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Abstract

This work deals with the dynamical analysis of complex structures composed of
several structural levels and characterized by the presence of numerous local elas-
tic modes intertwined with global modes, in the medium-frequency range as well
as in the low-frequency range. For constructing the ROM, a family of global-
displacements eigenvectors are calculated and are used instead of the classical
elastic modes. Since it is also of importance to adapt the physical models (damp-
ing, level of uncertainties, etc) to each one of the structural levels, a multilevel
ROM is proposed. A validation is performed for an automobilecomplex struc-
ture.

Keywords: structural dynamics, multilevel reduced-order model, multilevel
ROM, computational model, frequency range, medium-frequency range

1. Introduction

In linear structural dynamics, the frequency response functions (FRF) present
isolated peaks at the resonance frequencies of associated global elastic modes, in
the low-frequency (LF) range. In contrast, the high-frequency (HF) range presents
rather smooth FRF due to the presence of a high and constant modal density.
For complex structures, a medium-frequency (MF) range appears, for which the
modal density exhibits large variations over this band [1, 2]. The use of the first
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eigenmodes (or elastic modes, associated with the first eigenfrequencies) as a pro-
jection basis is particularly adapted to construct an accurate reduced-order model
(ROM) of small dimension for analyzing the FRF in the low-frequency range
[3, 4, 5, 6, 7]. Statistical energy methods (such as SEA [8]) are generally used for
the high-frequency range analysis.

In this work, we are interested in complex structures characterized by the pres-
ence of numerous local elastic modes intertwined with global elastic modes, as
soon as the low-frequency range. For instance, this unusualfeature is related to
(1) the presence of flexible parts attached to a stiff master part and (2) to the high
complexity of the structure analyzed. For such a case, if theusual modal analysis
is used, the ROM that is constructed can be of a very large dimension, due to the
unusual presence of the numerous local elastic modes whose contributions are not
necessarily significant for prediction of FRFs. This case istypically encountered
in the low-frequency vibration of automobiles for which5 to 10 global elastic
modes can be intertwined with about1, 000 local elastic modes in the frequency
bandr0, 200s Hz, or for the dynamics of fuel assemblies in nuclear power plants,
which can exhibit about250 global elastic modes intertwined with about50, 000

local elastic modes in the frequency bandr0, 400s Hz.

To circumvent this difficulty, one solution would consist inusing a modal sort-
ing method. In general, such an approach is difficult to perform due to the fact
that the elastic modes cannot always be defined either as global or as local elastic
modes, since they can be combinations of both global and local displacements.
Moreover, the contribution of the local displacements become predominant in the
elastic modes when the frequency increases, which is such that the global dis-
placements can not easily be detected among the elastic modes.

A second way would consist in using substructuring techniques [9, 10, 11,
12, 13, 6]. Such techniques firstly require to develop the computational model
in substructures, and secondly that the stiff master part and the flexible parts be
well identified. The specification of the work proposed is to develop a methodol-
ogy that is adapted to a unique computational model without using substructuring
data. In addition, for the complex structures we are interested in, it can be difficult
to clearly separate the stiff part from the flexible parts.

In this paper, a new multilevel ROM is proposed for analyzingthe dynamics
of complex structures in the low- and medium-frequency ranges. This work is a
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continuation of previous research [14, 15, 16]. The generalstrategy proposed in
this work relies on the separation of the displacements associated with each struc-
tural level (the different levels of stiffness of parts of the structure). The global
level is the level associated with the stiff master part, from which the displace-
ments are global. The local level is the level associated with the flexible parts that
are attached to the master part, and from which the displacements can be local. In
the master part, the global displacements are predominant while the local contri-
butions are often negligible. The new multilevel ROM constructed allows for

(i) obtaining a small-dimension ROM for complex structuresusing a global-
displacements basis,

(ii) adapting the physical models (damping, level of uncertainties, etc.) to the
different levels of stiffness in the structure, using a unique multilevel ROM based
on the use of several vector bases whose displacements correspond to the several
distinct levels in the structure.

