agent analysis 

models are a set of agent-based analysis models. 

They are created based on analysis requirements and 

handled via analysis interface. MDX-agent is a 

bridge between multi-agent analysis models and data 

marts. This agent supports MultiDimensional 

eXpressions (MDX) functions to query data from a 

multidimensional database. OLAP analysis tools 

are analysis software packages that support OLAP 

operators. 

In general, the CFBM is a solution we proposed 

to solve the limitations of ABMS in terms of data 

management and output analysis with high volume 

of data, which have been explained in Section 1. 

The key points of the CFBM architecture are that 

it contains and adapts the four features of a computer 

simulation system (model design, model execution, 

execution analysis, and database management). All 

these functions are integrated into one multi-agent 

platform. The data warehouse manages the related 

data. The analysis models and simulation models 

can interact with each other. Using the CFBM 

architecture, we can build a simulation system not 

only suitable for modeling driven approach but also 

for data driven approaches. Furthermore, CFBM 

brings certain benefits for building simulation 

system with complex requirements such as the 

integration and analyzes of high volume of data. 

4 CALIBRATION & VALIDATION 

APPROACH 

In this section, we propose an approach to calibrate 

and validate an agent-based simulation model. The 

approach is an application of CFBM, which we 

presented in Section 3. It is useful when we work 

with integrated simulation systems, where we need 

to control several models with high volume of 

input/output data of simulation, observation data 

from real system and analysis results. In this part we 

detail the practical use of CFBM to calibration and 

validation purposes. 

4.1 Calibrating an Agent-based Model 

In Figure 2, we present an automatic approach with 

seven steps for calibrating and validating an agent-

based model. The approach helps modelers to test 

their models more systematically in a given 



parameter space, to evaluate (validate) outputs of 

each simulation and manage all data in an automatic 

manner.  

Step 1: Load input Data with Default Parameter 

Values. Select a model scenario from the database 

then the input data and default parameter values are 

loaded from the quartet (model, scenario, input data 

set, parameters). This step assures that the correct 

input data and default values of parameter are loaded 

to simulation model. 

Step 2: Execute Simulation Model. The simulation 

model is executed with the loaded scenario as input. 

In this process, outputs of the simulation are stored 

into a database. Because the simulation can be 

executed many times (replications) with the same 

scenario, to be sure that the system can handle 

results, the quartet (model, scenario, replicate, 

output) must be stored into the database. 

Step 3: Execute Validation Model. The validation 

model is used to analyze the variations between 

simulation outputs and observations from the real 

system. The result of this process is a similarity 

coefficient or difference/distance coefficient 

between the output data in step 2 and observation 

data. The method is used to validate depends on the 

properties of data and on the modeler's choice. For 

example, we choose Jaccard index method for the 

validation of our model in Section 4. 

In this step, the validation model loads testing 

data set (observations) and corresponding output 

data set of the quartet (model, scenario, replicate, 

output) to make the comparison between the two 

data sets. The result of validation is also stored into 

the database with the quartet (model, scenario, 

replicate, result of validation). 

Step 4: Check Fitness Condition. The result of 

validation in Step 3 is compared with a fitness 

condition that is defined by the modeler. For 

example, the similarity coefficient of Step 3 must be 

greater than or equal to 0.90 (see Section 5.2.1). 

There are two cases: 

 If the fitness is true/yes then do Step 5 (It means 

that the input of simulation with the value of the 

parameters is accepted). 

 If the fitness is false/no then do Step 6 (It means 

that the input of simulation with the value of the 

parameters is not accepted). 

Step 5: Store the Scenario with Fitness 

Parameters. Note that the result of each replication 

was stored in the quartet (model, scenario, replicate, 

result of validation) by step 3. Hence this step only 

stores the adaptive scenario and fitness parameter 

values in the quartet (model, scenario, replicate, 

fitness parameter values).  

Step 6: Check Adjustment Condition. The system 

checks if there is another instance of parameters in 

its population or not. Hence there are two cases: 

 If the Adjustment is True/Yes then do Step 7 (It 

means that there is another instance of 

parameters in its population). 

