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Multilevel reduced-order computational model in
structural dynamics for the low- and medium-frequency
ranges
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aUniversi€ Paris-Est, Laboratoire Maglisation et Simulation Multi Echelle, MSME UMR 8208
CNRS, 5 bd Descartes, 77454 Marne-la-Vallee, France

Abstract

This work deals with the dynamical analysis of complex dtrtes composed of
several structural levels and characterized by the presgimtumerous local elas-
tic modes intertwined with global modes, in the medium-trexacy range as well
as in the low-frequency range. For constructing the ROM,nailfaof global-
displacements eigenvectors are calculated and are useddnsf the classical
elastic modes. Since it is also of importance to adapt theipaymodels (damp-
ing, level of uncertainties, etc) to each one of the stratlavels, a multilevel
ROM is proposed. A validation is performed for an automobgenplex struc-
ture.

Keywords: structural dynamics, multilevel reduced-order model, tiiavel
ROM, computational model, frequency range, medium-fraqueange

1. Introduction

In linear structural dynamics, the frequency responsetions (FRF) present
isolated peaks at the resonance frequencies of assoclated glastic modes, in
the low-frequency (LF) range. In contrast, the high-fraggye(HF) range presents
rather smooth FRF due to the presence of a high and constaidl rdensity.
For complex structures, a medium-frequency (MF) range aggpéor which the
modal density exhibits large variations over this band |1,The use of the first
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eigenmodes (or elastic modes, associated with the firshieegriencies) as a pro-
jection basis is particularly adapted to construct an ateureduced-order model
(ROM) of small dimension for analyzing the FRF in the lowefoency range

[3, 4,5, 6, 7]. Statistical energy methods (such as SEA [@&)generally used for

the high-frequency range analysis.

In this work, we are interested in complex structures chareaed by the pres-
ence of numerous local elastic modes intertwined with dleksstic modes, as
soon as the low-frequency range. For instance, this undeatlre is related to
(1) the presence of flexible parts attached to a stiff mastdrgnd (2) to the high
complexity of the structure analyzed. For such a case, iifual modal analysis
is used, the ROM that is constructed can be of a very largerdioe, due to the
unusual presence of the numerous local elastic modes wbaogs#itions are not
necessarily significant for prediction of FRFs. This casgpsécally encountered
in the low-frequency vibration of automobiles for whighto 10 global elastic
modes can be intertwined with abaut)00 local elastic modes in the frequency
band|0, 200] Hz, or for the dynamics of fuel assemblies in nuclear powants,
which can exhibit abou250 global elastic modes intertwined with abadiix 000
local elastic modes in the frequency bgnd400] Hz.

To circumvent this difficulty, one solution would consistiging a modal sort-
ing method. In general, such an approach is difficult to perfdue to the fact
that the elastic modes cannot always be defined either aalgiohs local elastic
modes, since they can be combinations of both global and thsplacements.
Moreover, the contribution of the local displacements bee@redominant in the
elastic modes when the frequency increases, which is suathhth global dis-
placements can not easily be detected among the elasticsmode

A second way would consist in using substructuring techesgf®, 10, 11,
12, 13, 6]. Such techniques firstly require to develop the maational model
in substructures, and secondly that the stiff master patitiaa flexible parts be
well identified. The specification of the work proposed is évelop a methodol-
ogy that is adapted to a unique computational model withsungusubstructuring
data. In addition, for the complex structures we are intetem, it can be difficult
to clearly separate the stiff part from the flexible parts.

In this paper, a new multilevel ROM is proposed for analyzimg dynamics
of complex structures in the low- and medium-frequency esngrhis work is a
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continuation of previous research [14, 15, 16]. The gersrategy proposed in
this work relies on the separation of the displacementscassal with each struc-
tural level (the different levels of stiffness of parts oétktructure). The global
level is the level associated with the stiff master partmfrevhich the displace-
ments are global. The local level is the level associatel thig flexible parts that
are attached to the master part, and from which the displactnean be local. In
the master part, the global displacements are predominaite the local contri-

butions are often negligible. The new multilevel ROM cousted allows for

() obtaining a small-dimension ROM for complex structuussng a global-
displacements basis,

(i) adapting the physical models (damping, level of uraties, etc.) to the
different levels of stiffness in the structure, using a weignultilevel ROM based
on the use of several vector bases whose displacementspomncto the several
distinct levels in the structure.

(i) The first objective of this paper is thus to construct a ROMmaller di-
mension than the ROM obtained using classical modal arsalysie strategy used
relies on the filtering of the local displacements so as taiakd ROM whose as-
sociated reduction basis may be constituted of globallatgnents vectors only.
This filtering is performed by solving the usual generalieggenvalue problem
corresponding to the homogeneous conservative systenn tdtich the kinetic
energy is approximated, while the elastic energy is keptteXde filtering of the
local displacements thus relies on the choice of approxandteduced kinemat-
ics) for the kinetic energy. The convergence of the globsipldcements ROM
constructed is then controlled through the vector subspsseciated with the re-
duced kinematics used.

(i) The second objective concerns the construction of isepd representa-
tions adapted to each type of structural level. It is basetthemise of the method-
ology dedicated to the construction of a global-displacei&OM. The choice
of vector subspace for the calculation of the kinetic enexliyws the displace-
ments associated with each structural level to be eithesidered as global or as
local displacements.

We present a general method for the construction of the gliibplacements
ROM. The construction of a polynomial approximation for tiaetic energy,
adapted to the filtering of the local displacements, is tedaiThe formulation of
the global-displacements ROM is given, and computatiosaets are addressed.
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Based on this method, the construction of the proposed lewdtiROM is pre-
sented, using several vector bases whose displacemergsmand to the several
distinct structural levels. The theoretical part is follEthby the presentation of an
application devoted to an automobile for which the compaomai model used has
been presented in [15].

2. Context and strategy

The reference computational dynamical model is introdutdtbwed by its
classical reduction on elastic modes, allowing both theméaork of the present
work and the notation used to be introduced. Then, the gesteasegy proposed
for constructing the global-displacements ROM is sumneakiz

Let 2 be the bounded domain of a tridimensional linear damped:tsiirel
that is fixed on a parf'y of its boundaryof?, such that there are no rigid body
displacements. The structure is subjected to externakloadhe other paif of
o). We are interested in predicting the FRFs of the structurthénfrequency
band of analysisB = [wmin, Wmax], With 0 < wmin. The reference computational
model is constructed using the finite element method [17, &) allw in B, the
complex vectofU(w) of them DOFs of the finite element model, corresponding to
the discretization of the displacement field, is the sotutbthe matrix equation

(—w® [M] + iw [D] + [K]) U(w) = F(w), 1)

where[M], [D], and[K] are the(m x m) positive-definite symmetric real mass,
damping, and stiffness matrices. The complex veEtar) is related to the dis-
cretization of the external forces. For the complex dynahstructures of interest,
the numbern of DOFs can be relatively high (a few millions or a dozen roiils).

