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ARC LENGTH AS A CONFORMAL PARAMETER FOR

LOCALLY ANALYTIC CURVES

VASSILI NESTORIDIS AND ATHANASE PAPADOPOULOS

Dedicated to Professor Richard Aron on the occasion of his retirement

Abstract. For any locally analytic curve we show that arc length can
be complexified and seen as a conformal parameter. As an application,
we show that any such curve defines a unique maximal one and that the
notions of analytic Jordan curve coincides with the notion of a Jordan
curve which is locally analytic. We give examples where we also find,
for a curve γ(s), the limit sets of the largest extensions, that is, the limit
set of the curve as s converges to the end point of the interval.
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1. Introduction

Let us first recall the notion of analytic (compact) curve and of analytic
Jordan curve, following [1]. These are respectively the images of X = [0, 1]
or X = T = {z ∈ C : |z| = 1} (the unit circle) by conformal mappings
defined on an open set V such that X ⊂ V ⊂ C. We naturally extend the
notion of analytic curve to the notion of locally analytic curve. Such a curve
may be either simple or not (that is, with auto-intersection). A natural
question is whether the notion of analytic Jordan curve coincides with the
notion of locally analytic Jordan curve. We show that the answer is positive.
In order to prove this equivalence, we are led to parametrize an arbitrary
analytic curve by arc length and prove that arc length can be extended
to take complex values and become a conformal parameter. This implies
that all the extensions of a locally analytic curve are compatible and define
a maximal analytic curve which is unique. More generally, if γ is a map
defined on an open interval I of R with complex values, with non-vanishing
derivative and locally analytic, then following this parametrization of the
curve we obtain a maximal one having the same properties and extending
γ to the largest possible interval Ĩ in R containing I. Our proof shows that
using arc length, we get at least the same extension. Example 3.5 below
shows that in some cases the extension with arc length is larger. In this
sense, the best conformal parametrization of any locally analytic curve is by
arc length.

We then give examples of such curves. The limit sets in these examples
are singletons {w0}, w0 ∈ C ∪ {∞}, or a circle.
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We address the question of characterizing such limit sets. A known char-
acterization of analytic Jordan curves is that they are of the form

φ({z ∈ C : |z| = r}) 0 < r < 1,

where φ is a conformal map defined on the unit disc. Our characterization
of locally analytic curves is that they are of the form φ(I), where I ⊂ R

is an open interval and φ is holomorphic and locally injective on an open
set V , I ⊂ V ⊂ C. Note that if we consider the restriction of φ on a (not
necessarily open) subinterval I ′ of I we also obtain a locally analytic curve.
By the definition of a locally analytic curve the converse also holds, that is,
we have a characterization.

Finally, a corollary of the previous result is that if γ = φ(eiθ) is an analytic
Jordan curve and f a complex function defined on the image of γ, then
saying that f is analytic at any point of γ with respect to the variable θ is
equivalent to saying that it is analytic with respect to the arc length s.

2. The results

We start with a classical definition from Ahlfors’ book [1]:

Definition 2.1. Let a < b be two real numbers and γ : [a, b] → C a
continuous mapping. The curve γ is said to be analytic if there exists an
open set V in C containing the segment [a, b] and a conformal mapping
φ : V → C such that φ|[a,b] = γ.

Remark 2.2. It is easy to see that in Definition 2.1 one may assume without
loss of generailty that V is an open simply connected domain containing [a, b]
and symmetric with respect to the real axis, that is, z ∈ V for any z in V .
Combining with the result of [2], we see that it suffices that φ is holomorphic
in some open setW ⊂ C containing [a, b], that φ|[a,b] is 1-1 and that φ′(z) 6= 0
for each z ∈ [a, b]. With these conditions, we can find a simply connected
domain V containing [a, b] symmetric with respect to the real axis such that
φ|V is conformal (and φ|[a,b] = γ); hence the formulation in Definition 2.1.

Definition 2.3. A Jordan curve γ in C is said to be an analytic Jordan
curve if it is the image F (T) of the unit circle by a conformal mapping F
defined on an open annulus D containing T. In other words, there exists
F : D → C which is 1-1 holomorphic, with

D = {z ∈ C : r1 < z < r2}, 0 < r1 < 1 < r2 < +∞
and γ = F (T).

We extend Definition 2.1 by considering curves which locally satisfy that
definition.