 If the Adjustment is False/No then stopping the 

process (It means that there is not any other 

instance of parameters in its population). 

Step 7: Execute Adjustment Parameters. The 

adjustment function concerns the determination of 

the new values for parameters. It is used to adjust the 

input parameters to improve the output of the model. 

The result of this process is the creation of a new 

scenario for the simulation model. 

This function changes the values of the 

parameters to other values in their population and 

progresses to step 2. 

With the seven-step approach, the calibration 

model can execute the simulation model with all 

adjusted values of the parameters, manage the whole 

input/output data dealt within the processes and 

analyze the variant between simulation outputs and 

observation data. It helps us to specify appropriate 

values of parameters automatically.  The calibration 

model is an integration of two major models: 

simulation model and validation model. It also 

handles all data processed by the two models. The 

calibration model is a demonstration of the 

application of the CFBM, where: BI solution is used 

to handle all input/output of the model and empirical 

data related with simulating and analyzing while the 

analysis model is used to validate the output of the 

simulations. 

4.2 Validating Simulation Output using 
Jaccard Index 

There are several methods to measure similarity 

between two data sets as mentioned in (Ngo and 

See, 2012; Wolda, 1981). Root Mean Squared Error 

(RMSE) is usually used to estimate the distance (or 

error) between two data sets (simulation outputs and 

observations from real system). 



 

Figure 2: Workflow for the calibration of a model. 

In this section, we propose a method to measure 

the similarity between two data sets integrating 

constraints on the position of elements in the data 

sets (ordered data set). In our method, we use 

Jaccard index as the similarity coefficient between 

two ordered data sets as follow: 

Jaccard Index on Ordered Data Sets. Assume that 

we have two ordered data sets: 

X = {x1, x2, …., xn} 

Y = {y1, y2, …., yn} 

Definition 1: xi is called match (or similar or equal) 

with yj when i = j and value of xi equal value of yj. 

match(xi, yj) = true when i = j and 

value(xi) = value(yj) other match(xi, yj) = false

i,j=1..n 

(1)

Definition 2: The intersection of X and Y is: 

S={s1, s2, …, sn} (2)

where:    

 si = {xi} (or si = {yi}) when match(xi,yj) = true 

 si = {} =   when match(xi, yj) = false 

 i=1..n 

Definition 3: The union of X and Y is: 

U={u1, u2, …, un} (3)

where:   

 ui  = {xi} (or ui = {yi}) when match(xi,yj) = true 

 ui  = {xi, yi}  when match(xi, yj) = false 

 i =1..n 

Definition 4: The cardinality of an ordered set is 

| {} |=0; 

| S |=| s1 | + | s2 | + … + | sn | 

| U |=| u1 | + | u2 | + … + | un | = | X  |+| Y  | - | S |

(4)

Definition 5: Jaccard index of two ordered data sets 

is:  

 (5)

where:  

 c: number of matched pairs (xi, yi)  

 a: number of xi elements in X and not matched  yi 

in Y 

 b: number of yi elements in Y and not matched  xi 

in X 

In an easier way, we calculate Jaccard index 

between X and Y based on the cardinality of S, X and 

Y as equation (6): 

 (6)

where:  

 f: cardinality of S.  

 d: cardinality of X. 

 e: cardinality of Y.  

Example 1: Assume that we have the following 

data: 

 Empirical data set: X={ 1,2,3,4,5}   

 Simulation data set: Y={ 3,2,5,6,7} 

Jaccard index between X and Y with no constraint on 

position of elements: 

Intersect(X, Y) = {2, 3, 5} 

Union(X, Y)     = {1, 2, 3, 4, 5, 6, 7} 

J(X, Y)            = 3/(2+2+3) = 3/7 = 0.429 

However we cannot say x3=y1 because we consider 

ordered sets. In this case, we apply Jaccard index on 

two ordered data sets: 

Intersect(X, Y) = { {}, {2}, {}, {}, {} } 

Union(X, Y)   = { {1,3}, {2}, {3,5}, {4,6}, {5,7} } 

(5) => J(X, Y) = 1/(4+4+1) = 1/9 = 0.111 or (6) => 

J(X, Y) = 1/(5+5-1)  = 1/9 = 0.111 

In Example 1, the similarity coefficient (Jaccard 

index) between two data sets with no position 

constraint (0.429) is different from the similarity 

coefficient between those two data sets with position 

constraint (0.111).  