The firstn eigenfrequencie§f, }, and the associated elastic modes, },, in
R™ are obtained by solving the generalized eigenvalue problem

K] o = A [M] ¢, , (2)

where the positive eigenvalu¢s,}, are such thab < \; < ... < A, from
which the eigenfrequenciég, } . are given byf,, = v/\./27. Let[®] = [¢; ... ¢,]
be the(m x n) real matrix such thgid]” [K] [®] = [A] and[®]" [M] [®] = [I..],
with [A] the diagonal matrix of the first eigenvalues. The classical modal anal-



ysis method consists in writing, for all in B and withn « m,
U(w) =~ UM (W) = ) da(w) @o = [P]AWw), (3)
a=1

in which then-dimensional complex vectay(w) is a vector of generalized coor-
dinates. The generalized damping mafflX| is such tha{D] = [®]" [D] [®].
Introducing the generalized forcg(w) = [®]"F(w), the classical ROM associ-
ated with Eq. (3) is written as

(—w*[L] +iw[D] + [A]) q(w) = F(w). (4)

For the case of a structure that exhibits numerous locatiela®des, the ROM
proposed is constructed by using a basis of a global-digpiaats space, instead
of using all the elastic modes that are presentin frequeangB. Let S, be the
global-displacements space spanned by some eigenvégtoys of the following
generalized eigenvalue problem,

(K] 9o = 00 [Ma,] ¢, , (5)

corresponding to the homogenous conservative system fahwhe kinetic en-
ergy is approximated while the elastic energy is kept exacEq. (5),0, is the
positive eigenvalue associated wigh, and[M 4, | is the modified mass matrix
that depends on the approximation subspdgeassociated with a choice of re-
duced kinematics for the kinetic energy. In previous woré][the domain of
the structure is partitioned int®&/, subdomains§,,...,Qy,, and the reduced
kinematics is constructed in choosing the displacemernt &gla constant in each
subdomain. In such a case, oBly; global eigenvectord,, }., associated with
finite eigenvalues{c, }., can be obtained because there are 8Ny generalized
DOFs constituting the reduced kinematics for the mass m@tiranslations per
subdomain). The characteristic dimension of the subdasredlows for control-
ling the level of filtering of local displacements. In thisseafor the continuous
formulation, a projection operataf of the displacement field onto the subspace
of constant functions by subdomain is introduced, such toaall x in €2,

{h"(u)} (X) = Z 1o, (X)mi J p(Xu(x)dx’, (6)
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in which1q,(x) = 1if x € Q; and is zero otherwise, where; = SQj p(X)dx is

the mass of subdomain;, and wherep is the mass density. The finite element
discretizatior] H"] of A" is used for obtaining the reduced-kinematics mass matrix
[My,] = [H"]" [M] [H"]. In this paper, the theoretical framework is extended to
the use of any reduced kinematics for the kinetic energy.

It should be noted that the approximate model for the kinetiergy, repre-
sented by matrixM 4, |, is introduced for the sole purpose of the construction of
subspace,,,. The ROM will be obtained by projecting the computationatalo
defined by Eg. (1) onto this subspace.

3. Construction of the reduced-kinematics mass matrix

In this section, a general framework is provided in order dostruct the
reduced-kinematics mass matfidl 4,] in Eq. (5). As we have explained, the
reduced kinematics defined bjj, is introduced in order to be able to remove the
contributions of the local displacements, that is to saylterfng the local dis-
placements.

Let A denote then-dimensional real vector space equipped with the inner-
product< x, y >, = y* [M]x. SpaceA, is a vector subspace of, for which
dimension is denoted/;, < m. It should be noted thaV, can be chosen greater
thann. Let[B] be an(m x N,) real matrix whose columns constitute an orthonor-
mal vector basis af4,, with respect to the inner-product &f, and which is then
such that

[B]" [M][B] = [In,]. (7)

It should be noted thatl, is introduced for constructing matri/ 4, | and con-
sequently, has nothing to do witf,,,. In the following, we present the details
concerning the construction of the reduced kinematicsfekinetic energy.

3.1. Orthogonal-projection matrix

Any vectorvin A, can be written ag = [ 3] ¢, in whichcis anN,-dimensional
real vector of generalized coordinates. For\iin 4, the associated kinetic en-
ergy (V) is given by E,,(V) = 1 VT [M]V and can be written a&},(V) =
sV |7, It should be noted thaf, (V) would represent the kinetic energy at time
t if V was the velocity at time. PresentlyV is a real vector independent of



and consequentlyz, (V) is not a kinetic energy. Nevertheless, in all this paper,
the quadratic forn¥, will be called the kinetic energy by abuse of terminology.
For anyV fixed in A, let V4s in R™ be the orthogonal projection &f onto A,.

Let [P4,] be the(m x m) real orthogonal-projection matrix frotd onto A, of
rank Ny, such thatv4s = [P ] V. Them-dimensional vecto¥-!s can be written
asVAs = [B] c®(V), in which c®®(V) is the unique solution of the optimization
problem,

c™(V) = arg min |V —[B]c|3, (8)
ceRNg

and which is given by
(V) = ([B]" [M][B])~' [B]" [M] V. 9)
Using Eq. (7), matrifP 4 ] is written as
[Pa,] = [B][B]" [M]. (10)

It can be seen that the construction proposed is such thagsidual kinetic en-
ergy Ey.(V) — Ex(VA9) = E(V — VA9) is minimum.

3.2. Reduced-kinematics mass matrix

Definition. For all V in A, we haveV4s = [P, ]V, for which the associated
kinetic energy),(V4) is thus given byk, (VAs) = L vAs™ [M] VA, which can
be rewritten as

(V) = V7 M)V, (11)

in which [M_y, | is the mass matrix, which is constructed with the kinematis
fined by spaced,, and which is written as

[Ma,] = [Pa,]” [M] [P, ] (12)

Positiveness and null spac&ince matrix M| is positive definite, from Eq. (12)
it can be deduced that the null spacghdf,, | is equal to the null space ¢P 4, |,
which is not reduced t¢0}, and that matriM 4, | is positive semidefinite.

Mass conservationLet m' be the positive number such that” = 3 17 [M] 1,
in which them-dimensional vectod is constituted of ones for the translation



DOFs and of zeros for the rotation DOFs (if there exist in tbenputational
model). Quantitym™ represents approximately the mass of the structure (the
mass located on the fixed boundary conditions is not takendotount). If1
belongs ta4, (thus[P4,] 1 = 1), then the mass:'y, = 117 [M4,] 1is such that
miy, = m', which means that the mass is conserved in the kinematicstied.

Matrix construction.Using Egs. (7) and (10), Eq. (12) yields
[M,] = [M][B][B]" [M]. (13)

It should be noted that matr{®1 4, | is generally not sparse and consequently, re-
quires a high memory storage (which is also the case for x\dty, | ). Neverthe-
less, the explicit construction and storage of these neatnidgll not be necessary.

