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REAL FRONTIERS OF FAKE PLANES

ADRIEN DUBOULOZ AND FRÉDÉRIC MANGOLTE

Abstract. In [8], we define and partially classify fake real planes, that is, minimal complex surfaces with
conjugation whose real locus is diffeomorphic to the euclidean real plane R2. Classification results are given
up to biregular isomorphisms and up to birational diffeomorphisms. In this note, we describe in an elementary
way numerous examples of fake real planes and we exhibit examples of such planes of every Kodaira dimension
κ ∈ {−∞, 0, 1, 2} which are birationally diffeomorphic to R2.

Introduction

A complexification of a real smooth C∞-manifold M is a real algebraic manifold S (see terminological
conventions at the beginning of Section 1) whose real locus is diffeomorphic to M : S(R) ≈ M . Some
manifolds such as real projective spaces RPn and real euclidean affine spaces Rn have natural algebraic
complexifications, given by the complex projective and affine spaces CPn and Cn respectively. But these
also admit infinitely many other complexifications, and it is a natural problem to try to classify them up
to appropriate notions of equivalence. We focus on the case when M = R2 which is already surprisingly
involved. Consider the following two examples:

(1) Start from S0 = C2
u,v with the usual conjugation (u, v) 7→ (u, v). We have S0(R) = R2. Blowing-up a

pair of conjugated non real points of C2, we get a surface S1 which is not isomorphic to C2, actually
not even affine as it contains proper curves, but S1(R) ≈ R2.

(2) Start from CP2
x:y:z and choose a pair of conjugated lines L,L meeting at a point on the line at infinity

L∞ := {z = 0}. Let S2 be the complement in CPn of the union L ∪ L ∪ L∞. Then S2 is isomorphic
to C1 \ {a pair of conjugated points} × C1 and S2(R) ≈ R2.

In the two cases above, the complexification is topologically far from C2. So we will seek for topologically
minimal complexifications of R2 which we call fake real planes:

Definition 1. A nonsingular quasi-projective complex algebraic surface S endowed with an anti-holomorphic
involution is called a fake real plane if:

(1) S is a real plane: S(R) ≈ R2;
(2) S is topologically minimal : Hk(S;Q) = 0 for all k ≥ 1;
(3) S is fake: S is not biregularly isomorphic to C2 as a real algebraic surface.

Every fake real plane S is affine and rational over R, see § 1.1 below. In the projective setting, we obtain
complexifications of RP2 in the same way than described in the first example above by blowing-up pairs of
conjugated non real points of CP2. Among the rational projective complexifications of RP2, the only minimal
one is CP2 because it is the only one with Picard number ρ = 1. In fact, CP2 is the only topologically minimal
complexification of RP2: there exists other smooth complex surfaces with the same homology as CP2, but
none of them admits a real structure [16]. In the light of these observations, a first natural question is:

Question 2. Is there any fake real plane at all?

An affirmative answer to Question 2 is given in the article [8], where we introduce and partially classify
fake real planes. In the present paper, as an application of general classification results in [8], we describe in
an explicit way numerous examples.

Let S and S′ be two complexifications of a given topological surface M . We say that S and S′ are R-
biregularly birationally equivalent if their real loci S(R) and S′(R) have isomorphic Zariski open neighborhoods
in S and S′, respectively. Equivalently the surfaces S(R) and S′(R) are birationally diffeomorphic, that is:
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Definition 3. Let S and S′ be real algebraic surfaces. Their real loci S(R) and S′(R) are birationally
diffeomorphic if there is a diffeomorphism f : S(R)→ S′(R) which extends as a real birational map ψ : S 99K
S′ whose indeterminacy locus does not intersect S(R), and such that the indeterminacy locus of ψ−1 does
not intersect S′(R).

A real algebraic surface S is rectifiable if its real locus S(R) is birationally diffeomorphic to R2.

It is well-known that every rational projective complexification of RP2 is R-biregularly birationally equiv-
alent to RP2, even dropping the topological minimality condition, see [17]. Thus next natural questions
are:

Question 4. Is there any rectifiable fake real plane?

Question 5. Let S be a fake real plane. Is S rectifiable?

Again the answer to Question 4 is affirmative; examples of rectifiable fake real planes of Kodaira dimensions
−∞ and 0 were given in [8]. In the present paper, we exhibit infinite families of rectifiable fake real planes
in every Kodaira dimension. In spite of this, Question 5 remains open.

1. Generalities on fake real planes

Terminological conventions.
(1) A real algebraic manifold of dimension n is a quasi-projective complex algebraic manifold S of complex

dimension n endowed with an anti-holomophic involution whose set of fixed points is called the real
locus and denoted by S(R). A real map is a complex map commuting with involutions. A real
algebraic surface is a real algebraic manifold of dimension 2. The manifolds S and S(R) are assumed
to be endowed with their euclidean topology.

(2) A topological surface is a real 2-dimensional C∞-manifold. By our convention, a real algebraic surface
S is nonsingular; as a consequence, if nonempty, the real locus S(R) gets a natural structure of a
topological surface when endowed with the euclidean topology. Furthermore S(R) is compact if S is
projective.

1.1. Generalities on topologically minimal real planes. By virtue of results of Fujita [9] and Gurjar-
Sashtri [12, 13] every smooth Q-acyclic complex surface S is affine and rational. If S is real, then its admits
a real completion S ↪→ (V,B) into a smooth real projective surface V with connected real boundary curve
B = V \ S. In the case where S is a real plane, the connectedness of S(R) ≈ R2 implies that V is a rational
complex surface with connected real locus, hence an R-rational real projective surface, i.e. a real surface
admitting a real birational map V 99K CP2 to CP2 equipped with its standard real structure. The free
abelian group Z〈B〉 generated by the irreducible components of B and the divisor class group Cl(V ) of V
both inherits a structure of G-module for the group G = {1, σ} ' Z2 generated by the real structure σ on V .
The inclusion j : B ↪→ V gives rise to a homomorphism j∗ : Z〈B〉 → Cl(V ) of G-module, hence to a induced
homomorphism H2(j∗) : H2(G,Z〈B〉) → H2(G,Cl(V )) of Z2-vector spaces between the Galois cohomology
groups H2(G,M) = Ker(idM −σ)/Im(idM +σ), M = Z〈B〉,Cl(V ). The next theorem will be the most useful
for the constructions presented below:

Theorem 6. Let (V,B) be a pair consisting of an R-rational projective real surface V and a real curve
B ⊂ V . Then the surface S = V \ B is an A-acyclic, where A = Z or Q, real plane if and only if the
conditions are satisfied:

a) V and B are connected and simply connected and j∗⊗ZA : Z〈B〉⊗ZA→ Cl(V )⊗ZA is an isomorphism.
b) The real locus of B is nonempty and H2(j∗) : H2(G,Z〈B〉)→ H2(G,Cl(V )) is an isomorphism.

Proof. The first assertion is essentially a rephrasing of a classical criterion established first by Ramanujam
[20] and Fujita [9] which asserts that the complex surface S is A-acyclic if and only if V and B are connected
and the homomorphism H2(B;A)→ H2(V ;A) induced by the inclusion B ↪→ V is an isomorphism. Indeed,
H2(B;A) is a free abelian group isomorphic to Z〈B〉 ⊗Z A via the map which associates to every irreducible
component of B its fundamental class in homology while the isomorphism H2(V ;A) ' Cl(V ) ⊗Z A follows
from that fact that since V is rational, the cycle map Cl(V )→ H2(V,Z) which associates to every irreducible
complex curve D ⊂ V its fundamental class is an isomorphism. The second assertion essentially follows from
the combination of the well-known fact that a relatively compact topological surface M ⊂M with connected
boundary M \M is diffeomorphic to R2 if and only if it is connected and Z2-acyclic with the cycle map
construction due to Borel-Haefliger [3], see [8, Section 2]. �
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Remark 7. 1) The curve B in the previous proposition need not be an SNC divisor on V , but the criterion
implies in particular that if S = V \B is A-cyclic then its inverse image τ−1(B) in a log-resolution τ : V ′ → V
of the pair (V,B) defined over R is a real tree of rational curves, that is a tree of rational curves with an
induced action of the real structure σ on V ′. It follows in particular that the real locus of B is either empty
or a connected union of curves homeomorphic to a circle.