5 CALIBRATION & VALIDATION 

OF THE BPH PREDICTION 

MODEL 

In this section, we demonstrate the calibration and 

validation model for an integrated agent-based 

simulation model, the BPH prediction model 

(Truong et al., 2013). This model is one of the 

research results of the DREAM1 project, coordinated 

between Can Tho University, Vietnam and Institut 

de Recherche pour le Développement (IRD), France. 

5.1 BPH Prediction Model 

BPH Prediction model is used to predict the Brown 

Plant Hopper (cricket) density on rice fields in 

Mekong Delta, Vietnam. This model contains two 

sub-models: BPH Growth Model and BPH 

Migration Model. The output is the number of BPHs 

in each light-trap distributed in the environment to 

catch BPH. Inputs and outputs of the integrated 

model are handled via the CFBM in GAMA. 

Empirical data such as administrative boundary 

(region, river, sea region, land used), light-trap 

coordinates, daily trap-densities, rice cultivated 

regions, general weather data (wind data), station 

weather data (temperature, humidity, etc.), river and 

sea regions are used as inputs of the simulation 

model and as validation data for the model. 

5.1.1 BPH Migration Model 

BPH migration model is used to simulate the 

invasion of BPHs on the rice fields. The migration 

process of BPHs in the studied region is modeled by 

a dynamical moving process on cellular automata. 

Denoting x(t) as the number of adult BPHs at 

time t, the migration model essentially determines 

the outcome xout(t) at a later time t + 1 from a 

specific source cell and the rates of xout(t) moving to 

all destinations at time (t + 1). Destination cells are 

determined by the semi-circle under the wind, while 

the radius of the circle is determined by the wind 

velocity and the migration time in a day. The local 

constraints are also considered by two combinational 

indices: attractiveness index and obstruction index ( 

(Truong et al., 2013). 

 

 

 

 

 
1 http://www.ctu.edu.vn/dream/ 

5.1.2 BPH Growth Model 

In the growth model, authors applied a deterministic 

model of T variables where T is the life cycle of the 

insect. To simplify the implementation process, 

these variables will be stored in an array variable V 

of length T where an element V[i] marks the number 

of insects at age i (i.e. ith day of BPH life cycle). For 

each simulation step, all elements of V will be 

updated by the following equation: 

 (7)

where 

  denotes the number of insects at age i, 

  denotes the ratio of egg number able to 

become the nymph, 

  denotes the ratio of nymph number able to 

become the adult. 

  denotes the ratio of eggs can be produced by 

an adult. 

 m denotes the ratio of natural mortality. 

  denotes the egg giving time span. 

  denotes the egg and time span. 

 denotes the nymph time span. 

 denotes the adult time span. 

5.2 Calibration & Validation of the 
BPH Prediction Model 

5.2.1 Parameters for Calibration 

From equation (7) in Section 5.1.2, there are several 

parameters we can choose for calibration. However, 

we only choose T4 (adult time span of BPH) and m 

(the ratio of natural mortality) as two parameters for 

demonstration purpose. BPH has an adult time span 

of 8 days in minimum and 12 days in maximum. The 

ratio of natural mortality is 0.15 in minimum and 

0.35 in maximum. The following populations of the 

two parameters are therefore tested: 

 T4: [8, 9, 10, 11, 12] 

 m=[0.35, 0.25, 0.15] 

For the input data of BPH prediction model, we used 

the data from 48 light-traps of three typical 

provinces in the Mekong Delta region: Soc Trang, 

Hau Giang and Bac Lieu from January 1, 2010. With 

one input data set, we have 15 scenarios as presented 

in Table 1. 



Table 1: The parameters value of scenarios for a complete 

experimental design. 

