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Potential feedback control for the power control in
LTE

Dat-Duong Phan, Emmanuel Moulay, Patrick Coirault, Frédéric Launay and Pierre Combeau

Abstract—This article deals with the study of uplink (from the
mobile phone to the base station) transmitted power control in
Long Term Evolution (LTE). It provides a nonlinear Potential
Feedback Control (PFC) for SISO discrete-time systems with
input delays and disturbances by using the Lyapunov theory
and the Artstein transform. It is an original approach in which
a stabilization problem of a linear SISO system with a constraint
on the state space is transformed into a problem of nonlinear
stabilization. We use this strategy of stabilization for the uplink
transmission power control in LTE.

Index Terms—Potential feedback control, Lyapunov function,
discrete-time systems, input delay, LTE.

I. INTRODUCTION

The uplink power control is an important task for mobile
phone communication systems. It improves the Quality of
Service (QoS) in mobile telephony, and more specifically for
the new communication standard LTE. On one hand, it sets up
a power controller on mobile phones in order to ensure that
the Signal to Interference plus Noise Ratio (SINR) stays above
a limit below which the communication is interrupted. On the
other hand, it consists of minimizing the overall transmitted
power in a cell in order to minimize the interferences between
users and to maximize the battery life of mobile phones.

Since several years, the interest in wireless cellular networks
has stimulated the investigation of several strategies to solve
the uplink power control problem [1], [2], [3], [4], [5], [6],
[7]. The Transmission Power Control (TPC) strategy, which is
an algorithm, has been developed for the new LTE standard
[8], [9], [10], [11]. Moreover, the uplink power control in
LTE can be modeled as a problem of stabilization of an input
delay discrete-time system with a constraint on the state space.
So, a suitable strategy for the power control in LTE is the
Model Predictive Control (MPC) for a discrete-time system
taking into account a constraint on the state space variable
[12], [13]. In this article, we provide a new simple feedback
control strategy for a SISO system as an alternative solution
to the TPC and MPC strategies. It is an original approach in
which the stabilization problem of a linear SISO system with
a constraint on the state space is transformed into a problem
of nonlinear stabilization involving a potential controller. The
potential control has essentially been used in robotics to
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avoid collisions with obstacles [14], [15]. To the best of our
knowledge, this is the first time that a PFC is used for a
discrete-time system. The term “potential” is used to refer to
the Coulomb potential which is an impassable barrier. A PFC
is a nonlinear feedback control ensuring that the system output
is always higher than a lower limit. Applying this approach
in LTE, it leads to the easy adjustment of two parameters for
each mobile phone. The main difficulty of this strategy of
stabilization is due to the nonlinearity of the potential term
which implies the use of the Lyapunov theory. In order to
take into account the mobility of mobile phones, an input
delay which denotes the propagation time and computation
time is added. So, we use the Artstein transform for discrete-
time systems to deal with this input delay [16], [17].

The paper is organized as follows. The uplink power control
in LTE is described in section II. Then, the PFC for discrete-
time systems is developed in section III. It is applied and
simulated for a cellular network in LTE in section IV and a
comparison with the TPC and MPC strategies is given. Finally,
a conclusion is addressed in section V.

II. UPLINK POWER CONTROL IN LTE

A. Modeling of a transmission channel

In this article, we are interested in the uplink channel
between a mobile phone denoted by k and a base station of the
cell denoted by i. In urban environments, the channel gain of
a radio link can be modeled by three components: path-loss,
log-normal shadowing, and multi-path fading. The gain of the
channel is defined as

gik(n) =
γtγrλ

2

(4π)2d2
ik`
· 100.1 δ(n) · |r(n)|2 (1)

where n is the sample time. The term γtγrλ
2

(4π)2d2ik`
is the far field

gain with γt the transmitting antenna gain, γr the receiving
antenna gain, dik the distance between the transmitter of the
cell i and the receiver k in meters, ` the system loss factor not
related to propagation (` ≥ 1) and λ the wavelength in meters
[18]. The term 100.1 δ(n) is used to model large-scale log-
normal shadowing where δ(n) is a normal Gaussian random
variable [19]. The term |r(n)|2 is used to model Rayleigh
fading where r(n) is the random variable that has a Rayleigh
distribution [18].