2) In the case where j∗⊗Z Q : Z〈B〉⊗Z Q→ Cl(V )⊗Z Q is an isomorphism, one infers from the long exact
sequence of relative homology for the pair (V,B) that H1(S,Z) is a torsion group isomorphic to Cl(V )/Im(j∗).

Example 8. The complement S of a smooth real conic B in CP2 is a Q-acyclic real surface which is a not
a real plane. It can be seen directly that S(R) is either diffeomorphic to RP2 if B(R) = ∅ or to the disjoint
union of R2 with a Möebius band otherwise. In the setting of Theorem 6 above, the image of the generator
[B] of Z〈B〉 ' Z · [B] ' H2(B;Z) by j∗ : Z〈B〉 → Cl(CP2) ' H2(CP2;Z) ' Z · [`] where [`] denotes the class of
a real line, is equal to 2 · [`]. So S is Q-acyclic, with H1(S;Z) ' Z2, but not Z-acyclic. Furthermore, since in
this particular situation we have isomorphisms H2(G,Z〈B〉) ' Z〈B〉⊗ZZ2 and H2(G,Cl(V )) ' Cl(V )⊗ZZ2,
H2(j∗) : H2(G,Z〈B〉)→ H2(G,Cl(V )) is then the trivial map.

2. Fake planes of negative Kodaira dimension

It turns out that C2 equipped with its standard real structure is the only Z-acyclic real plane S of negative
Kodaira dimension. Indeed, a complex Z-acyclic surface of negative Kodaira dimension is isomorphic to C2

by virtue of [19] while every real structure on C2 is isomorphic to the standard one, as a consequence of [14].
In this section, we briefly review general geometric properties of Q-acyclic fake planes. Then as a particular
instance of a large class of such planes which are known to be R-biregularly birationally equivalent to C2, see
Theorem 11 below, we construct a pair of non isomorphic Q-acyclic fake planes of negative Kodaira dimension
with the same homology groups, whose real loci are both birationally diffeomorphic to R2.

2.1. Basic properties of Q-acyclic fake planes of negative Kodaira dimension. By virtue of [19],
the negativity of the Kodaira dimension of a smooth complex affine surface S is equivalent to the existence
of an A1-fibration ρ : S → C, that is, a fibration with general fibers isomorphic to C, over a smooth curve C.
One direction is clear for if ρ : S → C is such a fibration, then C contains a nonempty Zariski open subset C0

over which ρ restricts to a trivial bundle C0 × C, and so κ(S) ≤ κ(C0 × C) = −∞ by Iitaka’s easy addition
formula. When S is in addition real, there is no reason in general that the existing A1-fibration ρ : S → C is
a real map: for instance, the complement of a smooth conic C in CP2 with empty real locus is a real surface
of negative Kodaira dimension without any real A1-fibration ρ : S → C. Indeed, if such a fibration existed
then the closure in CP2 of its fiber over a general real point of C would be a real rational curve intersecting
C in a unique point, necessarily real, which is impossible. The following theorem shows in particular that
this phenomenon does not occur for real planes:

Theorem 9. ([8, Theorem 4.1]) For a smooth affine real surface S the following are equivalent:
1) S is a Q-acyclic real plane of negative Kodaira dimension.
2) S admits a real A1-fibration ρ : S → C whose closed fibers are all isomorphic to C when equipped with

their reduced structure and whose fibers over the real locus of C have odd multiplicities.

Example 10. Let s ≥ 1, let [m] = (m1, . . . ,ms) be a collection of integers mi ≥ 2, let [p] = (p1, . . . , ps) be
a collection of odd integers pi ≥ 3 and let r1, . . . , rs ∈ R be a collection of pairwise distinct real numbers.
Then the real surface Ss,[m][p] ⊂ C3 defined by the equation

s∏
i=1

(x− ri)miz =

s∑
i=1

∏
j 6=i

(x− rj)ypi +

s∏
i=1

(x− ri)

is a smooth Q-acyclic fake plane of negative Kodaira dimension. Indeed, the smoothness of Ss,[m][p] follows
for instance from the Jacobian criterion. The restriction to Ss,[m][p] of the projection prx is a real A1-fibration
π : Ss,[m][p] → C with irreducible fibers, restricting to a trivial bundle over C \ {r1, . . . , rs} and whose fiber
over each of the points ri, i = 1, . . . , s, has odd multiplicity pi. So Ss,[m][p] is a Q-acyclic real plane of negative
Kodaira dimension by the previous theorem.

The following partial result concerning the classification of Q-acyclic real plane of negative Kodaira di-
mension up to R-biregular equivalence was obtained in [8]:

Theorem 11. Every Q-acyclic real plane S of negative Kodaira dimension admitting a real A1-fibration
ρ : S → C with at most one degenerate fiber is R-biregularly birationally equivalent to C2.
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As a consequence, the real locus of every surface S1,m1,p1 as in Example 10 is birationally diffeomorphic
to R2. We don’t know whether Q-acyclic real plane of negative Kodaira dimension S admitting real A1-
fibrations ρ : S → C with more than one degenerate fiber are R-biregularly birationally equivalent to C2, in
particular:

Question 12. Is the real locus of a surface Ss,[m][p] with s ≥ 2 as in Example 10 birationally diffeomorphic
to R2 ?

2.2. Two examples of Q-acyclic fake planes with real loci birationally diffeomorphic to R2.

2.2.1. Construction and first properties.
1) First we let S be the complement of a real cuspidal cubic B in V = CP2. Since B is equivalent in Cl(V )

to three times the class of a real line ` ⊂ CP2, the Q-acyclicity of S immediately follows from Theorem 6 a)
applied to the pair (V,B), and we have H1(S;Z) ' Z3 by Remark 7.2. The fact that S is a real plane follows
from b) in the same theorem after noting that similarly as in Example 8, H2(G,Z〈B〉) ' Z〈B〉⊗ZZ2 ' Z2 ·[B]
and H2(G,Cl(CP2)) ' Cl(CP2)⊗ZZ2 ' Z2 · [`]. Alternatively, one can observe that B(R) is homeomorphic to
a simple closed curve in RP2 whose homotopy class is a generator of π1(RP2), so RP2 \B(R) is homeomorphic
to an open disc, hence is diffeomorphic to R2. The restriction to S of the rational pencil V 99K CP1 generated
by B and three times its tangent T at its unique singular point restricts to a real A1-fibration ρ : S → C
with a unique degenerate fiber of multiplicity 3 consisting of the intersection of T with S. The real minimal
resolution of the pencil V 99K CP1 dominates the real minimal resolution τ : W → V of the pair (V,B), and
is obtained from it by blowing-up three times the intersection point of the proper transform of B with the
successive total transforms of the exceptional locus of τ . We denote by β : Ṽ → V the so constructed surface
and we denote by C the last exceptional divisor produced by this sequence of blow-ups. The dual graph of
the total transform of B ∪ T in Ṽ is depicted in Figure 2.1 below.

0

B
−1

C

−3

E1

−2

E2

−1

T

−2

E3

−2

−2

Figure 2.1. Dual graph of the proper transform of B ∪ T in Ṽ .

2) Next we let S′ be the smooth real affine cubic surface in C3 defined by the equation x2z = y3−x, which
we view as the complement in the normal real cubic surface V ′ = {x2z − y3 + xt2 = 0} ⊂ CP3 of the real
rational cuspidal hyperplane section B′ = V ′ ∩ {t = 0}. Note that V ′ has a unique singular point of type E6

at [0 : 0 : 1 : 0]. Since the map R2 → S′, (x, z) 7→ (x, 3
√
x2z + x, z) is an homeomorphism between R2 and

the real locus of S′, it follows that S′ is a real plane. The divisor class group Cl(V ′) of V ′ is isomorphic to
Z generated by the closure T ′ in V ′ of the real line {x = y = 0} ⊂ S′. The divisor class group Cl(W ′) of
the real minimal log-resolution τ ′ : W ′ → V ′ of the pair (V ′, B′) is isomorphic to Z6 generated by the five
exceptional divisors of τ ′ and the proper transform of T ′, and since B′ ∼ 3T ′ in Cl(V ′), it follows that for
an appropriate choice of bases, the map j∗ : Z〈τ−1(B′)〉 → Cl(W ′) is represented by a matrix M of the form

M =

(
id5 ∗
0 3

)
.