(i) The first objective of this paper is thus to construct a ROMof smaller di-
mension than the ROM obtained using classical modal analysis. The strategy used
relies on the filtering of the local displacements so as to obtain a ROM whose as-
sociated reduction basis may be constituted of global-displacements vectors only.
This filtering is performed by solving the usual generalizedeigenvalue problem
corresponding to the homogeneous conservative system, butin which the kinetic
energy is approximated, while the elastic energy is kept exact. The filtering of the
local displacements thus relies on the choice of approximation (reduced kinemat-
ics) for the kinetic energy. The convergence of the global-displacements ROM
constructed is then controlled through the vector subspaceassociated with the re-
duced kinematics used.

(ii) The second objective concerns the construction of separated representa-
tions adapted to each type of structural level. It is based onthe use of the method-
ology dedicated to the construction of a global-displacements ROM. The choice
of vector subspace for the calculation of the kinetic energyallows the displace-
ments associated with each structural level to be either considered as global or as
local displacements.

We present a general method for the construction of the global-displacements
ROM. The construction of a polynomial approximation for thekinetic energy,
adapted to the filtering of the local displacements, is detailed. The formulation of
the global-displacements ROM is given, and computational aspects are addressed.
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Based on this method, the construction of the proposed multilevel ROM is pre-
sented, using several vector bases whose displacements correspond to the several
distinct structural levels. The theoretical part is followed by the presentation of an
application devoted to an automobile for which the computational model used has
been presented in [15].

2. Context and strategy

The reference computational dynamical model is introduced, followed by its
classical reduction on elastic modes, allowing both the framework of the present
work and the notation used to be introduced. Then, the general strategy proposed
for constructing the global-displacements ROM is summarized.

Let Ω be the bounded domain of a tridimensional linear damped structure
that is fixed on a partΓ0 of its boundaryBΩ, such that there are no rigid body
displacements. The structure is subjected to external loads on the other partΓ of
BΩ. We are interested in predicting the FRFs of the structure inthe frequency
band of analysis,B “ rωmin, ωmaxs, with 0 ă ωmin. The reference computational
model is constructed using the finite element method [17, 18]. For allω in B, the
complex vectorUpωq of them DOFs of the finite element model, corresponding to
the discretization of the displacement field, is the solution of the matrix equation

p ´ω2 rMs ` iω rDs ` rKs qUpωq “ Fpωq , (1)

whererMs, rDs, andrKs are thepm ˆ mq positive-definite symmetric real mass,
damping, and stiffness matrices. The complex vectorFpωq is related to the dis-
cretization of the external forces. For the complex dynamical structures of interest,
the numberm of DOFs can be relatively high (a few millions or a dozen millions).

The firstn eigenfrequenciestfαuα and the associated elastic modestϕαuα in
Rm are obtained by solving the generalized eigenvalue problem,

rKsϕα “ λα rMsϕα , (2)

where the positive eigenvaluestλαuα are such that0 ă λ1 ď . . . ď λn, from
which the eigenfrequenciestfαuα are given byfα “

?
λα{2π. Let rΦs “ rϕ1 . . . ϕns

be thepmˆnq real matrix such thatrΦsT rKs rΦs “ rΛs andrΦsT rMs rΦs “ rIns,
with rΛs the diagonal matrix of the firstn eigenvalues. The classical modal anal-
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ysis method consists in writing, for allω in B and withn ! m,

Upωq » U
pnqpωq “

n
ÿ

α“1

qαpωqϕα “ rΦs qpωq , (3)

in which then-dimensional complex vectorqpωq is a vector of generalized coor-
dinates. The generalized damping matrixrDs is such thatrDs “ rΦsT rDs rΦs.
Introducing the generalized forceFpωq “ rΦsTFpωq, the classical ROM associ-
ated with Eq. (3) is written as

p ´ω2 rIns ` iω rDs ` rΛs q qpωq “ Fpωq . (4)

For the case of a structure that exhibits numerous local elastic modes, the ROM
proposed is constructed by using a basis of a global-displacements space, instead
of using all the elastic modes that are present in frequency bandB. LetSglob be the
global-displacements space spanned by some eigenvectorstψαuα of the following
generalized eigenvalue problem,

rKsψα “ σα rMAg
sψα , (5)

corresponding to the homogenous conservative system for which the kinetic en-
ergy is approximated while the elastic energy is kept exact.In Eq. (5),σα is the
positive eigenvalue associated withψα and rMAg

s is the modified mass matrix
that depends on the approximation subspaceAg associated with a choice of re-
duced kinematics for the kinetic energy. In previous work [14], the domain of
the structure is partitioned intoNs subdomains,Ω1, . . . ,ΩNs