The received SINR is the ratio of the received signal power
to the power of the interference plus noise within the band-
width of the transmitted signal. The SINR is commonly used
in wireless communication as a way to measure the quality
of transmission. In LTE, the use of Orthogonal Frequency
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Division Multiple Access (OFDMA) and Single Carrier Fre-
quency Division Multiple Access (SC-FDMA) avoids the
intra-cell interferences [20], [10]. Therefore, after frequency
synchronization, only the inter-cell interferences affect the
SINR in the model.

Notation 1: The lower case is used for the linear domain
and the upper case for the logarithm domain in dB of the
parameters. For instance, xik stands for the SINR in linear
domain and Xik stands for the SINR in the logarithm domain
and we have Xik = 10 log10 xik.

The SINR of the mobile phone k at the base station i is
given by

xik(n) =
gik(n) · pik(n)∑

` 6=k

gi`(n) · pi`(n) + σ2
ik(n)

(2)

where pi` and gi` are respectively the transmitted power
and channel gain from the mobile phone ` belonging to the
neighboring base stations of i, σ2

ik the thermal noise affecting
the channel between the mobile phone k and the base station
of the cell i. The term

∑
` 6=k

gi`(n) · pi`(n) corresponds to the

inter-cell interferences. As it was explained above, the intra-
cell interferences in LTE are negligible. So, we can rewrite (2)
as follows

xik(n) =
gik(n) · pik(n)

iik(n) + σ2
ik(n)

(3)

where iik =
∑
` 6=k gi`(n) · pi`(n) are the inter-cell interfer-

ences.

B. Uplink PUSCH power control

A presentation of the LTE standard and the LTE physical
layer is given in [21]. There are several kinds of uplink
physical channels such as:
- the Physical Uplink Control Channel (PUCCH) which is used
to support the transmission of acknowledgment, scheduling re-
quests, the Channel Quality Indicator (CQI) and the Sounding
Reference Symbol (SRS) [11, Section 5.1.3] which is used at
the base station for the channel estimation;
- the Physical Uplink Shared Channel (PUSCH) which is
the main physical channel used for the data transmission and
paging information.

We are interested in the power control of the PUSCH
channel which is the main physical channel of the physical
layer. In LTE, the power control is computed at the base station
[11, Page 11].

The setting of the User Equipment (UE) (which can be for
instance a mobile phone) transmission power for a PUSCH
transmission is defined as follows [11]

PPUSCH,c(j) = min(PCMAX,c, 10 log10MPUSCH,c(j)
+PO,PUSCH,c(β) + αc(β) · PLc(j)
+ΘTF,c(j) + Fc(j))

(4)
where j is the number of the subframe, β = 0, 1, 2 a specific
parameter in LTE, PCMAX,c the maximum transmit power
for serving cell c, MPUSCH(j) the measured bandwidth in
number of resource blocks valid for subframe j and serving

cell c, PO,PUSCH,c(β) the parameter provided by higher
layers which has a cell-specific and nominal part expressing
the power to be contained in one physical resource block,
αc(β) ∈ [0, 1] a cell-specific parameter allowing the com-
pensation of partial pathloss and provided by higher layers,
PLc the downlink pathloss estimate calculated at the UE for
serving cell c, ΘTF,c the UE specific parameter depending on
the chosen Modulation and Coding Scheme (MCS), Fc(j) a
current PUSCH power control adjustment state for serving
cell c defined by

Fc(j) = Fc(j − 1) + ∆PUSCH(j −KPUSCH(j)) (5)

where ∆PUSCH(j −KPUSCH(j)) is a correction value, also
referred to as a Transmit Power Command (TPC) which was
signaled on subframe (j −KPUSCH(j)), KPUSCH(j) is the
downlink delay corresponding to the propagation time and the
calculation time of the processor, KPUSCH(j) ∈ {4, · · · , 7}.
PCMAX,c depends on the maximum allowed power configured
by higher layers and the maximum UE power class.