So by virtue of Theorem 6 a) applied to the real projective completion (W ′, τ−1(B′)) of S′, S′ is Q-acyclic,
with H1(S′;Z) ' Z3 by Remark 7.2. The restriction to S′ of the projection prx is a real A1-fibration
ρ′ : S′ → C having the line {x = y = 0} as a unique degenerate fiber of multiplicity 3. So κ(S′) = −∞.
The real minimal resolution of the pencil V ′ 99K CP1 induced by ρ′ : S′ → C dominates the real minimal
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resolution τ ′ : W ′ → V ′ of the pair (V ′, B′), and is obtained from it by blowing-up the intersection point of
the proper transform of B′ with the exceptional locus of τ ′. We denote by β′ : Ṽ ′ → V the so constructed
surface and we denote by C ′ the last exceptional divisor produced by this sequence of blow-ups. The dual
graph of the total transform of B′ ∪ T ′ in Ṽ ′ is depicted in Figure 2.2 below.

−2

E′4

−2

E′1
−2

E′2

−1

T ′

−3

E′5

−2

E′3

0

B′
−1

C′

Figure 2.2. Dual graph of the proper transform of B′ ∪ T ′ in Ṽ .

Proposition 13. The surfaces S and S′ are non isomorphic fake planes of negative Kodaira dimension.

Proof. That S and S′ are fake planes of negative Kodaira dimension follows from the construction above.
The fact they are non isomorphic as complex surfaces can be deduced as follows. First since the dual graphs
of the minimal resolutions of the pairs (V,B) and (V ′, B′) are not chains, it follows from [1] that the A1-
fibrations ρ : S → C and ρ′ : S′ → C constructed above are unique, up to composition by automorphisms
of the base C. This implies in particular that any isomorphism Φ between S and S′ is an isomorphism
of fibered surfaces, that is, there exists an isomorphism φ : C ∼→ C such that ρ′ ◦ Φ = φ ◦ ρ. Every such
isomorphism then admits a unique extension to a birational map Φ: Ṽ 99K Ṽ ′ with a unique proper base point,
supported at the intersection of C with the proper transform of B, restricting to an isomorphism between
the complements Ṽ \ β−1∗ (B) and Ṽ ′ \ (β′)−1∗ (B′) of the proper transforms of B and B′ respectively and
mapping C isomorphically onto C ′ (see e.g. [2] where these birational maps are called fibered modifications).
But the fact that the irreducible components of β−1(B) \ β−1∗ (B) and β−1(B′) \ β−1∗ (B′) intersecting C and
C ′ respectively have different self-intersections prevents the existence of any such birational map. So S and
S′ are not isomorphic. �

Remark 14. The surfaces S and S′ do not only have the same homology group but also the same fundamental
group π1 ' Z3. In fact, it can be shown that the complex algebraic threefolds S × A1 and S′ × A1 are
isomorphic, so that S and S′ are in particular homotopically equivalent. A direct computation reveals
further that the fundamental groups at infinity of S and S′ (see e.g. [18, § 4.9 p. 246] for the definition and
an algorithm for the computation of these groups) are both isomorphic to Z9. We do not know whether S
and S′ are homeomorphic as real 4-manifolds or not.

2.2.2. Birational diffeomorphisms. Here we show that the real loci of S and S′ are not only diffeomorphic to
R2 but actually birationally diffeomorphic to it.

1) In the minimal real log-resolution τ : W → V of the pair (V,B), the proper transform of any pair (`, `)
of general non-real complex conjugate lines in V = CP2 passing through the singular point p0 of B consists
of a pair of complex conjugate rational 0-curves intersecting the proper transform of B transversally in a pair
of non-real complex conjugate points (q, q). Choosing two distinct such general pairs (`i, `i), i = 1, 2, we let
θ1 : W 99K W1 be the real birational map consisting of the blow-up of the corresponding two pairs of points
(qi, qi), i = 1, 2, followed by the contraction of the proper transforms of `i and `i, i = 1, 2. By construction,
θ restricts to a diffeomorphism W (R) ≈ W1(R), the dual graph of the proper transform of τ−1(B) by θ1 is
depicted in Figure 2.3 below.

Now let θ2 : W1 99K W2 be the real birational map obtained by first blowing-up the point E1 ∩ E3,
with exceptional divisor D1 and then contracting successively the proper transforms of B, E3 and E2. The
resulting surface W2 is isomorphic to the Hirzebruch surface F1 in which the proper transforms of E1 and D1

are respectively a fiber and a section with self-intersection 1 of the P1-bundle structure π1 : F1 → CP1. The
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−2

E2

−1

E3

−1

B

+1

E1

Figure 2.3. Dual graph of the proper transform of τ−1(B) by θ1.

restriction of θ2 ◦ θ1 to S is a real birational map f : S 99K F1 \ (E1 ∪D1) ' C2 inducing a diffeomorphism
S(R) ≈ R2.

−1

E3

−1

B

−2

E2

−1

−1

−1

−1

−1

−1

−1

−1

−1

E3

+3

B

−2

E2

0

0
0

−1

E3

−1

B

−2

E2

0

0
0

−3

E1

+1

E1

−3

E1

0 0

Figure 2.4. Elementary transformations.

2) For S′, the construction is very similar although of a slightly different flavour. We first observe that the
proper transform in the real minimal resolution τ ′ : W ′ → V ′ of the pair (V ′, B′) of a pair of general non-real
complex conjugate hyperplane sections (`′, `

′
) of V ′ = {x2z − y3 + xt2 = 0} of the form V ′ ∩ {y − at = 0}

and V ′ ∩ {y − at = 0}, a ∈ C \ R, consists of a pair of complex conjugate rational 0-curves intersecting the
proper transform of B transversally in a pair of non-real complex conjugate points (q′, q′). For every such
pair (`′, `

′
), the real birational map θ′1 : W ′ 99K W ′1 consisting of the blow-up of q and q′ followed followed

by the contraction of the proper transforms of `′ and `
′
restricts to a diffeomorphism W ′(R) ≈ W ′1(R). The

dual graph of the proper transform of (τ ′)−1(B′) by θ′1 is depicted in Figure 2.5.

−2

E′3

−2

E′4

0

E′1
−2

E′2
−2

E′5
−1

B′

Figure 2.5. Dual graph of the proper transform of (τ ′)−1(B′) by θ′1.

Letting θ′2 : W ′1 →W ′2 be the real birational morphism consisting of the successive contractions of B′, E′5,
E′3 and E′4, the resulting surface W ′2 is isomorphic to CP1 × CP1 in which the proper transforms of E′1 and
E′2 are fibers say of the first and second projection respectively. The restriction of θ′2 ◦ θ′1 to S′ is a real
birational map f ′ : S′ 99K CP1 × CP1 \ (E′1 ∪ E′2) ' C2 inducing a diffeomorphism S′(R) ≈ R2.
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3. Fake planes of Kodaira dimension 0

By virtue of [18, Theorem 4.7.1 (1), p. 244], there is no smooth complex Z-acyclic surface of Kodaira
dimension 0. Smooth complexQ-acyclic surfaces of Kodaira dimension 0 do exist, and are completely classified
after the work of Fujita and Kojima (see also [18, Chapter 3, §4]). In this section, we present certain families
of fake planes of Kodaira dimension 0, some of which being R-biregularly birationally equivalent to C2.