3.3. Construction of the reduced kinematics

The objective of this section is the construction of basisrixngB] of A,
subspace in which any vectercan be written ag = [B]c. In the work initial-
ized in [14] and applied in [15, 16], the construction of tleeluced kinematics
is based on a patrtitioning of domain into NV, subdomaing?,,...,Qy.. For
complex finite element models, such domain partitioningoisanstraightforward
task. In [15, 16], homogeneous partitionings of the finiengént mesh of au-
tomobiles were performed using an algorithm [15] based enR#&st Marching
Method [19, 20]. Nevertheless, the use of more accurateoappations for the
kinematics reduction allows for avoiding such a domainipaning.

In this work, we propose of polynomial approximation of degiV, over the
entire domain? of the structure. To do say, multivariate orthogonal poly-
nomials {p, }aww are used, where fop = 1,..., N, multi-index o™ be-
longs to some sey, that will be defined after. Denoting a¥; the number
of free nodes of the finite element model, the approximatplaiement¢ of
nodev € {1, ..., N} following directiond is written as

V= Y Paw(Xy)cl, (14)

a(H)E]CNd

in which {cﬁ}# are the polynomials coefficients and whete= (z,, y,, z,) is the
position vector of node at which the polynomials are evaluated. In matrix form,



the N; equations associated with Eq. (14) can be rewritten as
vl = [P]c?, (15)

in which v¢ is the N;-dimensional real vector of the approximate displacements
{vd}, following directiond and wheree? is the N ,-dimensional real vector of co-
efficients{c!},. The (N, x N,) real matrix[P] is constituted of theV; values

of each of theV,, polynomials{p, .}, atthe mesh nodes. Basis matjx] of
subspaced,;, which is such that = [ B] ¢, is then assembled usif@]. It should

be noted that only th8 translational directions are considered for constructing
the reduced kinematics of the displacements, which is useddnstructing the
approximation of the kinetic energy. We thus havg = 3N,. This approxima-
tion of the kinetic energy is only used for constructing teéuced-order basis that
exhibits both translation and rotation DOFs. Therefore,global-displacements
ROM is obtained by projection of the reference computatiomadel using this
basis, and consequently, the translations and the rosaéiankept in this projec-
tion, in particular for the mass matrix.

Let Ky, be the set of théV,, vectorsa. = (v, a2, av3) such that, for fixedy
in {0,..., Ny}, as belongs to{0, . . ., ; }, and for so giveny; andas, a3 belongs
to {0, ..., as}. It can be deduced thaf, = (N; + 1)(Ng + 2)(Ng + 3)/6. Using
the same notation as fdp,u» }ow, the values of the multivariate monomials
{maw taw atthe mesh nodes can be written as

a]—asg

M (Xy) = 2702 27 208 . (16)

Similarly to[P], let[M] be the(N; x N,,) real matrix that is constituted of thé;
values of each of th&/,, monomials{m. } atthe mesh nodes. Then, matrix
[P] is constructed as an orthonormalizatio.®f]. To do so, the QR algorithm is
used. In order to satisfy Eqg. (7), the orthonormalizatiomasormed with respect
to the inner-product afd.

Remark.The proposed reduced kinematics, which is presently apphievhole
domain(2, can also be applied for each subdom&in..., 2y, of a partition
of Q. If such a partition is introduced, and if the deg®¥g of the polynomial
approximation is chosen, for each subdomain, as

(i) Ny = 0 (which corresponds to a constant displacement field by subdo
main), we then obtain the formulation introduced in [14] amduch a case, the
projector is defined by Eq. (6) for the continuous case.
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(i) Ny = 1, then the reduced kinematics is very close to a rigid bodyldc®-
ments field by subdomain as proposed in [23].

4. Global-displacements ROM

4.1. Effective construction of the ROM

We are interested in constructing a ROM for predicting thabgl displace-
ments of the stiff master part and not the local displacemeithe attached flex-
ible parts. In this method, the filtering of the local dis@atents is performed
using the approximation previously proposed for the madsixna

Let0 <o, < ... < 0y,, be the firsty, positive eigenvalues of the generalized
eigenvalue problem defined by Eq. (5). [&t] = [+, ..., | be the(m x n,)
real matrix of the associated eigenvectfys, },. Dimensionn, must be chosen
asny < N,. It should be noted that i, was chosen greater thavy,, then the
eigenvaluesy, ;1 < ... < 0,, would be infinite, because the rank [0 4, | is
Ny. Let Sy be the subspace &™ spanned by{v, ..., } and letSy,, be its

complexified space. Introducing the approximafi@fi+™s) of U such that
UNam) (w) = [W]r(w), (17)
the associated ROM is obtained by projecting Eq. (1) @jtg, which yields
(—w? [M] +iw [D] + [K7] ) r(w) = 9 (w), (18)

inwhichr (w) is ann,-dimensional complex vector of generalized coordinates an
where, for(4,A) € {(M,M), (D,D), (K,K)}, we have[A9] = [¥]" [A][¥],

and withf9(w) = [¥]" F(w). The homogeneous conservative system associated
with Eq. (18) yields the small-dimension generalized eugdure problem

[K9]ra = AL [MY] 1o, (19)

whose positive eigenvalu@s< \{ < ... < A3, Yield the eigenfrequencie§ =
VL2 Let[R] = [r;...r,,] be the(n, x n,) real matrix of the corresponding
eigenvectors, which is normalized such th&t" [M9] [R] = [1n,]. In EqQ. (18),
vectorr (w) is written asr (w) = [R] g?(w), in whichg?(w) is ann,-dimensional
complex vector of generalized coordinates. For.alh frequency bands, the
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global-displacements ROM is then written as

U(w) ~ UM () = [99] ¢ (w), (20)
(—w? [I,] + iw [DY] + [A?]) ¢ (w) = Fo(w) (21)

in which [®] = [V][R] = [¢] ... 3 | is the(m x n,) real matrix of then,
global modes{¢?}, , with [A9] = [®9]" [K] [®¢] and [D¢] = [®9]" [D] [®4].
Then, global modes constitute an orthogonal vector basiS,gf for the inner-
product< x, y >, = y7 [K] x.

4.2. Convergence analysis and computational aspects

In Eq. (20), the modal contributions of the local modes aretaken into ac-
count. The convergence analysisldf'+"s) (w) towardsU(w) in frequency band
B must be carried out with respect to degrégand, for fixedN;, with respect
to dimensionn,. In comparison to the usual modal analysis method, it should
be noted that the method converges towards the results gwére usual modal
analysis whenV, increases (see, for instance, Fig. 7). In additiondjf = A,
then the proposed theory coincides with the usual modayaisalAn example of
convergence analysis is given in Section 6.1.