In the remainder of this paper, we will replace the number of
the subframe j by the time variable n because frames and sub-
frames are sent successively in time. The indexes c, PUSCH
and TF which are specific to the LTE standard will be omitted.
For instance, Fc(i) = Fc(i− 1) + ∆PUSCH(i−KPUSCH(i))
becomes

F (n) = F (n− 1) + ∆(n−K) (6)

In the linear domain, the SINR is defined by equation
(3). Let us define the pathloss pl by plik(n) = 1

gik(n) and

iotik(n) =
iik(n)+σ2

ik(n)

σ2
ik(n)

. We can rewrite equation (3) as
follows

xik(n) =
pik(n)

plik(n) · σ2
ik(n) · iotik(n)

.

We obtain the equation of the SINR in the logarithm domain

Xik(n) = Pik(n)− PLik(n)− Σ2
ik(n)− IoTik(n). (7)

In the linear domain, the interference term iik and the thermal
noise σ2

ik are measured at the base station [22]. So, we have
the terms Σ2

ik(n) and IoTik(n). The term Pik is known at the
base station and the term PLik is estimated with the SRS.
Then, we have the SINR Xik at the base station by using (7).

Now, we develop a state space model for the uplink power
control in LTE. In the following, and for simplicity, we
will omit the indexes i and k in the equations and X(n)
and P (n) stands for Xik(n) and Pik(n). The U stands for
∆PUSCH defined in the previous section. Therefore, equation
(6) becomes

F (n) = F (n− 1) + U(n−K) (8)

We use the z−transform from equation (8) and we obtain

F (z) =
z−K

1− z−1
U(z). (9)

In the sequel, and for clarity, we will omit the saturation term
PCMAX given in (4) but it will be taken into account in the
simulations of section IV with the use of a saturation bloc
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(see the figure 1). However, no elaborate strategy is provided
to treat this saturation. From equation (4), we have

P (z) = W1(z) + F (z) = W1(z) +
z−K

1− z−1
U(z) (10)

where W1(z) = 10 log10M(z) + P0(z) + α(j) · PL(z) +
Θ(z). As the round-trip delay M, which is the sum of the
downlink and the uplink delays, can be considered constant
(see [23], [24]), the uplink delay is equal to M − K with
K ∈ {4, · · · , 7}. From equation (7) and taking into account
the propagation delay, we approximate

X(z) = (W2(z) + P (z))z−(M−K) (11)

where W2(z) = −PL(z) − Σ2(z) − IoT (z). We substitute
equation (10) in equation (11) and we obtain

X(z) =
z−M

1− z−1
U(z) + (W1(z) +W2(z))z−(M−K). (12)

Multiplying both sides of the equation (12) by (1− z−1), we
get

(1−z−1)X(z) = z−MU(z)+(W1(z)+W2(z))(1−z−1)z−(M−K).

Now, using the z-inverse transform we obtain the following
discrete-time system

X(n) = X(n− 1) + U(n−M) +H(n− 1) (13)

with the known input H(n−1) = W2(n−(M−K))−W2(n−
(M −K)− 1) +W1(n− (M −K))−W1(n− (M −K)− 1)
and a constant delay M − 1 on the control. It is worth noting
that the values of W1 and W2 must be archived in a register
to be used in equation (13), the values of K ∈ {4, · · · , 7} are
known.

The round-trip delay is a constant in LTE M = 10ms
including the calculation time of the processor [23], [24]. The
delays on the exogenous known inputs of the system W1 and
W2 are not critical because it only means that data are stored.
Let Ĥ(n) be the estimation of the exogenous input such that∣∣∣H(n)− Ĥ(n)

∣∣∣ < ε. We rewrite (13) as follows

X(n) = X(n− 1) + V (n−M)− Ĥ(n− 1) +H(n− 1)

where V (n−M) = U(n−M) + Ĥ(n− 1) is a new virtual
control variable. It leads to

X(n) = X(n− 1) + V (n−M) +D(n− 1) (14)

where D(n − 1) = H(n − 1) − Ĥ(n − 1) is the disturbance
on the exogenous input H(n− 1).