3.1. Real models of Fujita’s H[−k, k] surfaces. In the Hirzebruch surface π2p : F2p → CP1, p ≥ 1, with
negative section C0 ' CP1 of self-intersection −2p, we choose a real section C1 ∼ C0 + (2p+ 1)f , where f is
a general real fiber of π2p, and a pair (`, `) of non-real complex conjugate fibers of ρ2p. Note that since the
unique intersection point of C1 and C0 is real, neither ` nor ` passes through it. Now we let τ : V → F2p be the
smooth real projective surface obtained from F2p by first blowing-up the pair of non-real complex conjugate
points q1 = C1 ∩ ` and q1 = C1 ∩ ` with respective exceptional divisors E and E and then blowing-up the
pair of non-real complex conjugate points q′1 = ` ∩ E and q′1 = ` ∩ E with respective exceptional divisors
F and F . The dual graph of B = C0 ∪ C1 ∪ ` ∪ ` ∪ E ∪ E, where we identified each curve with its proper
transform in V , is a tree depicted in Figure 3.1 below.

−2

`

−2p

C0

2p

C1

−2

E
−2

`

−2

E

Figure 3.1. Dual graph of B.

Since B is a real curve, H[−2p, 2p] = V \ B is a smooth real quasi-projective surface. The abelian group
Z〈B〉 is freely generated by the classes of the irreducible curves C0, C1, `, `, E and E while the divisor class
group Cl(V ) of V is freely generated by C0, f, E,E, F, F . Using the relations

τ∗C1 = C1 + E + E + F + F ∼ C0 + (2p+ 1)f

τ∗` = `+ E + 2F ∼ f
τ∗` = `+ E + 2F ∼ f

in Cl(V ), we find that the homomorphism j∗ : Z〈B〉 → Cl(V ) induced by the inclusion B ↪→ V is represented
by the matrix 

1 1 0 0 0 0
0 2p+ 1 1 1 0 0
0 −1 −1 0 1 0
0 −1 0 −1 0 1
0 −1 −2 0 0 0
0 −1 0 −2 0 0


It follows from Theorem 6 a) and Remark 7 that S = H[−2p, 2p] is Q-acyclic, with H1(S;Z) ' Z8p. On the
other hand, the real locus of B is homeomorphic to a wedge of two circles, hence is in particular nonempty.
The Galois cohomology groupH2(G,Z〈B〉) is freely generated by the classes of C0 and C1 whileH2(G,Cl(V ))
is freely generated by the classes of C0 and f . The relations above imply that the matrix of the homomorphism
H2(j∗) : H2(G,Z〈B〉) → H2(G,Cl(V )) with respect to these bases is the identity. So H[−2p, 2p] is a real
plane by virtue of Theorem 6 b).

Proposition 15. For every p ≥ 1, the surface H[−2p, 2p] is a Q-acyclic fake plane of Kodaira dimension 0,
R-biregularly birationally equivalent to C2.

Proof. The fact that S = H[−2p, 2p] if a fake plane follows from the discussion above. Since KF2p
∼

−2C0 − (2p + 2)f , we deduce from the ramification formula for τ : V → F2p and the relations in Cl(V )
indicated above that

2(KV +B) ∼ 2(f − F − F ) ∼ (f − 2F ) + (f − 2F ) ∼ `+ E + `+ E
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So the linear system |2(KV +B)| is nonempty, which implies that κ(S) ≥ 0, and since the intersection matrix
of `+E + `+E is negative definite it follows that κ(S) = 0. That S is R-biregularly birationally equivalent
to C2 can be seen as follows. First since the real morphism τ : V → F2p consists of blow-ups of non-real
points only, its restriction to S is a birational morphism S → S′ = F2p \ (C0 ∪C1) inducing a diffeomorphism
S(R) ≈ S′(R). The smooth real affine surface S′ = F2p \ (C0 ∪ C1) admits a real A1-fibration ρ : S′ → C
induced by the restriction of the pencil F2p 99K CP1 generated by the linearly equivalent divisors C1 and
C0 + (2p + 1)F0, where F0 ' CP1 denotes the fiber of π2p over the real point π2p(C0 ∩ C1) ∈ CP1. This
fibration has a unique degenerate fiber of multiplicity 2p+ 1 consisting of the intersection of F0 with S′, and
so S′ is R-biregularly equivalent to C2 by virtue of Theorem 11. So S(R) is birationally diffeomorphic to
R2. �

3.2. The exceptional fake plane Y (3, 3, 3) (see also [8, § 5.1.1]). Let D be the union of four general
real lines `i ' CP1, i = 0, 1, 2, 3 in CP2 and let τ : V → CP2 be the real projective surface obtained by first
blowing-up the points pij = `i ∩ `j with exceptional divisors Eij , i, j = 1, 2, 3, i 6= j and then blowing-up
the points `1 ∩ E12, `2 ∩ E23 and `3 ∩ E13 with respective exceptional divisors E1, E2 and E3. We let
B = `0 ∪ `1 ∪ `2 ∪ `3 ∪ E12 ∪ E23 ∪ E13. The dual graphs of D, its total transform τ−1(D) in V and B are
depicted in Figure 3.2.

l1

l2

l0

−2

E12

l3

D τ−1(D) B

E12

E23

E13

E1

E2

E3 l3

l2

l0

l1

+1

l0

−2

l2

−2

l3
−2

E13

−2

l1

−2

E23

Figure 3.2. Construction of Y (3, 3, 3)

Since B is a real curve, Y (3, 3, 3) := V \ B is a smooth real quasi-projective surface. The divisor class
group Cl(V ) of V is freely generated by `0, E12, E23, E13, E1, E2 and E3 and using the relations

τ∗`1 = `1 + E12 + E13 + 2E1 + E3 ∼ `0
τ∗`2 = `2 + E12 + E23 + E1 + 2E2 ∼ `0
τ∗`3 = `3 + E13 + E23 + E2 + 2E3 ∼ `0

in Cl(V ) together with the ramification formula for τ , we find that

3(KV +B) ∼ 3`0 − 3(E1 + E2 + E3) ∼ (`1 + `2 + `3) + 2(E12 + E13 + E23).

So κ(Y (3, 3, 3)) ≥ 0 and since the intersection matrix of the divisor on the right hand is negative definite, it
follows that κ(Y (3, 3, 3)) = 0. The abelian group Z〈B〉 is freely generated by the classes of the irreducible
curves `i, i = 0, . . . , 3, E12, E23 and E13 and using the above relations, we find that the homomorphism
j∗ : Z〈B〉 → Cl(V ) induced by the inclusion B ↪→ V is represented by the matrix

M =



1 1 1 1 0 0 0
0 −1 −1 0 1 0 0
... 0 −1 −1 0 1 0
... −1 0 −1

... 0 1
... −2 −1 0

...
... 0

... 0 −2 −1
...

...
...

0 −1 0 −2 0 0 0


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which has determinant detM = −9. Furthermore, since τ : V → CP2 consists of blow-ups of real points only,
H2(G,Z〈B〉) ' Z〈B〉 ⊗Z Z2, H2(G,Cl(V )) ' Cl(V ) ⊗Z Z2 and the homomorphism H2(j∗) is represented
by the reduction modulo 2 of M . It follows from Theorem 6 that Y (3, 3, 3) is a Q-acyclic fake plane, with
H1(Y (3, 3, 3);Z) ' Z9.

Question 16. Is the real locus of Y (3, 3, 3) birationally diffeomorphic to R2 ?

4. Fake planes of Kodaira dimension 1

In this section, we first recall basic results on the classification of Z-acyclic fake planes of Kodaira dimen-
sion 1. We then present examples of contractible and Q-acyclic fake planes of Kodaira dimension 1 arising
from rational real cuspidal quartics in CP2. We conclude this section with the construction of families of
Q-acyclic fake planes R-biregularly birationally equivalent to C2.

4.1. Elements of classification of Z-acyclic fake planes of Kodaira dimension 1. Smooth complex
Z-acyclic surfaces of Kodaira dimension 1 have been classified by Gurjar and Miyanishi [11] and tom Dieck
and Petrie [4]. We recall from [8] the following construction, which provides the real counter-part of this
classification.