, and the reduced
kinematics is constructed in choosing the displacement field as a constant in each
subdomain. In such a case, only3Ns global eigenvectors,tψαuα, associated with
finite eigenvalues,tσαuα, can be obtained because there are only3Ns generalized
DOFs constituting the reduced kinematics for the mass matrix (3 translations per
subdomain). The characteristic dimension of the subdomains allows for control-
ling the level of filtering of local displacements. In this case, for the continuous
formulation, a projection operatorhr of the displacement fieldu onto the subspace
of constant functions by subdomain is introduced, such that, for all x in Ω,

thrpuqu pxq “
Ns
ÿ

j“1

1Ωj
pxq 1

mj

ż

Ωj

ρpx1qupx1qdx1 , (6)
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in which 1Ωj
pxq “ 1 if x P Ωj and is zero otherwise, wheremj “

ş

Ωj
ρpxqdx is

the mass of subdomainΩj , and whereρ is the mass density. The finite element
discretizationrHrs of hr is used for obtaining the reduced-kinematics mass matrix
rMAg

s “ rHrsT rMs rHrs. In this paper, the theoretical framework is extended to
the use of any reduced kinematics for the kinetic energy.

It should be noted that the approximate model for the kineticenergy, repre-
sented by matrixrMAg

s, is introduced for the sole purpose of the construction of
subspaceSglob. The ROM will be obtained by projecting the computational model
defined by Eq. (1) onto this subspace.

3. Construction of the reduced-kinematics mass matrix

In this section, a general framework is provided in order to construct the
reduced-kinematics mass matrixrMAg

s in Eq. (5). As we have explained, the
reduced kinematics defined byAg is introduced in order to be able to remove the
contributions of the local displacements, that is to say in filtering the local dis-
placements.

Let A denote them-dimensional real vector space equipped with the inner-
productă x , y ą

M
“ yT rMs x. SpaceAg is a vector subspace ofA, for which

dimension is denotedNg ď m. It should be noted thatNg can be chosen greater
thann. Let rBs be anpmˆNgq real matrix whose columns constitute an orthonor-
mal vector basis ofAg, with respect to the inner-product ofA, and which is then
such that

rBsT rMs rBs “ rINg
s . (7)

It should be noted thatAg is introduced for constructing matrixrMAg
s and con-

sequently, has nothing to do withSglob. In the following, we present the details
concerning the construction of the reduced kinematics for the kinetic energy.

3.1. Orthogonal-projection matrix

Any vectorv inAg can be written asv “ rBs c, in whichc is anNg-dimensional
real vector of generalized coordinates. For allV in A, the associated kinetic en-
ergy EkpVq is given byEkpVq “ 1

2
VT rMsV and can be written asEkpVq “

1
2

}V }2
M

. It should be noted thatEkpVq would represent the kinetic energy at time
t if V was the velocity at timet. Presently,V is a real vector independent oft
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and consequently,EkpVq is not a kinetic energy. Nevertheless, in all this paper,
the quadratic formEk will be called the kinetic energy by abuse of terminology.
For anyV fixed inA, let VAg in Rm be the orthogonal projection ofV ontoAg.
Let rPAg

s be thepm ˆ mq real orthogonal-projection matrix fromA ontoAg, of
rankNg, such thatVAg “ rPAg

sV. Them-dimensional vectorVAg can be written
asVAg “ rBs coptpVq, in which coptpVq is the unique solution of the optimization
problem,

coptpVq “ arg min
c PR

Ng

}V ´ rBs c }2
M
, (8)

and which is given by

coptpVq “ p rBsT rMs rBs q´1 rBsT rMsV . (9)

Using Eq. (7), matrixrPAg
s is written as

rPAg
s “ rBs rBsT rMs . (10)

It can be seen that the construction proposed is such that theresidual kinetic en-
ergyEkpVq ´ EkpVAgq “ EkpV ´ VAgq is minimum.

3.2. Reduced-kinematics mass matrix

Definition. For all V in A, we haveVAg “ rPAg
sV, for which the associated

kinetic energyEkpVAgq is thus given byEkpVAgq “ 1
2
VAg

T rMsVAg , which can
be rewritten as

EkpVAgq “ 1

2
V

T rMAg
sV , (11)

in which rMAg
s is the mass matrix, which is constructed with the kinematicsde-

fined by spaceAg, and which is written as

rMAg
s “ rPAg

sT rMs rPAg
s . (12)

Positiveness and null space.Since matrixrMs is positive definite, from Eq. (12)
it can be deduced that the null space ofrMAg

s is equal to the null space ofrPAg
s,

which is not reduced tot0u, and that matrixrMAg
s is positive semidefinite.