Let us give the block diagram of the system in figure 1,
including a receiver and a transmitter corresponding to a base
station and a mobile phone.

III. PFC FOR DISCRETE-TIME SYSTEMS

The basic definitions of asymptotic stability and Lyapunov
functions for discrete-time systems with disturbances are given
in [25, Definitions 2.1 and 2.6]. The Lyapunov theorems for
discrete-time systems used in this article are given in [26],
[27].

Fig. 1. The closed-loop power control system for each user

In this section, we develop our PFC for SISO systems with
disturbances in order to take into account the constraint on the
state variable.

Theorem 1: Consider the system given by

x(n+ 1) = x(n) + u(n) + d(n), n ∈ N (15)

where x(n) ∈ R is the state, u(n) ∈ R the input and |d(n)| ≤ ε
a bounded disturbance. Let c ≤ 0, under the initial condition
x(0) > c the system (15) with the feedback control

u(n) = k1(x(n)− c) + k2
x(n)−c (16)

with − 1
2 < k1 < 0 and k2 ≥ ε2

2(2k1+1) is asymptoti-
cally stable with respect to the attractive and invariant set

S =

[
−ε+
√
ε2−4k1k2
−2k1

+ c;
−ε(k1−1)+

√
ε2(k1−1)2−4k31k2

2 + c

]
.

Moreover, we have x(n) ≥ −ε+
√
ε2−4k1k2
−2k1

+ c for all n ∈
N∗ = N \ {0}.

Proof. We have two possible cases which depend on the
sign of the initial condition x(0) of the system (15).
First case: x(0) > 0. We take c = 0. Firstly, we seek
the equilibrium points of the closed-loop system. With the
following input u(n) = k1x(n) + k2

x(n) , the system (15)
becomes

x(n+ 1) = (k1 + 1)x(n) +
k2

x(n)
+ d(n). (17)

The positive equilibrium interval is given by

S+
eq =

{
x̄ > 0 : x̄ = (k1 + 1)x̄+

k2

x̄
+ d(n); |d(n)| ≤ ε

}
.

If x̄ 6= 0 then we have k1x̄
2 + d(n)x̄+ k2 = 0. If k1 < 0 and

k2 > 0 then we have a positive root x+(n) = d(n)+
√

∆
−2k1

where
∆ = d(n)2 − 4k1k2. So, we obtain

S+
eq =

[
−ε+
√
ε2−4k1k2
−2k1

; +ε+
√
ε2−4k1k2
−2k1

]
.

We seek the minimum value of x(n+ 1). From (17), we have

∂x(n+ 1)

∂x(n)
=

(k1 + 1)x(n)2 − k2

x(n)2
(18)

for n ∈ N. For k1 > −1, the roots of (18) are x(n) =

±
√

k2
k1+1 . As x(0) > 0, we have x(n+1) ≥

√
4 (k1 + 1) k2−

d for all n ∈ N. So, the interval of possible minimum values
for x(n+ 1) is given by

Smin = [
√

4(k1 + 1)k2 − ε;
√

4(k1 + 1)k2 + ε].

The smallest value of Smin is minSmin =
√

4(k1 + 1)k2−ε.
We want that minSmin > 0, therefore k2 > ε2

4(k1+1) . We
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impose minSmin ≥ minS+
eq under the conditions −1 < k1 <

0, k2 >
ε2

4(k1+1) and ε > 0. It leads to the following algebraic
inequality

−ε (1 + 2k1)+
√
ε2 − 4k1k2 +2k1

√
4k2 (k1 + 1) ≤ 0. (19)

A symbolic calculator gives the following sufficient conditions
ε > 0, − 1

2 < k1 < 0, k2 ≥ ε2

2(2k1+1) on ε, k1 and k2 in order
to satisfy the inequality (19). Under these conditions, we have
x(n) ≥ −ε+

√
ε2−4k1k2
−2k1

for all n ∈ N∗ and a relevant minimum
value for the attractive and invariant set.