4.1.1. Let D ⊂ CP2 be the union of a collection E0,0, . . . , En,0 ' CP1 of n+ 1 ≥ 3 real lines intersecting in
a same point x and a general real line C1 ' CP1. For every i = 1, . . . , n, we choose a pair of coprime integers
1 ≤ µi,− < µi,+ in such a way that for v− =t (µ1,−, . . . , µn−) ∈ Mn,1(Z) and ∆+ = diag(µ1,+, . . . , µn,+) ∈
Mn,n(Z), the following two conditions are satisfied:

a) η = n− 1−
n∑
i=1

1

µi,+
> 0 and b) The matrix N =

(
−1 −1
v− ∆+

)
belongs to GLn+1(Z).(1)

Then we let τ : V → CP2 be the smooth real projective surface obtained by the following blow-up procedure:
1) We first blow-up x with exceptional divisor C0 ' CP1. The resulting surface is isomorphic to the

Hirzebruch surface π1 : F1 → CP1 with C0 as the negative section of π1, the proper transforms of E0,0, . . . , En,0
are fibers of π1 while the strict transform of C1 is a section of π1 disjoint from C0.

2) Then for every i = 1, . . . , n, we perform a sequence of blow-up of real points, starting with the blow-up
of pi = C1 ∩ Ei,0 in such a way that the following two conditions are satisfied: a) the inverse image of pi is
a chain of CP1 containing a unique (−1)-curve A(pi) and b) the coefficients of A(pi) in the total transform
of C1 and Ei,0 are equal to µi,− and µi,+ respectively. We denote by Ei,1, . . . , Ei,ri−1, Ei,ri = A(pi) the
corresponding exceptional divisors.

3) Finally, we perform a sequence of blow-ups starting with the blow-up of a real point p0 ∈ E0,0\(C0∪C1),
with exceptional divisor E0,1 ' CP1 and continuing with a sequence of r0 − 1 ≥ 0 blow-ups of real points
p0,i ∈ E0,i \ E0,i−1, i = 1, . . . , r0 − 1, with exceptional divisors E0,i+1. We let A(p0) = E0,r0 .

−1

E0,0

−1

A(p1)
−1

A(pi)
−1

A(pn)

1−n

C1

−1

C0

−1

A(p0)

Figure 4.1. Dual graph of τ−1(D).
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The union B of the proper transforms of C0,C1, and the divisors Ei,j , i = 0, . . . , n, j = 0, . . . ri−1, is a real
subtree of the total transform of D by the so-constructed morphism τ : V → CP2. By virtue of [18, Lemma
4.5.3 p. 237] and the proof of Theorem 4.6.1 p. 238 in loc. cit. we have

KV +B ∼ (π1 ◦ τ)∗KCP1 + `+

n∑
i=1

((π1 ◦ τ)∗Ei,0 −A(pi)) ∼ (n− 1)`−
n∑
i=1

A(pi) ∼ η`+N = P +N

where ` is the proper transform of a general real fiber of π1, and N is an effective Q-divisor supported
on
∑n
i=1((π1 ◦ τ)∗Ei,0)red − A(pi). So the intersection matrix of N is negative definite and since η > 0 by

hypothesis, it follows that P is nef. The surface S = V \ B is thus a real surface of Kodaira dimension
κ(S) = 1. Note further that the morphism π1 ◦ τ : V → CP1 coincides with that induced by the positive part
of KV +B and that it restricts on S to a fibration S → CP1 with general fibers isomorphic to C∗. We have
the following classification result:

Theorem 17. [8, Theorem 3.3] Every Z-acyclic fake plane S of Kodaira dimension 1 is isomorphic to a
surface constructed by the above procedure.

We do not know whether any of these surfaces is R-biregularly birationally equivalent to C2.

4.2. Fake planes obtained from rational real cuspidal quartic curves.

4.2.1. First construction. LetD ⊂ CP2 be a real smooth rational quartic with a unique cusp p0 of multiplicity
3 and a unique flex q at which D and its tangent Tq intersect with multiplicity 4. For instance, D is the zero
locus of the homogeneous polynomial z4− xy3 ∈ C[x, y, z], the corresponding points p0 and q being [1 : 0 : 0]
and [0 : 1 : 0]. Let τ : V → CP2 be the blow-up of any real point p of D different from p0 and q, say with
exceptional divisor E0,1. Let E0,0 and E1,0 be the proper transforms of D and Tq respectively in V and let
B = E0,0 ∪ E1,0. Then S = V \B is a contractible fake plane of Kodaira dimension 1. Indeed, the fact that
S is a Z-acyclic fake plane of Kodaira dimension 1 can be deduced directly from Theorem 17 by comparing
the minimal log-resolution β : V ′ → V of the pair (V,B) depicted in Figure 4.3 below with Figure 4.1 above
for n = 2, the curves A(p1) and A(p2) corresponding in this case to the proper transforms of the tangent line
Tp0 to B at p0 and of the line `p0q passing through p0 and q.

Alternatively, the Z-acyclicity follows from Theorem 7 via a computation similar to those in the previous
section while the fact that S(R) ≈ R2 can be seen more directly as follows. Since τ : V → CP2 consists of
the blow-up of a real point, V (R) is a Klein bottle which we view as circle bundle θ : V (R)→ S1 with fibers
equal to the real loci of the lines through p in CP2. The sets E0,1(R) and E1,0(R) are two sections of θ which
do no intersect each other. On the other hand E0,0(R) is a connected closed curve which intersects E0,1(R)
and E1,0(R) transversally in one point and at the point q with multiplicity 4. It follows that the homology
classes of E0,0(R) and E1,0(R) in H1(V (R);Z2) form a basis of this group. Since B(R) is not empty, the
long exact sequence of relative homology for the pair (V (R), B(R)) with Z2-coefficients implies that S(R) is
connected and Z2-acyclic, hence diffeomorphic to R2.

D

p0

q Tq

Figure 4.2. Real ovoid quartic.

The contractibility of S follows from the general classification of such surfaces given in [4]. It can also be
seen directly as follows: since it is Z-acyclic, it follows from Hurewicz theorem that S is contractible if and
only if it is simply connected. Since S \E0,1 ' CP2 \ (D ∪ Tq) is the complement of a closed submanifold of
real codimension 2 in S, π1(S) is a quotient of π1(CP2 \ (D ∪ Tq)). Furthermore, by virtue of [23, Lemma
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−1

lp0q
−4

D
−1

E0,1

−3

Tq

−2

−2

−2

−2

−1

−1

−4
−1

Tp0

−2

Figure 4.3. Dual graph of the total transform of B ∪ Tp0 ∪ `p0q ∪ E0,1 in a minimal real
log-resolution β : V ′ → V of the pair (V,B).

2.3(a)], we have an exact sequence 0→ Z · 〈µ〉 → π1(CP2 \ (D∪Tq))→ π1(CP2 \D)→ 0 where Z · 〈µ〉 is the
free abelian group generated by a meridian of the line Tq. Since π1(CP2 \D) is abelian [6, Proposition 4.3
p. 130], so is π1(CP2 \ (D ∪ Tq)), implying in turn that π1(S) is abelian, hence trivial.

4.2.2. Second construction. Let D ⊂ CP2 be a real smooth rational quartic with a unique cusp p0 of multi-
plicity 3 and a pair of real flexes q1 and q2 at which D and its tangent Tqi intersect with multiplicity 3. For
instance, D is the zero locus of the homogeneous polynomial x3y − z3x + z4 ∈ C[x, y, z], the corresponding
points p0 and q1 and q2 being [0 : 1 : 0], [1 : 0 : 0] and [ 32 : 4

27 : 1]. Let τ : V = F1 → CP2 be the blow-up of
the intersection point p of Tq1 with D different from q1, say with exceptional divisor F1. Since p is real, τ is
a real morphism and hence, the complement in V of the proper transform B of D∪Tq1 is a real surface. The
relations τ∗D = D+F1, τ∗Tq1 = Tq1 +F1 in Cl(V ) and D ∼ 4Tq1 in Cl(CP2) imply that the homomorphism
j∗ : Z〈B〉 → Cl(V ) induced by the inclusion j : B ↪→ V is represented in appropriate bases by a matrix of the
form

M =

(
4 1
−1 −1

)
.