Although matrix[M 4, ] is a full (m x m) real matrix, its assembly can be
avoided by using an iterative eigensolver (such as the swlesperation method
[3, 24]). Nevertheless, in the context of the use of comna¢moftwares, the
extraction of the stiffness matrif<| can be difficult or even impossible in the
case of a black-box software. We thus propose a method daati&ect methogl
for computing the global-displacements basis represdoyeadatrix [¥], which
consists in working into the subspas&g.; that is spanned by the first elastic
modes{e,, },. This method allows for avoiding both the assemblyNdf, | and
the extraction of K]. Concerning the computational complexity, the overalkcos
is dominated by the computation of theisual elastic modes. For constructing the
global-displacements ROM, the additional cost is neglail®©Once this ROM is
constructed, the gain is generally important becausemgasion is smaller than
the dimension of the ROM that would be required with the usoadlal analysis
(due to the presence of numerous local elastic modes). Uldhme noted that
the convergence analysis of the ROM with respec¥jas also carried out with
a reduced cost, since, as will be explained after, it inwlselving eigenvalue
problems that are of reduced dimension. Global eigenve¢tor },, are written
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as

Y, = [P] s, (22)

where then-dimensional real vectorss, }, are generalized coordinates, which
are the solutions of the reduced-order generalized eigigmypaoblem

[A]Sy = 00 [Ma,] S0 (23)

The (n x n) real mass matri}M 4, | is a positive-semidefinite symmetric matrix
of rankV,, such thatV, < N, andV, < n, and is defined by

[My,] = [®] [M4,] [®]. (24)

Let [S] = [s:...s,,] be the matrix of the eigenvectors associated with the first
ngy < N, finite positive eigenvalue < oy < ... < g,,. Accordingly to Eq. (22),
we have[V] = [®] [S]. Similarly to the direct approach presented before, global
modes{y?}, associated with the eigenfrequencig}, are written asp? =
[¥]r,, in which {r,}, are the solutions of the eigenvalue problem defined by
Eq. (19), for which the matricgg¢¢] and[M Y] are rewritten as

[K9] = [3], (25)
[Mo] = [S][S], (26)

in which [X] is the diagonal matrix of the first, eigenvaluego, },. Concerning
the construction of matrik)/ 4, |, it can be rewritten as

[Ma,] = [2][2]", (27)
in which the(n x N,) real matrix[ Z] is given by
(2] = [2]" [M][B]. (28)

For each degreéV, used in the convergence analysis, mafriX,, | has to be
constructed. Depending av, (which rapidly increases with respectig), i) the
matrix product betweefb]” [M] and[B] as well as ii) the QR decomposition for
the construction of B] can be computationally quite demanding. As the increase
of Ny only amounts to adding higher degree polynomials, we prepbat the
calculations mentioned in i) and ii) hereinbefore are dameegthis for the largest

12



degreeV, . This way, matriX{ 7] that is associated with a lower deg®¥g can be
obtained by extracting the corresponding first columns.

5. Multilevel ROM

In this section, a methodology is presented for constrgaimultilevel ROM,
using several vector bases whose displacements correptmeseveral distinct
structural levels. This methodology is based on the deveéys presented be-
fore, using several levels of filtering of the local displaents. The strategy
consists in splitting the admissible displacements spaicea direct sum of sub-
spaces. Each subspace is spanned by a family of modes wispt&céiments are
associated with a given structural level.

In general, the local displacements are associated wittatwims having a
more or less small wavelength, as encountered in the MF arlthH&s. However,
the paper concerns complex structures for which local degghents also appear
in the LF range. Furthermore, the MF and/or the HF rangesfter studied using
adapted physical models to each frequency band. For iresténs well known
that the small-wavelength local elastic modes are veryitbenso uncertainties,
while the global elastic modes are relatively more robust waspect to uncertain-
ties. For the complex structures that are considered ip#psr, it is assumed that
there is a mixing of the typical LF and HF behaviors in the LRg®, due to the
intertwining of the local displacements with the globalpdésements in the LF
range, which also occurs in the MF range [1]. It is thus berafaf being able,
not only to extract the global displacements from the locspldcements for the
construction of a small-dimension ROM, but also and moreegadly, to separate
all the scales of displacements (associated with eachtgtalitevel). The theory
for constructing the multilevel ROM will be exposed considg three scales of
displacements denoted As. M, andH.

e Forthe first scalef, the displacements are associated with global displace-
ments (as in LF) belonging to a subspace denotef by

e For the second scaléyt, the displacements are associated with local dis-
placements (as in MF) belonging to a subspace denotefi\py These
displacements constitute the first scale of the local dicgpteents.

e For the third scaleH, the displacements are associated with local displace-
ments (as in HF) belonging to a subspace denote8;hyThese displace-
ments constitute the second scale of the local displacament
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5.1. Formulation of a multilevel ROM

The formulation of the multilevel ROM proposed is partly edn the pro-
jection of the computational model onto subsp&cg;, whose construction has
been presented in Section 4. This first filtering of local Bispments allows
for obtaining a small-dimension representation for th@ldisements (belonging
to Sg0 @and given by Eqgs (20)) with a controlled accuracy. The sestep of
the proposed formulation consists in using several leveRtering of the lo-
cal displacements, in order to construct the LF-, MF-, andsd&le modal bases
(spanning subspaces:, Sy, and Sy of Sg0p). Since polynomial degreéd/,
can be chosen arbitrarily (or evedy, set asA, = A), the global-displacements
ROM is actually constructed upon the use of more or less Idisglacements.
Let A, be the vector subspace whose associated reduced kinemsadidapted
for representing the LF scale only and consequently, whactiains very few lo-
cal displacements. Similarly, led, be the vector subspace whose associated
reduced kinematics is adapted for representing the LF andgdafes only. Fig-
ure 1 illustrates the strategy, which consists in splitSagspaces,,, (obtained
using the reduced kinematics associated wAthinto subspaceS,, Sy, andSy,
which are non-overlapping, and which are obtained by meéhsmintermedi-
ate levels of filtering associated with, and.4,,. We now present an algebraic
construction of vector bases associated with these subspac

g Sglob

Figure 1: Scheme showing the overlap of approximation satep4,, Az, and. A (left) and
scheme representing subsp&ggr, = Sz U Sy U Sy suchthatSe N Sy n Sy = & (right).

5.1.1. LF-scale basis

We work within a subspacs,,;, of dimensionn,, associated with a global-
displacements ROM that has been constructed as preser@edtion 4 and whose
accuracy is adjusted to the required level through a coeverg analysis with
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respect to parameters, andn,. This ROM is represented by matrjd?] of
eigenvalues and by reduction bapig’]. The LF-scale eigenvectofsy=}, are
represented iy, by

Y5 = [99]sf, (29)

in which then,-dimensional real vectofs: }, are generalized coordinates, which
are the solutions of the small-dimension generalized &@jar problem

[Ag] Séz: = 05 [M.AL] S§ ) (30)

in which the(n, x n,) real mass matrixM 4, | is a positive-semidefinite symmet-
ric matrix which is written as

[Ma,] =[] [M4,][2]. (31)

The rank A of matrix [M 4, ] verifies the inequalitiesV, < N; and N, <
ng in which N, is the rank of matri{M.4,]. Let [S*] = [s{...s- | be the
(ny x ne) real matrix of the eigenvectors associated with the figstinite positive
eigenvalue$ < of < ... < o%,. The matrix of the LF-scale eigenvectdrg? }.,
is written as[U*] = [®9] [S*]. Then, LF-scale mode$y-}, are then defined

by
ot = [UF]r5, (32)

in which then-dimensional real vector&r~}, are the solutions of the small-
dimension generalized eigenvalue problem