Definition 2.4. Let I ⊂ R be an interval of any type and γ : I → C

a continuous function. Let t0 ∈ I. We say that γ satisfies locally at t0
Definition 2.1 if the following holds:

(1) For any t0 ∈
o
I, there exist a, b ∈ I with a < t0 < b such that γ|[a,b]

satisfies Definition 2.1.
(2) If t0 = sup I = max I ∈ I ⊂ R, then there exists a ∈ I with a < t0

such that γ|[a,t0] satisfies Definition 2.1 with b = t0.



ARC LENGTH FOR LOCALLY ANALYTIC CURVES 3

(3) If t0 ∈ R and t0 = inf I = min I ∈ I ⊂ R, then there exists b ∈ I
with t0 < b such that γ|[t0,b] satisfies Definition 2.1 with a = t0.

Finally, we say that γ satisfies locally Definition 2.1 (or that γ is locally an
analytic curve) if it satisfies Definition 2.1 at any point t0 of its domain of
definition I.

We note that if I = (a, b] or I = [a, b) or I = (a, b) and γ satisfies
Definition 2.4 on I then there exists an open interval I ′, I ⊂ I ′ ⊂ R such
that γ extends to I ′ and the extension satisfies Definition 2.4 on I ′.

Therefore, we can restrict our attention to the case where I is an open
subinterval of R.

It is easy to see that every analytic Jordan curve (Definition 2.3) satisfies
locally Definition 2.1, that is, it satisfies Definition 2.4 on its domain of def-
inition I = R, where it is a periodic function. A natural question is whether
the converse holds. That is, if a Jordan curve locally satisfies Definition 2.1,
is it true that it is an analytic Jordan curve and satisfies Definition 2.3?

In this article, we give an affirmative answer to this question, by showing
that if two curves locally satisfy Definition 2.1 and if they have a common
arc of strictly positive length, then one extends the other and their union
defines a curve locally satisfying Definition 2.1. In other words, if a curve
locally satisfies Definition 2.1 and can be extended and still has the same
property, then it has only one possible (maximal) extension.

The idea of the proof is to use arc length parametrization. Suppose that
γ satisfies Definition 2.1. The length s = s(t), t ∈ [a, b] is a real parameter
satisfying

ds

dt
= |γ′(t)| = |φ′(t)| =

√

φ′(t)φ′(t) =

√

φ′(t)φ′(t)

on [a, b]. The question is then whether one can extend this to the complex
domain. That is, whether the function s : [a, b] → R can be extended to
a holomorphic function on an open set V , [a, b] ⊂ V ⊂ C. Then s(z) will
be complex, and the variable z as well. If in addition the extension of s
is conformal on V , then it can be seen as a conformal parameter and it
can replace φ in Definition 2.1. Then, if L > 0 is the length of γ on [a, b]
and s0 ∈ R, there exists an open set O, [s0, s0+L] ⊂ O ⊂ C and a conformal
mapping δ : O → C such that γ = δ◦s, γ = δ|[s0,s0+L], that is, γ(t) = δ(s(t))
for t ∈ [a, b], and this representation is unique modulo real translations. Of
course, O can be chosen to be a simply connected domain symmetric with
respect to the real axis; in fact O can be chosen to be a rectangle symmetric
with respect to the real axis.

If there are two extensions of δ around s0 + L, they will be holomorphic
and they will coincide on (s0, s0 + L). By analytic continuation, they will
coincide on an open set containing (s0, s0 + L + η) for some η > 0. Thus,
the extension, if it exists, is unique.

In order to justify the existence of the extension of the map s : [a, b] → C

to an open set V , [a, b] ⊂ V ⊂ C, we consider the function φ′(z)φ′(z) which
is holomorphic on V and does not vanish. Since V is simply connected, there

exists a holomorphic branch of

√

φ′(z)φ′(z) on V . We choose it so that on

[a, b] it takes positive values and for z = a it takes the value |φ′(a)| > 0.
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Since V is simply connected, every holomorphic function on V has a

primitive on V . Such a primitive G of

√

φ′(z)φ′(z) on V is the complex

holomorphic extension of the map s : [a, b] → C. Since G|[a,b] = s is 1-1 and

G′(t) = s′(t) 6= 0 on [a, b] because s′(t) = |γ′(t)| = |φ′(t)| > 0, using the
result of [2], we see that G is conformal on an open set containing [a, b], and
this open set can certainly be chosen to be simply connected and symmetric
with respect to the real axis. Then, it suffices to set δ = G. Continuing in
this way, we obtain a locally analytic maximal extension.