Furthermore, H2(G,Z〈B〉) ' Z〈B〉 ⊗Z Z2, H2(G,Cl(V )) ' Cl(V )⊗Z Z2 as τ is the blow-up of a real point,
and the homomorphism H2(j∗) is represented by the reduction modulo 2 of M . It follows from Theorem 6
and Remark 7 that S is a Q-acyclic fake plane, with H1(S;Z) ' Z3. In contrast with the Z-acyclic fake planes
considered in § 4.1.1 which all admit a log-canonical real fibration over CP1 with general fibers isomorphic
to C∗, the surface S just constructed admits a fibration of this type over the complex line C. Namely, letting
`p0q1 and `p0p be the lines through p0, q1 and the line through p0, p respectively, the divisors D, 3Tp0 +Tq1 and
3`p0q1 + `p0p in CP2 generate a real pencil V 99K CP1 whose lift in the minimal real log-resolution β : Ṽ → V

of the pair (V,B) coincides with the P1-fibration Ṽ → CP1 generated by the proper transform of D (see
Figure 4.4 below). This fibration restricts on S to a real morphism S → C with general fibers isomorphic
to C∗ and two degenerate fibers: one consisting of the disjoint union of `p0p ∩ S ' C and `p0q1 ∩ S ' C∗
the second component having multiplicity 3, and a second one consisting of the intersection Tp0 ∩ S = C∗,
also with multiplicity 3. The fact that κ(S) = 1 then follows from a similar computation as in § 4.1.1, see
e.g. [18, Theorem 4.6.2 p. 237], which also renders the conclusion that Ṽ → CP1 coincides with the fibration
induced by the positive part of KṼ + β−1(B).

4.3. Q-acyclic fake planes with real loci birationally diffeomorphic to R2 (see also [8, Remark 3.2]).
To construct families of Q-acyclic fake planes R-biregularly birationally isomorphic to C2, we start similarly as
in § 4.1.1 above with the union D ⊂ CP2 of a real line E0,0 ' CP1, a collection (E1,0, E1,0), . . . , (Em,0, Em,0)
of m ≥ 1 distinct pairs of non-real complex conjugated lines all meeting in a same real point x, and of a
general real line C1 ' CP1. For every i = 1, . . . ,m, we choose a pair of coprime integers 1 ≤ νi,− < νi,+ in
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−4

−1

−1

Tp0

−1

lp0q1

0

D

−1

F1

−3

Tq1

−2

−2

−1

lp0p

−2

−2

−1

Figure 4.4. Dual graph of β−1(B ∪ Tp0 ∪ `p0q1 ∪ `p0p).

such a way that for {
v− = t(ν1,−, . . . , νm,−, ν1,−, . . . , νm,−) ∈M2m,1(Z)

∆+ = diag(ν1,+, . . . , νm,+, ν1,+, . . . , νm,+) ∈M2m,2m(Z),

the following two conditions are satisfied:

(2) a’) η = 2m− 1−2

m∑
k=1

1

νk,+
> 0 and b′) The matrixM =

(
−1 −1
v− ∆+

)
belongs to GL2m+1(Q).

Then we let τ : V → CP2 be the real smooth projective surface obtained by the following blow-up proce-
dure:

1) We first blow-up x with exceptional divisor C0 ' CP1. The resulting surface is isomorphic the Hirze-
bruch surface π1 : F1 → CP1 with C0 as the negative section of π1, the proper transform of C1 is a section of
π1 disjoint from C0, the proper transform of E0,0 is a real fiber of π1 while the proper transforms of the Ei,0
and Ei,0, i = 1, . . . ,m are pairs of non-real complex conjugate fibers of π1.

2) Then for every i = 1, . . . ,m, we perform a sequence of blow-ups of pairs of non-real complex conjugate
points, starting with the blow-up of the points pi = C1 ∩ Ei,0 and pi = C1 ∩ Ei,0 in such a way that the
following two conditions are satisfied: a) the inverse images of pi and pi are complex conjugate chains of CP1

each containing a unique (−1)-curve A(pi) and A(pi) respectively and b) the coefficients of A(pi) (resp. of
A(pi) in the total transform of C1 and Ei,0 (resp. Ei,0) are equal to νi,− and νi,+ respectively. We denote
by Ei,1, . . . , Ei,ri−1, Ei,ri = A(pi) and Ei,1, . . . , Ei,ri−1, Ei,ri = A(pi) the corresponding exceptional divisors.

3) Finally, we perform a sequence of blow-ups starting with the blow-up of a real point p0 ∈ E0,0\(C0∪C1),
with exceptional divisor E0,1 ' CP1 and continuing with a sequence of r0 − 1 ≥ 0 blow-ups of real points
p0,i ∈ E0,i \ E0,i−1, i = 1, . . . , r0 − 1, with exceptional divisors E0,i+1. We let A(p0) = E0,r0 .

The union B of the proper transforms of C0,C1, and the divisors Ei,j and Ei,j , i = 0, . . . ,m, j = 0, . . . ri−1,
is a real subtree of the total transform B̃ of D by the so-constructed morphism τ : V → CP2. Condition a’)
guarantees by the same argument as in §4.1.1 that S = V \B is a real surface of Kodaira dimension 1. The
classes of the curves C0, Ei,j and Ei,j , i = 1, . . . ,m, j = 0, . . . ri−1, E0,0, C1 −E0,0, E0,i −E0,0, E0,i −E0,0,
i = 1, . . . ,m, form a basis of the free abelian group Z〈B〉 generated by the irreducible components of B while
Cl(V ) is freely generated by the classes of C0, Ei,j and Ei,j , i = 1, . . . ,m, j = 0, . . . ri−1, E0,0, A(p0), A(pi)
and A(pi), i = 1, . . . ,m . In these bases, the matrix of the homomorphism j∗ : Z〈B〉 → Cl(V ) induced by the
inclusion takes the form

M =

(
idn ∗
0 M

)
where n = 2(

∑m
i=0 ri−1 + 1). SinceM∈GL2m+1(Q) by hypothesis, we deduce from Theorem 6 a) that S is

Q-acyclic. But it is never Z-acyclic as νi,+ ≥ 2 for every i = 1, . . . ,m. On the other hand, the real locus of
B is nonempty and the induced homomorphism H2(j∗) : H2(G;Z〈B〉) → H2(G; Cl(V )) is an isomorphism,
implying that S(R) ≈ R2 by virtue of b) in Theorem 6.
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A(pn)A(p0)

C0

C1

E0,0

A(pn)

Figure 4.5. Dual graph of τ−1(D).

Proposition 18. Every real surface S as above is a Q-acyclic fake plane of Kodaira dimension 1, R-
biregularly birationally equivalent to C2.

Proof. It remains to show that S(R) is birationally diffeomorphic to R2. The real birational morphism
τ : V → CP2 factors through the real projective surface τ ′ : V ′ → CP2 obtained from CP2 by blowing-up x
with exceptional divisor C0 and then only performing the last sequence of blow-ups described in 3) above,
the one starting with the blow-up of a real point p0 ∈ E0,0 \ (C0 ∪ C1). Since the induced real birational
morphism β : V → V ′ consists of blow-ups of pairs of non-real complex conjugate points only, it restrict to
a birational diffeomorphism between the real loci of V and V ′ respectively, mapping S(R) diffeomorphically
onto the real loci of the surface S′ = V ′ \ B′ where B′ = C0 ∪ C1 ∪

⋃r0−1
j=0 E0,j . The surface obtained from

V ′ by first blowing-up the real point C1 ∩ E0,0 with exceptional divisor C and then contracting successively
the proper transforms of C0, E0,0, E0,1, . . . , E0,r0−1 is a Hirzebruch surface πn : Fn → CP1 for some n ≥ 0
in which the proper transforms of C1 and C are respectively a real fiber of πn and a real section of it, with
self-intersection r0. The so-constructed real birational map θ : V ′ 99K Fn induces an isomorphism between
the real loci of S′ and that of Fn \ (C ∪ C1), and the composition θ ◦ β |S : S → Fn \ (C ∪ C1) ' C2 is the
desired R-biregular birational isomorphism.

A(p1)A(p0)

C0

C1

E0,0
A(p1) E1,0

E1,0 E1,0

E1,2

E1,1

E1,2

E1,1

A(p0)

C0

C1

E0,0
E1,0

Figure 4.6. Dual graphs of τ−1(D) and τ ′−1(D) in the case m = 1, r1 = 3, (ν1,−, ν1,+) = (2, 3).