[K5]rg = A5 [Me]rg (33)

in which [K*] and[M*] are positive-definite symmetria.. x n.) real matrices
that are such thdtik“] = [S£] and[M~] = [S£]" [S~], with [££] the diagonal
matrix of the firstn, eigenvalue§c:},. The generalized eigenvalue problem
defined by Eq. (33) admits, real eigenvalue < \f < ... < >\§£ from which
the eigenfrequencids’~}, associated with the LF-scale modest: },, are written
asff = \/AL/2r. Then, LF-scale modegp~}, constitute an orthogonal vector
basis (with respect tiK]) of S that is a subspace &.1,. As [V4] = [®9] [S*]
and considering Eq. (32), it can be seen that the generatizediinatesw=-},,
such thatps = [®I] w5 are given byw™ = [SZ]r5. Let[®4] = [of ... %, ]
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be the(m x n.) real matrix made up of the LF-scale modal basis. [lgt] =
[wi ...w% | be the(n, x n.) real matrix such that

[@°] = [®7] [W*]. (34)

These matrices will be used for constructing the MF- and Efdesbases and the
matrices of the multilevel ROM.

5.1.2. MF-scale basis

The MF-scale modegpy}ﬁ are constructed using approximation subspace
Axr Whose associated reduced kinematics allows for obtainigga repre-
sentation for the LF and MF scales of displacements. VecaibsgaceS,, =
spar{ 1!, ..., ¢3! }is constructed in order that it does not intersggt Sim-
ilarly to the construction of the LF-scale eigenvectorsspreed in Section 5.1.1,
the MF-scale eigenvecto(sb#}ﬁ are represented iy, by

Py =[085, (35)

in which then,-dimensional real vectorgs;'}; are the solutions of the small-
dimension generalized eigenvalue problem

[A] 5" = o [Ma,,] 5", (36)

inwhich[M4,,] is a positive-semidefinite symmetiig, x n,) real matrix which
is written as

(M) = [®9]" [M4,,] [29]. (37)

The rank\, of matrix [M 4,,] satisfies the inequalitie¥y; < Ny and ANy <
ng in which Ny, is the rank of matri{My,,]. Let[SM] = [s*...s}" ] be the
(ng x vpq) real matrix constituted of the eigenvectdss}; associated with the

first v, finite positive eigenvalued < o' < ... < o—ﬁ;‘A. The matrix{q,by}g of
the MF-scale eigenvectors is written as

(o] = [27] [$™]. (38)
Thev, MF-scale mode$y?'}; are then defined by

o = [T VA (39)
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in which {v;'}; are v,,-dimensional real vectors. In order th&f does not
intersectS;, the MF-scale modeéps'}; are constructed under the constraint
of being orthogonal t&, (with respect toK]), which means that for alf =
1,...,nxp (na Will be defined after), we have

[2°]" [K] ¢} = 0. (40)
From Egs. (39) and (40), it can be deduced that, fofaH 1, ..., ny,
[Culvs' =0, (41)

in which the(n, x vy real matrix[Ch] = [®£]" [K] [TM] can be rewritten,
using Egs. (34) and (38), as

[Cad = WA [A] [S™M]. (42)
The n, vectors{vy'}; satisfying Eq. (41) belong to the null space [61y/].
Let [Z ] be a(vpa x npy) real matrix made up of a vector basis of the null space
of [C'v¢]. Dimensionn, is thus given by
npm=vm—"ng , Npm SNy, (43)
and then , vectors{v;'} s are written as
vi' = [Zpml s, (44)
with rg‘/‘ ann,-dimensional real vector. Substituting Eg. (44) into tightihand
side of Eq. (39) and using Eq. (38) yiejel;' = [9] [SM][Zu] r4", which can
be rewritten as
p5' =[] [S7]rg", (45)
inwhich [SH1] = [SM][Zu] is a(n, x n) real matrix. Substituting this last rep-
resentation otog‘/‘ in the usual generalized eigenvalue problem defined by Eq. (2

yields the following small-dimension generalized eigdaggroblem

[E7 vyt = x5t Mgy (46)
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inwhich [K2'] and[M2"] are positive-definite symmetri@ . x n,,) real matri-
ces such thatk 1] = [S21]" [AY] [S21] and[M'] = [$21]" [S21]. This gener-
alized eigenvalue problem admits, positive eigenvalues < M < ... < )\nMM
from which the eigenfrequenciels’s'}; associated with the MF-scale modes

{p3'}s are given byfg" = |/A)/2r. Theny MF-scale modegy;'}s form

an orthogonal vector basis (with respecti]) of S, which is a subspace of
Seiob- Introducing the generalized coordinafes)'} s such thatp}! = [9] w!
and comparing with Eq. (45) yieldsy' = [S2']r{". Let[®M] = [ .. 2" ]
be the(m x n,) real matrix constituted of the MF-scale modal basis. [LEt"] =
[wi'...wa? ] be the(n, x n,,) real matrix such that

[o™] = [®7] [W]. (47)

These matrices will be used for constructing the HF-scaseskand the matrices
of the multilevel ROM.

5.1.3. HF-scale basis

Then,, HF-scale modeéy’'}, allow for obtaining the representation for the
remaining contribution of the displacements, which beftegS,,\(Sz U Sum)-
As ! belongs taS, s, it can be written as

ol = [ W (48)
in whichw’f is ann,-dimensional real vector. The dimensiog of vector sub-
spaceSy = spaf ¢, ..., @}t }is such that

Ny = Ng —Ng — N, (49)

and consequently;, > ny. Similarly to the construction introduced foty,,
subspacey, must not intersecs, U Sy, and consequentlyﬁ must satisfy, for
ally=1,... ny,

[@M]" [K] 2 = 0, (50)
in which the(m x n.aq) real matrix[®“*] is given (using block writing) as

[@“M] = [[@€] [@M1]], (51)
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with ngyp = ne + ny. From Egs. (34) and (47), and introducing the, x
nea) real matrix[WEM] = [ [W£] [W™M]] (block writing), matrix[®£M] that
is defined by Eq. (51) can be rewritten as

[@5H] = [@7] [WEM]. (52)

Substituting Eq. (48) into Eq. (50) yield®<M]" [K] [®9] wlt = 0. Substituting
Eq. (52) into this last equation and usifg?] = [®9]" [K] [®?] yield, for all
vy=1,...,n%,

[Cr]wif =0, (53)
in which the(nza x ny) real matrix|Cy | is written as
[Cr] = [WEMT [A7]. (54)

From Eq. (53), it can be deduced that lﬂnﬁ:vectors{wﬁ‘}7 must belong to the
null space of Cy . Let[Zy] be a(n, x ny) real matrix made up of a vector basis
of the null space ofC%,]. Then,, vectors{w’'}, are thus written as

W:[ = [Z'H] r:l ) (55)

in which {ri“‘}7 areny-dimensional real vectors. From Egs. (48) and (55), it can
be deduced that

oIt = [09] [Z] T (56)

Substituting Eq. (56) into Eq. (2) and left multiplying thesulting equation by
[Z;]" [®9]" yield the small-dimension generalized eigenvalue problem

[EZ]0% = MM (57)

inwhich [ K%] and[M}] are positive-definite symmetriay, x ny) real matrices
that are such thadtk %] = [Zx]" [AY] [Zy] and[M] = [Zx]" [Zx]. This gener-
alized eigenvalue problem admits, real eigenvalue8 < A\ < ... < A\’ from

which the eigenfrequencigg’ }, associated with the HF-scale modes’'}, are

written asf’* = , /A\7/2r. Theny HF-scale modeéy?f}, constitute an orthog-
onal vector basis (with respect [K]) of Sy, which is a subspace &, Let
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[@*] = []t... o} ] be the(m x ny) real matrix made up of the HF-scale modall
basis. Lef1V*] = [w}...wl | be the(n, x ny) real matrix such that

(7] = [®] [W7]. (58)
These matrices will be used for constructing the matriceak@multilevel ROM.