Thus, we have the following:

Theorem 2.5. Let γ be a curve satisfying locally Definition 2.1. Then,
the union of the extensions of γ which are locally analytic define a maximal
curve γ∗ : (A,B) → C, −∞ ≤ A < B ≤ +∞, parametrized by arc length,
which is locally analytic. The mapping γ∗ has a holomorphic extension to
an open set in C containing (A,B) which is locally conformal (and locally
injective).

We note that although γ∗ is locally injective, it is not necessarily injective
on its domain of definition (A,B). A case where γ∗ is globally injective on
(A,B) = R is when γ is a straight line. If γ is an analytic Jordan curve, then
A = −∞, B = +∞ and γ∗ is periodic, with minimum positive period the
length L > 0 of γ. By analytic continuation the locally conformal extension
G of γ∗ on an open domain containing R also satisfies G(z + L) = G(z) for
all z. (It is easy to see that the domain of definition of G contains a band
{z ∈ C : |Im(z)| < η} for some η > 0.) Without loss of generality we assume
L = 2π. Then, for w = reiθ on an open annulus D containing the unit circle
T, we set

φ(w) = G

(

lnw

i

)

.

This function is well defined on D. Since φ(eiθ) 6= 0 and φ|T is 1-1, then
by [2] we conclude that φ is 1-1 and conformal on an open annulus D′,
T ⊂ D′ ⊂ D.

Thus, we have the following

Theorem 2.6. Let γ be Jordan curve which is a locally analytic curve in
the sense of Definition 2.4. Then γ is an analytic Jordan curve satisfying
Definition 2.3.

Remark 2.7. If γ is a locally analytic closed curve (not necessarily Jordan),
then A = −∞, B = +∞ and γ∗ has a holomorphic extension to an open
set containing R which is locally injective, conformal and periodic. The
converse also holds. For an example of such a curve which is not Jordan,
see Example 3.7 below.

Remark 2.8. The map γ∗ : (A,B) → C is a canonical representation of the
maximal extension of a locally analytic curve, which is unique modulo real
translations. The fact that γ∗ can be extended to an open set in C containing
(A,B) and the extension is holomorphic locally injective, is equivalent to
saying that the derivative of γ∗ does not vanish at any point of (A,B)
and that γ∗ is locally analytic; that is, for every t0 ∈ (A,B), there exists
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η > 0, η ≤ min(B − t0, t0 − A) and a power series
∑

∞

n=0 an(t − t0)
n, an ∈

C converging on (t0 − η, t0 + η) such that γ∗(t) =
∑

∞

n=0 an(t − t0)
n on

(t0−η, t0+η) and a1 6= 0. Therefore, the definition of locally analytic curve
(Definition 2.4) could be changed to be that γ : (a, b) → C is locally analytic
if (and only if) γ′(t) 6= 0 for all t ∈ (a, b) and γ is real analytic on (a, b). If
the domain of definition is not an open interval, then we require that there
is an extension of the type described.

The result that we proved says that the above parameter t can always be
chosen to coincide with the arc length of γ, that we have real analyticity
with respect to s, and that the derivative with respect to s does not vanish
at any point.

Remark 2.9. Let γ be an analytic Jordan curve and φ : D → C a conformal
mapping from the open unit disc D onto the interior of γ. Then φ has a
conformal extension on a disc Dr = {z ∈ C : |z| < r} with r > 1 (see [1]).
The curve γ is the curve φ(eit), t ∈ R. Let s : R → R be the arc length
function of γ. Then by the previous results s is invertible: s−1 : R → R,
τ = s(t), t = s−1(τ) and both functions have non-vanishing derivatives and
they are analytic at every point. It follows that for a function f : γ → C

saying that f is analytic at any point of γ with respect to the parameter t is
equivalent to being analytic with respect to the arc length of γ at any point
of γ.

Equivalently, f can be holomorphically extended on an open set V : γ ⊂
V ⊂ C.

Remark 2.10. Our result implies that if a curve is locally analytic with
respect to different (but compatible) parametrizations, then there exists one
parametrization for the whole curve with respect to which the curve becomes
locally analytic. In case the curve is injective (that is, a simple curve), then
the arc length is a function of the position and according to our result it is
a conformal parameter for the whole curve. In the general case, locally, we
have an injective curve and this allows us to continue and cover the whole
curve.