Scenario 

Parameters 

Adult time span (T4) 
Ratio of natural 

mortality (m) 

1 8 0.35 

2 9 0.35 

3 10 0.35 

4 11 0.35 

5 12 0.35 

6 8 0.25 

7 9 0.25 

8 10 0.25 

9 11 0.25 

10 12 0.25 

11 8 0.15 

12 9 0.15 

13 10 0.15 

14 11 0.15 

15 12 0.15 

The Fitness Condition. We try the fitness condition 

in two cases: 

Case 1: The difference coefficient is equal or less 

than 500 
 if (RMSE<=500.0) 
 { 

    saveFitness(MODEL_ID, SCENARIO_ID,  

        REPLICATE_ID, PARA_VALUES); 

 } 

Case 1:  The similarity coefficient is equal or greater than 0.9  
 if (Jindex>=0.9)   

 { 

    saveFitness(MODEL_ID, SCENARIO_ID,  

        REPLICATE_ID, PARA_VALUES); 

 } 

saveFitness is a user defined function, it writes 

the fitness scenario to database. 

5.2.2 Simulation Output and Empirical Data 

All related operations for validation in the validation 

model are shortly introduced in this part. As 

mentioned, the output of BPH prediction model is 

the BPH density by light-traps and by time. The 

empirical data (testing data) is BPH density from 48 

light-traps of three typical provinces in the Mekong 

Delta region: Soc Trang, Hau Giang and Bac Lieu 

from January 1, 2010.  

We simulate and predict the infection of the 

BPHs on the rice fields of the three provinces in 28 

days. The output of the BPH prediction model has 

been structured as in Table 2. The structure of 

empirical data is presented in Table 3. Each table 

has 48 columns and 28 rows. The columns stand for 

48 light-traps and the rows for 28 days (prediction 

time). In Table 2, si,j is the number of BPH that is 

simulated in step i (day i) at light-trap j. In Table 3, 

ei,j is the number of BPHs that are caught in day i at 

light-trap j on the rice fields of Mekong Delta, 

Vietnam. It should be noted that the indices of the 

rows and columns starts at 0 for programming 

reasons.  

Table 2 and Table 3 present two matrixes of 

values which have constraints on the position 

(location and time) of their elements, hence they are 

considered as two ordered data sets.  

Table 2: Simulation outputs. 

Light-trap
Tr0 Tr1 ... Tr47 

   day 

0 s0,0 s0,1 ... s0,47 

1 s1,0 s1,1 ... s1,47 

... ... ... ... ... 

27 s27,0 s27,1 ... s27,47 

Table 3: Empirical data. 

Light-trap
Tr0 Tr1 ... Tr47 

   day 

0 e0,0 e0,1 ... e0,47 

1 e1,0 e1,1 ... e1,47 

... ... ... ... ... 

27 e27,0 e27,1 ... e27,47 

5.2.3 Validating the Output of the BPH 
Prediction Model 

The simulation output and testing data have location 

constraints (light-trap) and time constraints. Hence, 

we use Jaccard index on ordered data sets, which has 

been presented in Section 4.2 to estimate the 

similarity between the simulation output and the 

empirical data. The RMSE method has also been 

applied to measure the difference between the two 

data sets. 

As regard to prediction, we need to predict 

different periods of time: from day 0 (initial day) to 

6 (1st week), from day 7 to 13 (2nd week), from day 

14 to 20 (3rd week) and from day 21 to 27 (4th week). 

Hence for each scenario, we validate the results of 

simulation in four cases: 1st week, 2nd week, 3rd 

week, 4th week. For each case of validation, we 

measure difference coefficient (RMSE) and 

similarity coefficient (Jaccard index).  

In addition, we also measure RMSE and Jaccard 

index of the whole data set (from day 0 to 27 or 4 

weeks) for the comparison of the two measures in 

each scenario. 

5.2.3.1 The Difference Coefficient (RMSE) 

The difference coefficient between the two data sets 

is calculated based on the equation (8): 



 (8)

where: 

 m denotes the number of rows of data set 

 n denotes the number of columns of data set 

 ei,j is the empirical data. It denotes the number of 

BPHs caught in day i at light-trap j. 

  si,j is the simulation output. It denotes the 

number of BPHs obtained in step i (day i) at 

light-trap j. 