5.1.4. Construction of the multilevel ROM

By construction, subspacés, Sy, andSy with dimension,, n, andny
respectively, are orthogonal subspaces (with respégt fjoof spaceS,,1, that has
dimensiomy,. Sincen, = n;s + na + ny (see Eq. (49)), subspac8s, Sy, and
Sy, are such that

Seiob = S DS D Sy, (59)

in which® denotes the direct sum. For alin B, the approximatiofy ("<mvm#) (1)
€ Sgon, 0f U(w) (U(w) being the solution of Eq. (1)) is written as

Uremaoni) () = [OF] g5 (w) + [@M] gM(w) + [@7] 97 (w), (60)

where the complex vecto” (w), g™ (w), andg™(w) with dimensionn, na,
andny respectively, are associated with the LF-, MF-, and HFescalEqua-
tion (60) can be rewritten as

Dremaenin) () = [EMH] gEMH (1) | (61)

in which g“"*(w) = (g*(w), g™(w), g*(w) ) is ann,-dimensional complex
vector and wherfd“M*] = [ [®£] [®@M] [@*]]is a(mxn,) real matrix (defined
by a block writing). From Egs. (2) and (61), it can be dedudexd t

(—w?[M] +iw [D] + [K]) gMH(w) = FE (), (62)

inwhich F“M () = [@AMH]T F(w) and where, fof A, A) € {(M, M), (D, D),
(K,K)}, we have[A] = [@FMH]T [A] [@4M™]. It can be seen that matr{x]
can be rewritten (block writing) as

[AEL] [ALM] [AEH]

[A] = | [AME] [AMM] [AMH] ) (63)
[AHE] [AHM] [AHH]
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in which, forZ and.7 in {£, M, H}, [AZ7] = [®#%]" [A] [®7] is a(nz x ny) real
matrix. In the following, the normalization ¢f*] is chosen such thaf\/**] =
[1,,]. Consequently, matriki'] can be written as

[A] [0] [0]
[K]={[0] [AM [0]], (64)
[0] [0] [A%]

inwhich [A£], [AM], and[A7] are the diagonal matrices of the LF-, MF-, and HF-
scale eigenvaluef\5}., {\)'}s, and{\!‘},. For optimizing the computational
cost, matrice$M | and[ D] are rewritten using matricé&l’~|, [W*], and[W*].
From Egs. (34), (47), and (58), it can be deduced thatZ fand.7 in {£, M, H},
[MZ7] = [(WE]" [W7] and[DZ7] = [WZ]" [D9] [W7], in which [D9] has been
introduced in Eqg. (21).

Remark 1.For allw in B, Umzmmm) (1) coincides withU®™em9) (w). The role of
the multilevel representation (see Eq. (60)) lies in itdighio adapt the physical
models with respect to each type of coordinate&v), g™ (w), andg™(w). This

ROM allows a greater flexibility to be obtained regarding timeertainty mod-
eling (particularly when using the nonparametric prokatd approach [27] for
which the nominal reduced matrices are replaced by randoma®s) as well as
regarding the damping modeling.

Remark 2. The multilevel ROM has been constructed using an indire¢hote
which consists in working in subspacg.,. If [®7] is taken ag®] and[A9] as
[A] (which means tha$,., coincides withS,,s), then no approximation is intro-
duced in the multilevel ROM, in comparison to a classical ai@halysis.

In the next section, we apply the proposed method to an aldibenavhich is
a complex structure, in order to construct an adapted gidisalacements ROM,
which is then used for constructing a multilevel ROM.

6. Application to the computational model of an automobile

This complex structure is made up of a stiff master part orctvAexible parts
are attached, as it can be seen in Fig. 2 in which the graysityeis related to
the level of rigidity. It can be seen that there are numeraaghile parts spread
over the whole structure (not only well identified composenich as the roof or
the floor panels, but also erratically distributed flexibétp, see for instance the
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parts located at the front of the car). The presence of théfteparts induces
a high modal density. The computational model hgs= 243, 783 free nodes
andm = 1,462,698 DOFs. It contains various types of finite elements such
as volume, surface, beam, bar elements, and also rigid Hedyeats. We are
interested in predicting the FRFs of the stiff master parthie frequency band
B = 27x]0,500] rad/s. There are = 1,457 elastic mode$,, }. below600 Hz
and1, 048 elastic modes in frequency bati Forw in B, responsé)™ (w) is
computed by using the classical ROM given by Egs. (3) andl{4¢.large value of
dimensionn for the classical ROM is induced by the presence of numema |
elastic modes intertwined with the usual global elastic espdue to the numerous
flexible parts aforementioned. The first elastic maggewith f; = 24Hz is a
local elastic mode while the third ong, with f; = 39Hz is a global elastic
mode (see Fig. 3). In general, each elastic mode cannot héfidd either as a
pure local elastic mode or as a pure global elastic mode. Amele of elastic
mode with mixed global and local displacements is showng¥iSuch a mixed
mode ¢, is constituted of a global deformation of the structure essbwith
local deformations of distinct structural levels (the rdbe flexible part in the left
back). Furthermore, as the frequency increases, the batitms of the global
displacements in the elastic modes are becoming less amgdeseptible. Most
of the mode shapes are dominated by large-amplitude losladiements that are
irregularly distributed over the structure, as it can bexdeemodeyp,, in Fig. 4.

It should be noted that Fig. 2 shows two complementary paiftsew of the
automobile in order to putinto evidence the stiff part stateFig. 3 illustrates the
key concept of local modes, as opposed to global modes, aatyfiRig. 4 illus-
trates the facts that the elastic modes are not either plaedy or purely global,
and that the local displacements become predominant irehfgéquencies.