Now we have to prove the stability of the closed-loop
system (15), (16). Let us consider the following Lyapunov
function

V (n, x(n)) = x(n)− x+(n)

for x(n) > maxS+
eq = ε+

√
ε2−4k1k2
−2k1

and n ∈ N∗. We have

∆V (n, x(n)) = V (n+ 1, x(n+ 1))− V (n, x(n))

= k1x(n)2+(d(n)−x+(n+1)+x+(n))x(n)+k2
x(n) .

It is easy to see that ∆V (n, x(n)) < 0 if x(n) > x∗(n) where

x∗(n) = (d(n)− x+(n+ 1) + x+(n)) +
√
δ

with

δ = (d(n)− x+(n+ 1) + x+(n))2 − 4k1k2.

We have

max
n∈N∗

x∗(n) =
−ε(k1 − 1) +

√
ε2(k1 − 1)2 − 4k3

1k2

2

and this maximum value is reached for d(n) = ε, x+(n) =
ε+
√
ε2−4k1k2
−2k1

, and x+(n + 1) = −ε+
√
ε2−4k1k2
−2k1

. As the
maximum value maxn∈N∗ x∗(n) is greater than maxS+

eq for
− 1

2 < k1 < 0, we define the attractive and invariant set by

S0 =

[
−ε+
√
ε2−4k1k2

−2k1
;
−ε(k1 − 1) +

√
ε2(k1 − 1)2 − 4k31k2

2

]
and we have ∆V (n, x(n)) < 0 for all x(n) > maxS0.

To conclude, we have to prove that S0 is invariant. Due to
the previous calculus of Smin, we have

min
x(n)∈S0

x(n+ 1) ≥ minS0.

Now, let us calculate maxx(n)∈S0
x(n + 1) and check that

maxx(n)∈S0
x(n+ 1) ≤ maxS0. Due to the variations of the

continuous function x(n+1) with respect to the variable x(n)
and the intermediate value theorem, we only have to prove that
x(n+ 1)|minS0

≤ maxS0 and x(n+ 1)|maxS0
≤ maxS0. It

is quite easy but lengthy to check both conditions and this is
left to the reader.

By using the Lyapunov theorem for discrete systems given
in [25, Theorem 1], we conclude that if ε > 0, − 1

2 < k1 < 0

and k2 ≥ ε2

2(2k1+1) then the system (15) is asymptotically
stable with respect to the interval S0.

Second case: x(0) ≤ 0. From equations (15) and (16) we
have

x(n+ 1) = x(n) + k1 (x(n)− c) +
k2

x(n)− c
+ d(n). (20)

Subtracting c in both sides of the equation (20), we get

x(n+1)−c = x(n)−c+k1(x(n)−c)+ k2

x(n)− c
+d(n). (21)

Consider the following change of variable

ψ(n) = x(n)− c (22)

that leads to the new system

ψ(n+ 1) = (k1 + 1)ψ(n) +
k2

ψ(n)
+ d(n). (23)

We take c < x(0), it leads to ψ(0) > 0. Therefore, we can
apply the proof of the first case. We deduce that if c < x(0),
ε > 0, − 1

2 < k1 < 0 and k2 ≥ ε2

2(2k1+1) then the system (15)
is asymptotically stable with respect to the interval S

S =

[
−ε+
√
ε2−4k1k2
−2k1

+ c;
−ε(k1−1)+

√
ε2(k1−1)2−4k31k2

2 + c

]
(24)

Remark 1: If the value of k1 is close to − 1
2 then maxS is

rather close to minS and we can ensure a good interval of
convergence. If the value of k1 is close to zero then maxS
is distant from minS and we cannot ensure a good interval
of convergence. Moreover, a small value of k2 satisfying the
condition x(n) ≥ −ε+

√
ε2−4k1k2
−2k1

+ c for all n ∈ N∗ ensures a
small interval of convergence. The stability of the system (15)
remains even if there are bounded disturbances which implies
a certain robustness.