�

5. Fake planes of general type

By virtue of [22], the complement S of an irreducible rational cuspidal curve B ⊂ CP2 is a smooth affine
surface of general type as soon as B has a least three cusps. Such a surface S is Q-acyclic by virtue of
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Theorem 6 a), with H1(S;Z) ' Zd, where d ≥ 3 denotes the degree of B. If in addition B is a real curve
with non empty real locus, then Theorem 6 b) implies that S is a real plane if and only if d is odd. This
can be seen more directly as follows: when non empty, B(R) is homeomorphic to a simple closed curve in
RP2, whose homotopy class is either trivial if d is even or equal to a generator of π1(RP2) if d is odd. So
S(R) = RP2 \ B(R) is either diffeomorphic to the disjoint union of R2 with an open Möebius band in the
first case or to R2 in the second case.

In this section, we first present different examples of contractible fake planes constructed from arrangements
of lines and rational real cuspidal quartics in CP2 by the so-called cutting-cycle construction of tom Dieck
and Petrie [5]. Then we construct an infinite family of Z-acyclic fake planes of general type whose real loci
are all birationally diffeomorphic to R2.

5.1. Fake planes of general type obtained from rational real cuspidal quartic curves.

5.1.1. First construction. We consider again as in § 4.2.2 a real smooth rational quartic D1 ⊂ CP2 with a
unique cusp p1,0 of multiplicity 3 and a pair of real flexes q1,1 and q1,2 at which D1 and its tangent Tqi,1(D1)

intersect with multiplicity 3. We let τ1 : V1 → CP2 be the real projective surface obtained from CP2 by first
blowing-up the intersection point p1 of Tq1,1(D1) with D1 different from q1,1 with exceptional divisor F1,1,
then blowing-up the intersection point of F1,1 with the proper transform of D1 with exceptional divisor F1,2

and then blowing-up the intersection point of F1,2 with the proper transform of D1, with exceptional divisor
A(p1). The complement in V1 of B1 = D1 ∪ Tq1,1(D1)∪F1,1 ∪F1,2 is a smooth Z-acyclic real surface S1 with
S1(R) ≈ R2.

−3

Tq1,1(D1)

−2

F1,1

−2

−2

−1

−1
−4

−2

−2

−2

D1

−2

F1,2
−1

A(p1)

Figure 5.1. Dual graph of the total transform of B1∪A(p1) in a minimal real log-resolution
β1 : V ′1 → V1 of the pair (V1, B1).

Indeed, by construction,

τ∗1D1 = D1 + F1,1 + 2F1,2 + 3A(p1)

τ∗1Tq1,1(D1) = Tq1,1(D1) + F1,1 + F1,2 +A(p1)

so that using the relation τ∗1D1 ∼ 4τ∗1Tq1,1(D1) in Cl(V1), we obtain that in the bases of Z〈B1〉 and Cl(V1)
given by the classes of the real curves, Tq1,1(D1), F1,1, F1,2, D1 and Tq1,1(D1), F1,1, F1,2, A(p1) respectively,
the homomorphism j∗ : Z〈B1〉 → Cl(V1) induced by the inclusion B1 ↪→ V1 is represented by the matrix

M =


1 0 0 4
0 1 0 3
0 0 1 2
0 0 0 1

 ∈ GL4(Z).

So S1 is Z-acyclic by Theorem 6 a), and the same type of arguments as in § 4.2.1 implies that S1 is even
contractible. On the other hand, since τ1 : V1 → CP2 consists of blow-ups of real points only, H2(j∗) is
represented by the reduction modulo 2 of M , which is again invertible. Since B1(R) is nonempty, S1 is a real
plane by Theorem 6 b).
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5.1.2. Second construction. We let D2 ⊂ CP2 be a real rational ramphoid quartic, with a unique cusp p2,0
with multiplicity sequence (2, 2, 2) and three real flexes q2,1, q2,2, q2,3 at which D2 intersects its tangent
Tq2,i(D2) with multiplicity 3. We let τ2 : V2 → CP2 be the real birational morphism obtained by blowing-up
the intersection point p2 of D2 with Tq2,1(D2) distinct from q2,1, with exceptional divisor F2,1, then blowing-
up the intersection point of F2,1 with the proper transform of D2, with exceptional divisor F2,2 and then
blowing-up the intersection point of F2,2 with the proper transform of D2, with exceptional divisor A(p2).
We let S2 be the smooth real surface obtained as the complement of B2 = D2 ∪ Tq2,1(D2)∪F2,1 ∪F2,2 in V2.

−2

−4

D2

−1

A(p2)

−2

F2,2

−2

F2,1

−2

−1

−2

−3

Tq2,1(D2)

−3

−2

−2

−1

Figure 5.2. Dual graph of the total transform of B2∪A(p2) in a minimal real log-resolution
β2 : V ′2 → V2 of the pair (V2, B2).

The same computation as in § 5.1.1 shows that S2 is a contractible real plane.

5.1.3. Third construction. Here we start with a real rational bi-cuspidal quartic D3 ⊂ CP2, with two real
cusps p3,∞ and p3,0 with respective multiplicity sequences (2, 2) and (2) such that D3 intersects its tangent
Tp3,0(D3) with multiplicity 3 at p3,0. We let τ3 : V3 → CP2 be the smooth real projective surface obtained
from CP2 by first blowing-up by blowing-up the intersection point p3 of D3 with Tp3,0(D3) distinct from p3,0,
with exceptional divisor F3,1, then blowing-up the intersection point of F3,1 with the proper transform of D3,
with exceptional divisor F3,2 and then blowing-up the intersection point of F3,2 with the proper transform
of D3, with exceptional divisor A(p3). We let S3 be the smooth real surface obtained as the complement of
B3 = D3 ∪ Tp3,0(D3) ∪ F3,1 ∪ F3,2 in V3.

Similar arguments as in § 5.1.1 imply that S3 is a contractible real plane.

Proposition 19. The surfaces S1, S2 and S3 constructed in § 5.1.1, § 5.1.2 and § 5.1.3 above are pairwise
non isomorphic contractible fake planes of general type.

Proof. Letting βi : V ′i → Vi, i = 1, 2, 3, be the minimal real log-resolutions of the pair (Vi, Bi) and B′i =
β−1i (Bi), the pairs (V ′i , B

′
i) are real minimal SNC-completion of the Si. Note that every irreducible component

of B′i has self-intersection ≤ −1 and that every (−1)-curve in B′i intersect three other irreducible components
of B′i (see Figure 5.1, 5.2 and 5.3 above). It follows that every birational map ϕ : (V ′′, B′′) 99K (V ′i , B

′
i) from

another SNC-completion (V ′′, B′′) of Si restricting to an isomorphism between V ′′ \ B′′ and V ′i \ B′i is a
morphism. Now if Si was isomorphic to Sj for some j 6= i, then the birational map ϕ : (V ′j , B

′
j) 99K (V ′i , B

′
i)

extending an isomorphism Sj
∼→ Si would be an isomorphism mapping B′j isomorphically onto B′i. In

particular, the weighted dual graphs of B′j and B′i would be isomorphic, which is not the case. So S1, S2 and
S3 are pairwise non isomorphic. It remains to show that they are all of general type. Since C2 is the only
smooth Z-acyclic real plane and since there are no Z-acyclic real plane of Kodaira dimension 0, to show that
κ(Si) = 2, it is enough to check that Si is isomorphic neither to C2 nor to one of the surfaces described in
§ 4.1.1. If Si was isomorphic to C2, then we would have a morphism ϕ : (CP2, `)→ (V ′, B′), where ` ' CP1 is
a real line, restricting to an isomorphism between CP2 \ ` and Si, which is impossible as `2 > 0. Now suppose
that Si is isomorphic to a surface obtained by the blow-up procedure τ ′′ : V ′′ → CP2 described in § 4.1.1 and
let (V ′′, B′′) be the corresponding SNC-completion with boundary B′′ consisting of the proper transforms
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Figure 5.3. Dual graph of the total transform of B3∪A(p3) in a minimal real log-resolution
β3 : V ′3 → V3 of the pair (V3, B3).

of C0,C1, and the divisors Ei,j , i = 0, . . . , n, j = 0, . . . ri−1. By construction, all irreducible components
of B′′ have self-intersection ≤ −1 and B′′ contains at most three (−1)-curves: the proper transform of C0

and E0,0, and the proper transform of C1 if n = 2, each of them intersecting at least three other irreducible
components of B′′, except in the case where r0 = 1 . Since the birational map ϕ : (V ′′, B′′) 99K (V ′i , B

′
i)

induced by the isomorphism V ′′ \B′′ ' Si ' V ′ \B is a morphism, the structure of B′′ implies that ϕ is in
fact an isomorphism of pairs, except possibly when r0 = 1 where it can consists of the contraction of E0,0

followed by an isomorphism of pairs. In both cases, we reach a contradiction by comparing the weighted dual
graph of B′i and the one B′′ or its image by the contraction of E0,0 in the case where r0 = 1. So Si is a fake
plane of general type. �

Question 20. Is the real locus of S1, S2 and S3 birationally diffeomorphic to R2 ?