Figure 2: Computational model, in which the gray intensityalated to the level of rigidity (the
darker is the stiffer)
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Figure 3: Elastic mode®,, fi = 24Hz (left) andes, f3 = 39Hz (right), in which the gray
intensity is related to the level of amplitude of the disglaents (the greater amplitude is the
lighter)
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Figure 4: Elastic modeg, g, fis = 72 Hz (left) ande, fzo0 = 262 Hz (right), in which the
gray intensity is related to the level of amplitude of theptheements (the greater amplitude is the
lighter)

6.1. Implementation of the global-displacements ROM

The indirect method proposed in Section 4.2 is used for cocishg a global-
displacements ROM of small dimension, given by Eqgs. (20) @49l Subspace
A, that is spanned by multivariate polynomials as presenteSection 3.3, is
constructed for an approximation deg®g ranging from0 to 40. For instance,
the calculated rank of matripd/ 4, ] is Ny = 168 for Ny = 5, Ny = 855 for N; =
10, andN, = n = 1,457 for both N; = 15 and N; = 20. In general, fotV, = n,
it would be possible to compute global eigenvector$y,, } ., that would belong
(by construction) to subspac®,.; of dimensionn, and which would constitute
a vector basis 08..s. In this case, the: global modes{,?}, constructed via
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the n solutions{r,}, of Eq. (19) would coincide with the elastic modgg,, }.
and consequently, no gain would be obtained with respedtéalimension of
the ROM. The modal density of the global modes thus stronglyedds on the
truncation ordern,,. In this application, the truncation rule adopted is toggt
as the smallest value such tht > 525Hz. ForN, = 5,10, 15, 20, the modal
density (averaged number of modes per Hz) is plotted in Fupcﬁls compared
to the modal density of the elastic modes. It can be seenhbkanbdal density
increases accordingly to the polynomial degree chosemédduced kinematics
associated witbd,.

Modal density (Hz'1)
OO - n w -~ o

Frequency (Hz)

Figure 5: Modal densities: elastic modes (thick black sbtid); global modes with:V; = 20
(thin black solid line),Ng; = 15 (thin black dashed line)N; = 10 (thin gray solid line), and
Ng4 = 5 (thin gray dashed line).

For N; = 5, the constructed global modes do not cover the whole fre;yuen
band of analysis. The dimensiong of the global-displacements ROM aug =
168, 355,479, 624 for Ny = 5,10, 15, 20 respectively.

A convergence analysis with respect A andn, has been carried out in
studying the FRFs. The inputs are unit forces applied inithend z- directions
and unit moments applied around the and y- axes, relative to the excitation
nodes excl and exc2 (see Fig. 6). Barranging from0 to 40, and for allw in
B, respons@(NVem9) (1) is computed using the global-displacements ROM given
by Egs. (20) and (21). The outputs are the norm of the dispiaoés vector of
26 observations nodes denoted B§L j5(w) = 2010g10 HUobSH for the converged

reference and by §5sig(w; ny) = 201logy, HUobg 2 | for the computational ROM,

among which the FRFs are shown in Fig. 8 to Fig. 11 for the fdageovation
nodes obs, ob2, obs3, and obg whose locations are depicted in Fig. 6.
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Figure 6: Excitation nodes ex@and ex@, and observation nodes dh®b<, obs3, and obg.

For the convergence analysis, the error functigg(n,) = >.p Cobsds(7g)/Tobs
is introduced in which the erratsqs(n,) is such that

re: 2
SB (PobgdB(W) - Fgl?stB(w§ ng) ) dw
§s (Tilp(w))” dw

which depends on dimensior), obtained viaV, (following the adopted trunca-
tion rule). In Figs. 7 to 11, it can be seen that the error tednd$ecrease with

Eapsas(Tg) = ; (65)

the increase ofV,;. However, the decrease of the error is accompanied with an

increase of dimension,. Consequently, the degréé,; as well as the resulting
dimensionn, must be adjusted regarding the engineering targets. It eaeén
that the differences between the reference and the appatethiRFs are larger
in higher frequencies, while it is known that the experina¢wmariabilities are also
generally larger in higher frequencies.

0.25
0.2

0.15

Error €

0.1r

0.05¢

0 200 400 600 800 1000
Dimension ng

Figure 7: Errorgg with respect to dimension,
For the complex structure studied, it can be seen in Figs.Il tthat a reason-
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able accuracy is obtained for a ROM dimension of aki@t, which has to be
compared to the reference-ROM dimension of abloG0. With respect to the
residual errors induced by the use of the proposed gloisalatiements ROM of
reasonable small dimension, it should be noted that therignpstal variabilities
of the FRFs of such a complex structure [25, 26] are more itapbthan these
residual errors.

obsl (Nd =5, n,= 168) obsl (Nd =10, ng =355)
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Figure 8: For obs, logarithm of the norm of the displacements (m) versus feeqy (Hz): refer-

enceIUégg1 (black solid line), ROM response{ﬁlggs‘{’"y)}Nd:5710715720 (gray dashed line).
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obs2 (Nd =5, ng =168) obs2 (Nd =10, ng =355)
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Figure 9: For ob3, logarithm of the norm of the displacements (m) versus feeqy (Hz): refer-
enceUg’gé (black solid line), ROM responsé@éﬁé’"g)}Nd=5710715720 (gray dashed line).
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Figure 10: For ob% logarithm of the norm of the displacements (m) versus feagy (Hz):

referencd]ffgé3 (black solid line), ROM responséﬁlggé’"g)}Nd=5710715720 (gray dashed line).
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obs4 (Nd =5, ng =168) obs4 (Nd =10, ng =355)
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Figure 11: For obg logarithm of the norm of the displacements (m) versus feeqy (Hz):

referenchf)’gg4 (black solid line), ROM responsé@éﬁs‘i’"g)}Nd=5710715720 (gray dashed line).

6.2. Implementation of a multilevel ROM
6.2.1. Multilevel ROM irSy1,

Based on the previous convergence analySjs= 20 along withn, = 624
yield a subspacs,,,;, associated with a sufficiently accurate global-displaceme
ROM. In light of the previous results, the methodology presd in Section 5 is
applied using subspacgls: and A, for which N; = 5 andN,; = 15, respectively.
As an example, withV, = 5, the sharp peaks are well represented in the low
frequencies. A more accurate choice of subspaces that deétevels of filtering
would be required if a multilevel physical modeling was aatuced within the
multilevel ROM (by example, for damping and uncertaintids) such a case, a
sensitivity analysis would allow for better choosing thges.

LF-scale basis.The calculated rank of matri}\/4.] is N = 168. The trunca-
tion ordern, is taken as the value of, obtained in the application of Section 6.1
with N; = 5. Hence, thex; = 168 eigenvectorgs-}, are obtained by solving
Eq. (30). Then, LF-scale mode$p*},, are then computed following the method
proposed.

MF-scale basis.Similarly to the LF-scale basis, the calculated rank of matr
[My,,] is Ny = 624 (which corresponds to the value of). The truncation
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orderv,, is taken as the value af, obtained in the application of Section 6.1 with
Ny = 15. Hence, the first,, = 479 eigenvectors{sg/‘}ﬁ are computed by using
Eq. (36). Theny, = vy — ne = 311 MF-scale mode$cpf3‘4}5 are constructed
following the method, in whichZ ] is made up of the right eigenvectors of the
SVD of matrix[Cy(].

HF-scale basis.Sinceny = n, — ng — nu, the HF-scale basis is constituted of
ny = 145 modes{?f}, , which are computed following the method.