In order to take into account a constant delay on the input
during the transmission in LTE, we develop a new result on the
stabilization for SISO systems with disturbances and constant
delay on the input involving a potential controller. The proof
of this result is based on the discrete-time Artstein transform.

Theorem 2: Consider the system given by

x(n+ 1) = x(n) + u(n− Td) + d(n), n ∈ N (25)

where x(n) ∈ R is the state, u(n) ∈ R the input, Td ∈ N∗
the delay and |d(n)| ≤ ε a bounded disturbance. Let c ≤ 0,
under the initial condition x(0) > c the system (25) with the
feedback control

u(n) = k1(ξ(n)− c) +
k2

ξ(n)− c
, n ∈ N (26)

with u(n) = 0 for n < 0, − 1
2 < k1 < 0, k2 ≥ ε2

2(2k1+1) and
ξ(n) = x(n)+

∑Td

i=1 u(n−i), is asymptotically stable with re-
spect to the attractive and invariant set Sd = [minSd; maxSd]

where minSd = −ε+
√
ε2−4k1k2
−2k1

+ c − Tdε and maxSd =
−ε(k1−1)+

√
ε2(k1−1)2−4k31k2

2 + c + Tdε. Moreover, we have
x(n) ≥ −ε+

√
ε2−4k1k2
−2k1

+ c− Tdε for all n ≥ Td.
Proof. The discrete-time Artstein transform allows us to

transform a linear discrete-time controlled system having a
constant input delay into a system without delay. This trans-
formation is presented in [16], [17] for MIMO discrete-time
systems. Applying the Artstein transform to the system (25),
we obtain the following system without delay

ξ(n+ 1) = ξ(n) + u(n) + d(n) (27)
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where

ξ(n) = x(n) +

Td∑
i=1

u(n− i). (28)

We have that the state ξ(.) of the system (27) is asymptot-
ically stable with respect to the interval S with the feedback
control (16) due to theorem 1. By using the Artstein transform,
we deduce that x(.) is asymptotically stable with respect to a
set Sd we have to determine. From equation (27) we deduce

Td∑
i=1

u(n− i) = ξ(n)− ξ(n− Td)−
Td∑
i=1

d(n− i+ 1), (29)

and from equations (28), (29) we obtain

x(n) = ξ(n− Td) +

Td∑
i=1

d(n− i+ 1). (30)

As d(.) is bounded by assumption and ξ(.) is bounded due
to theorem 1, then the state x(.) is also bounded due to (30).
Therefore, there exists a minimum value xmin such that the
state x(.) is always higher than xmin. From equation (30), we
deduce

xmin = ξmin − Tdε (31)

where ξmin = −ε+
√
ε2−4k1k2
−2k1

due to theorem 1. This minimum
value xmin is also the minimum value minSd of the attractive
and invariant set of system (25). Moreover, it is easy to check
that the maximum value maxSd of the attractive and invariant
set of system (25) satisfies

maxSd = maxS + Tdε. (32)

So, we have found the attractive and invariant set Sd. As we
have ξ(n) ≥ ξmin for all n > 0, then we have x(n) ≥ xmin
for all n > Td. This concludes the proof.

IV. SIMULATION RESULTS

We now provide the simulations of the SINR in LTE for
the modeling presented in section II. For the simulations, we
suppose that there is an estimated error of 1, 1dB on the
exogenous input H(n). The evaluation of this value depends
on the quality of the channel gain estimator. In the figure
1, xmin(z) is a minimal SINR corresponding to a highest
acceptable Block Error Rate (BLER) for communication be-
tween transmitter and receiver. The figure 2 allows us to find
the minimum value of the SINR denoted by SINRmin. The
maximum BLER given by the LTE standard is 10−1. For
a given modulation rate r, the relation between the BLER
and the SINR is illustrated by the figure 2. We suppose for
the simulations that the SINR is equal to the SNR, as in
[28]. We choose the 64QAM modulation and r = 2/3 for
our simulation. We find the value of SINRmin = 14, 37dB.
For the simulations, we suppose that the distance between the
mobile phone and the base station varies between 18, 80m and
342, 67m, so the PL varies between 63, 93dB and 89, 17dB.
We assume the values of P0(n) = −78dBm, M(n) = 50,
α(j) = 0, 8 given in [29]. Moreover, we suppose that IoT (n)
varies between 3dB and 7dB and Σ2(n) varies between