5.2. Z-acyclic fake planes of general type R-biregularly birationally equivalent to C2. The projec-
tive dual D ⊂ CP2 of the nodal cubic C with equation (x−y)(x2+y2)−xyz = 0 is a real rational quartic with
three ordinary cusps: a real one p0 corresponding to the real flex [1 : 1 : 0] of C and a pair of non-real complex
conjugate ones q and q corresponding to the pair of non-real conjugate flexes [i : 1 : 0] and [−i : 1 : 0] of C.
The tangent Tp0(D) of D at p0 intersects D with multiplicity 3 at p0 and transversally at another real point
p. Let (µ, ν) be a pair of positive integers such that 4ν − µ = ±1 and let τ : V → CP2 be the real birational
morphism obtained by first blowing-up p with exceptional divisor E1 and then blowing-up a sequence of real
points on the successive total transforms of E1 in such a way that the following two conditions are satisfied:
a) the inverse image of p is a chain of curves isomorphic to CP1 containing a unique (−1)-curve A(p) and b)
the coefficients of A(p) in the total transform of D and Tp0(D) are equal to µ and ν respectively. We denote
the corresponding exceptional divisors by E1, . . . , Er−1, Er = A(p) and we let B = D ∪ Tp0(D) ∪

⋃r−1
i=1 Ei.

The weighted dual graph of the total transform of B ∪ A(p) in a real minimal log-resolution β : V ′ → V of
the pair (V,B) is depicted in Figure 5.5.

Proposition 21. For every pair (µ, ν) such that 4ν − µ = ±1, the surface S(µ, ν) = V \ B is a Z-acyclic
fake plane of general type, whose real locus is birationally diffeomorphic to R2.

Proof. By construction τ∗D = D+µA(p)+R and τ∗Tp0(D) = Tp0(D)+νA(p)+R′ whereR andR′ are effective
divisors supported on the union of E1, . . . , Er−1. The free abelian group Z〈B〉 is generated by the classes of
Tp0(D), Ei, . . . , Er−1 and D−4Tp0(D) while Cl(V ) is freely generated by the classes of Tp0(D), E1, . . . , Er−1
and A(p). Since τ∗D ∼ 4τ∗Tp0(D) in Cl(V ), the matrix of the homomorphism j∗ : Z〈B〉 → Cl(V ) with
respect to these bases has the form

M =

(
idr+1 ∗

0 4ν − µ

)
∈Mr+2(Z).
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q qTp0(D)

p

p0

D

Figure 5.4. Real tricuspidal quartic

E1

D

Tp0(D)

E4

A(p)

E3

E2

Figure 5.5. Dual graph of the total transform of B ∪A(p) in a minimal real log-resolution
β : V ′ → V of the pair (V,B) in the case (µ, ν) = (7, 2).

The hypothesis that 4ν − µ = ±1 implies that M ∈ GLr+2(Z) so that S is Z-acyclic by Theorem 6 a).
Furthermore, H2(G,Z〈B〉) ' Z〈B〉 ⊗Z Z2, H2(G,Cl(V )) ' Cl(V ) ⊗Z Z2 as τ consists of the blow-ups of
real points only, and the homomorphism H2(j∗) is represented by the reduction modulo 2 of M . Since µ is
necessarily odd, H2(j∗) is thus an isomorphism and since B(R) is not empty, we conclude from Theorem 6
b) that S is a real plane. The fact that κ(S) = 2 follows from the same argument as in the proof of
Proposition 19 above using the structure of the weighted dual graph of the total transform of B in a real
minimal log-resolution β : V ′ → V of the pair (V,B) (see Figure 5.5).

It remains to show that S is R-biregularly birationally equivalent to C2. Let θ : CP2 99K CP2 be the real
birational involution consisting of the blow-up of the points p0, q and q followed by the contraction of the
proper transforms of the real line passing through q, q and of the pair of non-real conjugate lines passing
through p0, q and p0, q respectively. The images of D and Tp0(D) by θ are respectively a smooth conic D̃
and a real line T̃ intersecting D̃ at p and another real point, see Figure 5.6 below.

This map θ lifts to a real birational map θ̃ : V 99K Ṽ to the real projective surface τ̃ : Ṽ → CP2 obtained
from CP2 by performing the same sequence of blow-ups as for the construction of V over the point p ∈ D̃∩ T̃ .
Letting Ẽ1, . . . , Ẽr−1, Ẽr = Ã(p) be the corresponding exceptional divisors and B̃ = D̃ ∪ T̃ ∪

⋃r−1
i=1 Ẽi, θ̃

restricts to a diffeomorphism between the real loci of the surfaces S and S̃ = Ṽ \ B̃. Since (τ̃)∗D̃ ∼ 2(τ̃)∗T̃ in
Cl(Ṽ ), the homomorphism j̃∗ : Z〈B̃〉 → Cl(Ṽ ) induced by the inclusion B̃ ↪→ Ṽ is represented in appropriate
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Figure 5.6. Behavior of the tricupidal quartic under the standard Cremona transformation.

bases by a matrix of the form

M̃ =

(
idr+1 ∗

0 2ν − µ

)
.

Since 4ν − µ = ±1, M̃ ∈ GLr+2(Q) and we deduce from Theorem 6 a) and Remark 7 that S̃ is Q-acyclic,
with H1(S̃,Z) ' Z2ν±1. So S̃ is in particular affine, and since B̃ is a chain of rational curves, it follows from
[10] that it admits an A1-fibration over C. So κ(S̃) = −∞, and we then deduce from Theorem 9 that S̃
admits a real A1-fibration ρ̃ : S̃ → C. By [7, Proposition 2.15], ρ̃ has at most one degenerate fiber, and so, S̃
is R-biregularly birationally equivalent to C2 by virtue of Theorem 11. This completes the proof. �

Example 22. In the simplest case (µ, ν) = (3, 1), the surface S̃ is biregularly isomorphic to C2 and thus the
restriction of the map θ̃ : V 99K Ṽ to S realizes a R-biregular birational equivalence S 99K C2. Indeed, after
blowing-up the intersection point of the proper transforms of D̃ and T̃ by a log-resolution (see the right side
of Figure 5.7), with exceptional divisor G, the self-intersection of D̃ and T̃ becomes 0 and −1 respectively and
we can contract the chain T̃ ∪ Ẽ1 ∪ Ẽ2 to the effect that the self-intersection of G̃ becomes +2. By counting
the blow-ups and blow-downs in the construction, we infer that the Picard group of the resulting surface W
is isomorphic to Z2 and thus that W is isomorphic to one of the Hirzebruch surfaces CP1 × CP1 → CP1 or
F2 → CP1 with D̃ as a fiber and G̃ as a section.

−1

−1

+1

D̃

0

T̃

−1

Ã(p)

−2

Ẽ2

−2

Ẽ1

−5

D

−2

Tp0(D)

−1

A(p)

−2

E2

−2

E1

−3

−3

−2
−3

−2

−1

−2

Figure 5.7. Dual graphs of the total transforms of B∪A(p) and B̃∪Ã(p) in a log-resolution
of the pairs (V,B) and (Ṽ , B̃) respectively for (µ, ν) = (3, 1).
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