3. Examples

As we already mentioned, the map γ∗ : (A,B) → C is not injective in
general; it is only locally injective. If the curve γ has infinite length, then
A = −∞ or B = +∞. In Example 3.2 below we see that the length of γ is
finite but since γ∗ extends by periodicity we have A = −∞ and B = +∞.
Now we give some examples.

Example 3.1. Let γ be the real line; then A = −∞, B = +∞ and γ∗(s) =
s+ s0, s ∈ C.

Example 3.2. Let γ be the unit circle; then A = −∞, B = +∞ and
γ∗(s) = eis, s ∈ C.

Example 3.3. Let γ(t) = (eit − 1) exp
eit + 1

eit − 1
, 0 < t < 2π. Then γ is a

double spiral pointing from 0 to the same point 0, it has infinite length,
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A = −∞ and B = +∞. It satisfies Definition 2.4 and it is locally injective
but not globally. We also have

lim
t→0+

γ(t) = lim
τ→−∞

γ∗(τ) = lim
t→2π−

γ(t) = lim
τ→∞

γ∗(τ) = 0.

Example 3.4. Let γ(x) = exe+i/x, −∞ < x < 0. This map extends
conformally on an open set containing (−∞, 0). The length of γ is infinite
as x → 0−; thus B = +∞. The limit set of γ as x → 0− (equivalently,

s → +∞) is the unit circle T, since γ(x) = exe+i/x and ex → 1 while e+i/x

covers T infinitely many times as x → 0−. As x → −∞ we have γ(x) → 0,
the positive real axis is a tangent of γ at 0 = γ(−∞) and the length is finite.
We should investigate whether the curve γ can be continued beyond this
point while it still satisfies Definition 2.4.

Let us set y = −x → +∞. Then

δ(y) = γ(x) = e−y−i/y =
1

ey+i/y

and we are interested in the case y → +∞.
Then, limy→+∞ δ(y) = 0. Therefore, it is possible that with another

parametrization, the curve can be further extended while it stays locally
analytic. Then, this will hold for the parameter arc length. Thus, let us
compute the derivative dδ/dy, whose absolute value is the derivative of arc
length.

dδ

dy
= δ′(y) = e−y−i/y · (−1 +

i

y2
) =

−y2 + i

ey+i/yy2
,

|δ′(y)| =
√

1+y4

eyy2 which is integrable as y → +∞.

If we can extend the curve, then ds/dδ and its derivatives will have finite
limit as y → +∞. Let us compute these derivatives.

ds

dδ
=

ds

dy
· 1

dδ/dy
= |δ′(y)| · 1

δ′(y)

=

√

1 + y4

eyy2
y2ey+i/y

−y2 + i
=

√

1 + y4

−y2 + i
ei/y.

We let φ(y) denote the last term. We have

d2s

dδ2
=

dφ

dδ
=

dφ

dy
· 1

dδ/dy
= φ′(y)

1

δ′(y)
.

φ′(y) = ei/y
i

y2
·
√

1 + y4

−y2 + i
+ ei/y

2y3

(−y2 + i)
√

1 + y4
+ ei/y

√

1 + y4 · 2y
(−y2 + i)2

and δ′(y) =
−y2 + i

y2eyei/y
.

From this, we deduce that the quotient φ′(y)
δ′(y) is the sum of three terms:

The first term is

e2i/yi
√

1 + y4ey

y2(−y2 + i)2
= eye2i/y





iy2
√

1 + 1
y4

y4(−1 + i
y2 )

2



 = eye2i/y
i

y4
·

√

1 + 1
y4

(−1 + 1
y2 )

2
.
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The second term is

eye2i/y
2y5

(−y2 + i)2
√

1 + y4
= eye2i/y

2

y(−1 + i
y2
)2
√

1
y4

+ 1
.

The third term is

eye2i/y
√

1 + y42y3

(−y2 + i)3
.