The RMSE results of the 15 scenarios are presented 

in Table 4.  

Table 4: RMSE between simulation output and empirical 

data. 

Scenario 1st week 2nd week 3rd week 4th week 4 weeks

1 483.24 35.53 84.07 1610.25 879.58

2 474.58 31.73 95.14 1714.17 931.34

3 57.17 28.34 119.74 1762.46 928.09

4 53.48 25.71 282.73 1768.57 939.68

5 51.96 19.16 489.3 1738.06 944.39

6 484.26 108.54 209.26 1609.61 885.86

7 472.54 105.35 234.76 1713.14 937.82

8 56.45 106.86 233.00 1761.98 934.39

9 54.63 110.65 345.59 1766.14 945.00

10 84.44 94.69 530.54 1735.76 950.25

11 488.51 1215.93 2413.06 1863.30 1666.85

12 473.80 1271.71 2639.58 2322.33 1903.59

13 83.20 1210.19 2570.50 8826.41 4846.08

14 139.46 1339.62 2636.22 10508.34 5709.14

15 770.65 1150.98 2588.53 11430.14 6174.68

Based on the difference coefficient condition 

(RMSE   500.0) in Section 5.2.1, we can show that: 

the RMSE of the first 14 scenarios fits the 

calibration conditions for the 1st week. , this is also 

the case for the first 10 scenarios the 2nd week and 

the first 9 scenarios the 3rd week; but none of the 15 

scenarios fits the calibration conditions of the 4th 

week. 

5.2.3.2 The Similarity Coefficient (Jaccard 

Index) 

We apply equation (6) in Section 4.2 to measure the 

Jaccard index between the simulation output (Table 

2) and empirical data (Table 3). The results are 

presented in Table 5. 

If we compare the results in Table 5 with the 

similarity coefficient condition (Jindex  0.90) in 

Section 5.2.1 then there are not any results fitting the 

condition. Certainly, there are no scenarios to be 

recognized in the calibration process. This problem 

can be explained by the reason that the numbers of 

BPHs caught at each light-trap by time has a wide 

range of values, from zero to ten thousands. Hence, 

to exactly simulate the number of BPHs at each 

light-trap over time is impossible or Jaccard index 

of two ordered data sets is not suitable to measure 

the similarity coefficient between two matrixes of 

values where the domain of elements is large. For 

this reason, we transformed the number of BPH in 

Table 2 and Table 3 to the BPH infection with the 

mapping as in Table 6. It means that we change from 

the ratio scale to ordinal scale. The scale in Table 6 

is proposed by biologists and it was used in (Phan et 

al., 2010). The structures of the two transformed 

tables are the same as Table 2 and 3, but the value in 

each cell ranges from 0 to 4 and its meaning is the 

BPH infection level. 

Table 5: Jaccard index between simulation output and 

empirical data. 

Scenario 1st week 2nd week 3rd week 4th week 4 weeks 

1 0.4071 0.3352 0.2826 0.4573 0.3701

2 0.4525 0.3035 0.2672 0.4382 0.3629

3 0.4651 0.2586 0.2936 0.4015 0.3513

4 0.4547 0.2553 0.3085 0.3682 0.3435

5 0.3952 0.2785 0.3387 0.3490 0.3393

6 0.1845 0.1482 0.1894 0.1362 0.1630

7 0.1799 0.1516 0.1923 0.1267 0.1607

8 0.1647 0.1320 0.2001 0.1147 0.1506

9 0.1580 0.1922 0.1910 0.1136 0.1610

10 0.1560 0.1804 0.1894 0.1040 0.1546

11 0.1580 0.1239 0.1831 0.1317 0.1479

12 0.1554 0.1430 0.1920 0.1120 0.1484

13 0.1728 0.1371 0.1944 0.1196 0.1539

14 0.1346 0.1701 0.1633 0.0993 0.1396

15 0.1313 0.1649 0.1602 0.0915 0.1345

Table 6: Transform BPH density to BPH infection. 