Fig. 2. The BLER versus the SINR (dB) for a different modulation types
and rates r [21]

−110dBm and −120dBm. The coherence time of the channel
is given by

Tc =

√
9

16πf2
m

=
0.423

fm
(33)

where fm = v
λ is the maximum Doppler shift with v the

velocity [18]. In LTE, the carrier frequency fc = c
λ = 1.8GHz.

The control sample time Te at which we refresh the feedback
control cannot exceed the coherence time of the channel. We
apply our feedback control (16) with a sample time of 50ms
for a mobile phone which moves slowly with a velocity of
5km.h−1 in a cell having a radius of 500 meters. So, the input
delay which is much lower than the sample time is neglected.
Due to the theorem 1, we choose the value of k1 = −0.49,
c = 0 and we impose SINRmin = minS. Then, the minimum
value of k2, being an integer such as x(n) ≥ 14, 37dB for all n
N∗, is given by k2 = 117. The figure 3a presents the evolution
of the SINR of a mobile phone which moves with a velocity
of 5km.h−1 with Te = 50ms. We can see in the figure 3a that
the SINR is always higher than the SINRmin and lower than
the upper bound of the attractive and invariant set S in the
steady-state with the PFC. So, the system is asymptotically
stable with respect to S. The term k2

x(n−1) allows the SINR to
be higher than the SINRmin in one sample time.

Now, suppose that the velocity of the mobile phone is
260km.h−1 then Tc = 1ms. So, we chose the sample time
Te = 1ms which is a classical sample time in LTE for
the power control [20]. In order to apply the power control,
we have to take into account the input delay which is then
higher than the sample time. Due to the theorem 2, we have
ξmin = xmin + M−1

Te
ε = 24.27dB. We chose the values of

k1 = −0.49, c = 0 and we impose SINRmin = minSd. We
deduce the value of k2 = 316. The figures 3b, 3c correspond
to the evolution of the SINR of a mobile phone which moves
with a velocity of 260km.h−1 with Te = 1ms. We can see in
the figure 3b that, by using the PFC (26), the system with input
delay is above the SINRmin after 9 steps which corresponds
to M−1

Te
and is asymptotically stable. A comparison with the

TPC and the MPC (having a minimal prediction horizon of
1) and taking into account the same perturbation of 1, 1dB
is also highlighted in the figures 3a, 3b. We can see that the
efficiency of both strategies is quite similar. We have to take
into account the input delay in the PFC strategy when we have
a high mobility. Indeed, we see in the figure 3c that the SINR
is not always higher than the SINRmin if we do not apply the
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PFC (26) of the theorem 2 but the PFC (16) of the theorem 1
to the system (14).
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Fig. 3. (a) SINR with a velocity of 5km.h−1; (b) (c) SINR with a velocity
of 260km.h−1 with and without Artstein transform

Moreover, we see in the figure 4 that the execution time,
for a simulated time period of the system of 10s, of the PFC
is always shorter than the one of the TPC and the MPC. This
is an advantage for the real-time computing due to the fact
that we have no prediction to do with the PFC. The figure
4 highlights that the real-time computing can become critical
because the number of mobile phones can be very high in a
cellular network.
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Fig. 4. Execution time for a simulated time period of the system of 10s

V. CONCLUSION

In this article, we have developed a new feedback control
strategy for discrete-time systems having a constraint on the
state space variable and an input delay. This strategy is based
on a nonlinear PFC. It is well suited for the power control of
a wireless cellular network due to the constraints on the min-
imum value of the SINR imposed by the telecommunication
standards and on the real-time computing. In our application
in LTE, it ensures that the SINR is always higher than a given
minimum value. As future research lines, it will be interesting
to extend the PFC to MIMO systems.
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