The sum of the second and the third term is

eye2i/y

(

2y5

(−y2 + i)2
√

1 + y4
+

√

1 + y42y3

(−y2 + i)3

)

= eye2i/y
2y3

(−y2 + i)2

(

y2
√

1 + y4
−
√

1 + y4

y2 − i

)

= eye2i/y
2y3

(−y2 + i)2
y4 − iy2 − 1− y4
√

1 + y4(y2 − i)

= eye2i/y
2(−i− 1

y2
)

(−1 + i
y2 )

2
√

1
y4 + 1(1− i

y2 )

=
eye2i/y

y3
· (2 + λ(y))

with λ(y) → 0 as y → +∞. The first term is

eye2i/y
i

y4

√

1 + 1
y4

(−1 + 1
y2
)2

=
eye2i/y

y4
(i+ w(y))

with w(y) → 0 as y → +∞.
Therefore,

ds2

dδ2
= eye2i/y

(

1 +w(y)

y4
+

2 + λ(y)

y3

)

=
ey

y3
e2i/y

(

1 + w(y)

y
+ 2 + λ(y)

)

=
ey

y3
e2i/y (2 + µ(y))

with µ(y) → 0 as y → +∞. Taking absolute values, we find

|ds
2

dδ2
| = ey

y3
(2 + ν(y))

with ν(y) → 0 as y → +∞.

Thus, the limit of ds2

dδ2
as we approach 0 = γ(−∞) = δ(+∞) from the curve

does not exist, because its absolute value converges to +∞. This implies that
the curve cannot be extended beyond this point and still satisfy Definition
2.4. Thus, A is finite.
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Example 3.5. Let γ(t) = (1− x) exp
x+ 1

x− 1
, −∞ < x < 1.

Then γ ⊂ R and γ∗ = R, A = −∞, B = +∞, and limx→1− γ(x) = 0.
Thus, although the given parametrization of γ at the one endpoint (x → 1−)
has an essential singularity, the curve nevertheless can be continued and still
satisfy Definition 2.4. In fact, there is also a similar and simpler example,
namely, the curve γ(x) = 1/x, −∞ < x < 0. In this case, the curve cannot
be extended as x converges to 0− where there is a pole , but using arc
length parametrization it can be extended as x converges to −∞ where γ(x)
approaches 0. Again, using arc length, we can extend and have the real line.

Example 3.6. For τ > 0 we consider the function

f(z) = (z − 1)τ exp
z + 1

z − 1
.

This function is holomorphic on an open set containing T − {1}. Let γ :
(0, 2π) → C be the Jordan curve γ(t) = f(eit). Then,

f ′(z) =

(

τ(z − 1)τ − 2

(z − 1)2−τ

)

· exp z + 1

z − 1
.

Then, 0 = f ′(z), and τ(z− 1)τ = 2
(z−1)2−τ , which implies τ(z− 1)2 = 2, and

z = 1±
√

2
τ .

But |1±
√

2
τ | = 1 ⇒ τ = 1

2 . Therefore, for τ > 1
2 the function f is locally

conformal on an open set containing T − {1} = {eiθ : 0 < θ < 2π} and γ
satisfies Definition 2.4.

For τ > 1
2 we have limt→0+ γ(t) = limt→2π− γ(t) = 0.

Furthermore,

|γ′(t)| = |f ′(eiθ| · |ieit| =
∣

∣

∣

∣

τ(z − 1)τ − 2

(z − 1)2−τ

∣

∣

∣

∣

z=eiθ

∼ | 2

(eit − 1)2−θ
| ∼ 2

t2−τ

as t → 0+ (τ < 2) and |γ′(t)| ∼ 2
(2π−t)2−τ as t → 2π−, since (eit − 1)τ → 0

as t → 0+ or t → 2π−1 and | 2
(eit−1)2−τ | → +∞ (12 < τ).

Therefore,
∫

0+ |γ′(t)|dt = +∞ for 1
2 < τ ≤ 1.

Also, for 1 < τ it follows that
∫

0+ |γ′(t)|dt is finite. Similar results hold

for
∫ 2π−

|γ′(t)|dt.
We conclude that for 1

2 < τ ≤ 1 we have A = −∞ and B = +∞.
For τ > 1 one can do a calculation similar to the one done in Example

3.4, where we showed it is possible to have A finite and B = +∞.

Example 3.7. We take f(z) =
(

z − (1− 1
3 )
)2

and γ : R → C be defined

by γ(t) = f(eit). Then, γ satisfies Definition 2.4, A = −∞, B = +∞, γ∗ is
periodic, but γ is not a Jordan curve; it is a closed curve which intersects
itself once. Note that instead of this function, one could take any function
of the form f(z) = (z − a)2 where 0 < a < 1, and the same property holds.
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It is known [3] that for any curve γ = φ(T ), where φ is holomorphic on
an open set containing the unit circle T, the complement of γ has finitely
many components.”
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