Number of BPH BPH Infection Meaning 

<500 0 Normal 

   50  <1500 1 Light infection 

1500  <3000 2 Medium infection 

3000  10000 3 Heavy infection 

>10000 4 Hopper burn 

We applied the Jaccard index to measure the 

similarity of the two transformed tables and its 

results are presented in Table 7. 

Based on the similarity coefficient condition 

(Jindex  0.9) in Section 5.2.1, we got the same 

scenarios, which are fitted with the difference 

coefficient conditions in Section 5.2.3.1. 

From the validation results, the calibration model 

can choose the scenarios with parameters checking 

the specified fitness condition in the calibration 

model. 



Table 7: Jaccard index on BPH infection data sets. 

Scenario 1st week 2nd week 3rd week 4th week 4 weeks 

1 0.9823 1.0000 0.9941 0.7819 0.9293

2 0.9823 1.0000 0.9882 0.7534 0.9187

3 1.0000 1.0000 0.9765 0.7376 0.9147

4 1.0000 1.0000 0.9535 0.7336 0.9082

5 1.0000 1.0000 0.9200 0.7376 0.9016

6 0.9823 0.9862 0.9535 0.7819 0.9169

7 0.9804 0.9882 0.9292 0.7534 0.9021

8 1.0000 0.9882 0.9273 0.7323 0.8990

9 1.0000 0.9862 0.9037 0.7297 0.8922

10 0.9901 0.9862 0.8736 0.7297 0.8828

11 0.9765 0.6649 0.6260 0.4197 0.6396

12 0.9745 0.6622 0.6083 0.3989 0.6265

13 0.9882 0.6583 0.5975 0.3644 0.6121

14 0.9765 0.5975 0.6417 0.3419 0.5979

15 0.8329 0.6970 0.6272 0.3257 0.5863

6 DISCUSSION 

Applying CFBM to Calibration and Validation. 
There have been many studies, which proposed 
frameworks aiming at building credible simulation 
models (Law, 2009) in general or at validating agent 
based simulation models (Klügl, 2008) in particular. 
Although those frameworks instructed us the 
processes to archive simulation model with the 
accuracy of the simulation output, we still need a 
concrete approach to solve two challenges of agent-
based models, which we explained in the 
introductory section. By applying CFBM, we 
developed a calibration and validation approach for 
agent-based models that can help not only to handle 
the inputs/outputs of agent-based simulation models 
but also to calibrate and validate the agent-based 
simulation in an automatic manner. In the Section 4, 
we did not demonstrate the concrete method to 
adjust the parameters of the simulation model such 
as "weight of evidence" (Donigian, 2002) or generic 
algorithm (Ngo and See, 2012) because of two 
reasons: we only propose the general calibration 
approach and adjustment method should be 
implemented depending on the case study. 
Furthermore, our approach only concerns the 
management of the input/output data of simulation 
model and validation model and the automation of 
the calibration process. They are useful when 
working on integrated simulation systems with high 
amount of data. For instance, we successfully 
applied our approach to calibrate and validate the 
BPH prediction model with several data sources 
such as administrative boundary (region, river, sea 
region, land used), light-trap coordinates, daily trap-
densities, rice cultivated regions, general weather 
data (wind data), station weather data (temperature, 
humidity, etc.), river and sea regions of three 
provinces of Mekong Delta region of Vietnam as we 

explained in Section 5. It helped us to reduce time 
and work force. 

Jaccard Index on ordered Data Sets vs. RMSE. In 

experiment, we also compared the Jaccard index on 

ordered data sets and RMSE by investigating the 

variation of RMSE in Table 4 and Jaccard index of 

the two BPH infection tables (the results of the 

transformation of Table 2 and 3) in Table 7. For 

instance, we compared the values of RMSE on the 

whole data sets (column 4 weeks in Table 4) with the 

values of Jaccard index (column 4 weeks in Table 7) 

by using Graphical method as Figure 3. It should be 

noticed that the values of RMSE in Figure 3 were 

divided by 1000. 

 
Figure 3: RMSE & Jaccard index on whole data sets. 