For each one of these three bases, the modal density iscplofeg. 12. It can
be seen that none of these bases covers all the frequencysbaddvertheless,
the union of these three bases spap, whose eigenfrequencies cover whole the
bandB. It should be noted that the modal density of each basis is'manr at the
frequency of interest (the maximum is abdgt Hz for the LF basis, abo@80
Hz for the MF basis, and abo860 Hz for the HF basis).
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Figure 12: Modal densities: elastic modes= 1,457 ; black solid line), LF-scale modesf =
168 ; gray dashed line), MF-scale modes,( = 311 ; gray solid line), and HF-scale modes
(ny = 145 ; light-gray dashed line).

Studying the contribution of each scale basis in the resporisorZ in {£, M, H},
the respons®&? (w) is calculated using only the IF-scale modes },, represented
by matrix [®Z] and the contributions of each scale basis is plotted in Bdol
observation nodes obsob2, obs3, and obs.
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Figure 13: For observation nodes ab®b<, obs3, and obg, graphs of the norm of the dis-

placements in log scale as a function of frequency usingstielanodes (black solid line), LF-

scale modes (gray dashed line), MF-scale modes (gray sod And HF-scale modes (light-gray
dashed line).

For each observation node, it can be seen that the amplitweés|of the FRFs
that correspond to the three bases are different. The LIE-besis allows the
resonance peaks in low frequencies to be well representethdgfmore, the level
of the FRFs is of the same order than the reference in a laryjefthe frequency
band. In contrast, the MF- and HF-scale bases yield FRFsevéuoplitudes are
much lower in low frequencies. Nevertheless, the FRFs pbtausing the MF-
scale basis show that the MF-scale modes contribute for porant part in the
response as soon as the middle of the frequency band. ForRfsedle modes,
the contributions are more important in the high part of tlegdiency band.

Studying the contribution of combinations of scale basehénresponsesThe
respons&*“M(w) is calculated using both the LF-scale mogie§ }.. and the MF-
scale mode$ga/ﬁ‘/‘}5. Figure 14 displays, for observation nodes lzh2, obs3,
and obg, the graphs related 6~ (w) (previously computed)J“M(w) (computed
as explained hereinbefore), abid’<"+"#) () (computed with Eq. (61)). It can
be seen that these FRFs are close to the FRFs relatéd't6+) (w) computed in

30



Section 6.1 with Eq. (20) for whicl,; = 5 (n, = 168), N; = 15 (n, = 479), and
Ny =20 (n, = 624).
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Figure 14: For observation nodes ab®b<, obs3, and obg, graphs of the norm of the dis-
placements in log scale as a function of frequency usingeléstic modes (black solid line); (2)
LF-scale modes (gray dashed line); (3) LF-scale modes andddfe modes (gray solid line); (4)
LF-scale modes, MF-scale modes, and HF-scale modes {Jiglytdashed line).

6.2.2. Multilevel ROM irS .

In this last part of the application, the construction of theltilevel ROM is
performed in taking ®] for [®9] and [A] for [A?] (Sgon coOiNcides WithS,s).
Consequently, neither approximation nor reduction am@thiced with respect to
the usual modal analysis, but only the displacements ofitendt structural lev-
els are separated. In this case, we haye- n = 1,457. Again, the methodology
presented in Section 5 is applied usidg and. Ay with N; = 5 andN,; = 15.

LF-scale basis.The calculated rank of the:, x n,) real matrix[M 4, ] isN; =
168. Similarly to the previous results, truncation oraeris 168, and the LF-scale
basis is constituted of ; = 168 LF-scale modegp~-} ..

MF-scale basis.The calculated rank of matrik\ 4,,] is Ny = 1,457 (which
corresponds to the value of). As in Section 6.2.1, truncation ordex is 479
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and the MF-scale basis is constitutedaf = v\ — n, = 311 MF-scale modes
{ef'}5.

HF-scale basis.Sinceny, = n, — n; — ny, the HF-scale basis is constituted of
ny = 978 modes{’t},.

For each one of these three bases, the modal density ispioteg. 15. Compar-
ing with the previous results of Section 6.1, there are nomeHF-scale modes
{c,o;“}7 in the high part of the frequency band.
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Figure 15: Modal densities: elastic modes=€ 1,457 ; black solid line), LF-scale modes ¢ =
168 ; gray dashed line), MF-scale modes,( = 311 ; gray solid line), and HF-scale modes
(ny = 978 ; light-gray dashed line).

For each one of observation nodes phbsb2, obs3, and obg, and forZ equal

to £, M, andH, Fig. 16 displays the graphs of the FRFs relate@t¢w). The
conclusions are the same as for Section 6.1, except for thecHleé basis that
contributes more in the high part of the frequency band. feéidw displays the
FRFs related t&/* (w), UM (w), andU™«mm:m1) (), The FRFs related to“ (w)
andU*M(w) are close to the FRFs relatedfi¢+"s) () computed in Section 6.1
with Eq. (20) for whichN; = 5 (n, = 168) and N; = 15 (n, = 479). On the
other hand, the respongg <"+ (1) is, as expected, exactly superimposed to
the reference.
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Figure 16: FRF of the norm of the displacements in log scalepbservation nodes obsob2,
obs3, and obg, using: the elastic modes (black solid line), the LF-scateles (gray dashed line),
the MF-scale modes (gray solid line), and the HF-scale m(ldgg-gray dashed line).
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Figure 17: FRF of the norm of the displacements in log scalepbservation nodes obsob2,
obs3, and obg, using: (1) the elastic modes (black solid line); (2) theddale modes (gray dashed
line); (3) the LF-scale modes and the MF-scale modes (griy lsme); (4) the LF-scale modes,
the MF-scale modes, and the HF-scale modes (light-grayeddste).
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7. Conclusions

A general method has been presented for constructing a-gimainsion ROM
of global displacements, which is adapted for analyzingiyreamical responses
of the stiff master part of complex structures exhibitingnaous local elastic
modes in the whole frequency band (including the LF band)tdube presence
of numerous flexible parts and to the structural compleXitye dimension of the
ROM constructed is smaller than the dimension of the clas&©M that would
be constructed using the usual modal analysis. The metlopbped has been es-
pecially developed to be non-intrusive with respect to thmercial softwares,
and induces a negligible additional numerical cost witlpees to the usual modal
analysis. The method has been applied to the complex cotigqnabmodel of an
automobile, for which the reduction factor of the ROM dimenss about3. A
detailed convergence analysis of the global-displaces®®iM has been carried
out and validates the proposed method dedicated to theraotish of a small-
dimension ROM whose accuracy is controlled.

Furthermore, a general method has been proposed for cotsgyia multi-
level representation of the solution space, which is exyaeéss a direct sum of
constructed subspaces (that are associated with thedlistinctural levels). The
purpose of the multilevel ROM is to allow the implementatadrseparated phys-
ical modelings depending on the family of modes. In this radtlihese families
of modes are constructed in projecting the physical contjputal model onto
the adjusted global-displacements subspace of reduceehdion, such that the
computational cost allocated to their construction is igggle.
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