Figure 3 shows that there is an accordance  

between RMSE and Jaccard index. For instance, in 

scenario 1, as the RMSE get the lowest value of 

879.58, the Jaccard index obtains the highest value, 

which is 0.9293. In scenario 11, when the RMSE 

suddenly increases to 1666.85, the Jaccard index 

decreases to 0.6396 as well. In scenario 15, whereas 

RMSE gets the highest value 6174.68, the Jaccard 

index gets the lowest value, i.e. 0.5863. It proves 

that we can use Jaccard index on ordered data for the 

transformed data as fitness condition, which has 

been presented in Section 5.2.1. 

The Combination on the Fitness Condition. In the 

calibration of BPH prediction model, we can choose 

RMSE or Jaccard index as a fitness condition. 

However, it is suggested to use the combination of 

both coefficients, for instance: 
if ((Jindex>=0.9) & (RMSE<=100))   

 { 

    saveFitness(MODEL_ID, SCENARIO_ID,  

        REPLICATE_ID, PARA_VALUES); 

 } 
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The combination of similarity and difference 

coefficients helps to have better fitness condition for 

choosing the appropriate scenario in calibration. 

The Jaccard Index with Aggregation. Assume that 

we have two modality matrixes and the domain of 

the elements in S and E are [0..k-1], have k values: 

 

 

(9)

The aggregation on the columns on S (or E) has a 

matrix: 

 (10)

where: 

 C denotes aggregation matrix on the columns of 

matrix S (or E). 

 ci,j is the number of elements in row i in S (or E) 

having value j.  

The aggregation on the rows on S (or E) has a 

matrix: 

 (11)

where: 

 R denotes aggregation matrix on the rows of 

matrix S (or E). 

 ri,j is the number of elements at columns j in S (or 

E) having the value i.  

Then we can apply the Jaccard index on ordered data 

sets to the aggregation matrices (equation 10, 11) of 

S and E. 

7 CONCLUSIONS 

In this paper, we introduced a conceptual 

framework, which is adapted to multi-agent models 

with high volume of data. CFBM supports experts 

not only to model a phenomenon and execute the 

models via a multi-agent platform, but also to 

manage a set of models with their input and output, 

to aggregate and analyze the model output data via 

data warehouse and OLAP analysis tools. 

The key features of CFBM are that it supplies 

four components: (1) model design, (2) model 

execution, (3) execution analysis and (4) database 

management. These components are coupled and 

combined in a simulation system. The distinguished 

value of CFBM is that it augments the combination 

power of data warehouse, OLAP analysis tools and 

of a multi-agent based simulation platform. These 

components, when put together, are useful to 

develop complex simulation systems with a large 

amount of input/output data, which can be a what-if 

simulation system, a prediction/forecast system or a 

decision support system. 

In this article, we proposed an automated 

calibration approach; it helps modelers to solve the 

limitations of ABMs concerning calibration and 

validation of agent-based models with high volume 

of data: BI solution is used to manage the high 

volume of input/output of the simulation models and 

the analysis model is used to validate the accuracy of 

simulation outputs on large size of input with 

varying parameters. We also proposed a specific 

method to measure the similarity coefficient of two 

data sets with the constraints on the position of 

elements, which is called "Jaccard index on the 

ordered data sets". In our opinion, the method can 

not only be used as a demonstration of validating for 

BPH prediction model but it is also a good approach 

to validate the output of other models with 

constraints on location and time.  

Although our calibration and validation approach 

is the automation model with the integration of 

coupled models (simulation model and validation 

model) we have not succeeded in implementing it in 

GAMA. For instance, we execute the BPH 

prediction model with all values of the parameters 

via batch process. Subsequently, we execute the 

validation model to validate the outputs and select 

appropriate scenarios based on the fitness condition. 

These are still two separate processes but not 

integrated in one model as designed in Section 4. 

This is the problem that we plan to solve in the 

future. 

As for further work, on one hand we will 

continue to develop and improve features for 

specific agents (SQL-agent, OLAP-agent and 

Analysis-agent) of the CFBM described in Section 3 

to GAMA platform. On the other hand, we will also 

apply CFBM on multi-scale in multi-agent 

simulation or building what-if system, prediction 

system and decision support system. 
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