Mass conservation.Let mtot be the positive number such thatmtot “ 1
3

1T rMs 1,
in which them-dimensional vector1 is constituted of ones for the translation
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DOFs and of zeros for the rotation DOFs (if there exist in the computational
model). Quantitymtot represents approximately the mass of the structure (the
mass located on the fixed boundary conditions is not taken into account). If1
belongs toAg (thusrPAg

s 1 “ 1), then the massmtot
Ag

“ 1
3

1T rMAg
s 1 is such that

mtot
Ag

“ mtot, which means that the mass is conserved in the kinematics reduction.

Matrix construction.Using Eqs. (7) and (10), Eq. (12) yields

rMAg
s “ rMs rBs rBsT rMs . (13)

It should be noted that matrixrMAg
s is generally not sparse and consequently, re-

quires a high memory storage (which is also the case for matrix rPAg
s ). Neverthe-

less, the explicit construction and storage of these matrices will not be necessary.

3.3. Construction of the reduced kinematics

The objective of this section is the construction of basis matrix rBs of Ag,
subspace in which any vectorv can be written asv “ rBs c. In the work initial-
ized in [14] and applied in [15, 16], the construction of the reduced kinematics
is based on a partitioning of domainΩ into Ns subdomainsΩ1, . . . ,ΩNs

. For
complex finite element models, such domain partitioning is not a straightforward
task. In [15, 16], homogeneous partitionings of the finite element mesh of au-
tomobiles were performed using an algorithm [15] based on the Fast Marching
Method [19, 20]. Nevertheless, the use of more accurate approximations for the
kinematics reduction allows for avoiding such a domain partitioning.

In this work, we propose of polynomial approximation of degreeNd over the
entire domainΩ of the structure. To do so,Nµ multivariate orthogonal poly-
nomials tp

α
pµqu

α
pµq are used, where forµ “ 1, . . . , Nµ multi-index αpµq be-

longs to some setKNd
that will be defined after. Denoting asNf the number

of free nodes of the finite element model, the approximate displacementvdν of
nodeν P t1, . . . , Nfu following directiond is written as

vdν “
ÿ

α
pµqPKNd

p
α

pµqpXνq cdµ , (14)

in whichtcdµuµ are the polynomials coefficients and whereXν “ pxν , yν , zνq is the
position vector of nodeν at which the polynomials are evaluated. In matrix form,
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theNf equations associated with Eq. (14) can be rewritten as

vd “ rPs cd , (15)

in which vd is theNf -dimensional real vector of the approximate displacements
tvdνuν following directiond and wherecd is theNµ-dimensional real vector of co-
efficientstcdµuµ. ThepNf ˆ Nµq real matrixrPs is constituted of theNf values
of each of theNµ polynomialstp

α
pµqu

α
pµq at the mesh nodes. Basis matrixrBs of

subspaceAg, which is such thatv “ rBs c, is then assembled usingrPs. It should
be noted that only the3 translational directions are considered for constructing
the reduced kinematics of the displacements, which is used for constructing the
approximation of the kinetic energy. We thus haveNg “ 3Nµ. This approxima-
tion of the kinetic energy is only used for constructing the reduced-order basis that
exhibits both translation and rotation DOFs. Therefore, the global-displacements
ROM is obtained by projection of the reference computational model using this
basis, and consequently, the translations and the rotations are kept in this projec-
tion, in particular for the mass matrix.

Let KNd
be the set of theNµ vectorsα “ pα1, α2, α3q such that, for fixedα1

in t0, . . . , Ndu, α2 belongs tot0, . . . , α1u, and for so givenα1 andα2, α3 belongs
to t0, . . . , α2u. It can be deduced thatNµ “ pNd ` 1qpNd ` 2qpNd ` 3q{6. Using
the same notation as fortp

α
pµqu

α
pµq , the values of the multivariate monomials

tm
α

pµqu
α

pµq at the mesh nodes can be written as

m
α

pµqpXνq “ xα1´α2

ν yα2´α3

ν zα3

ν . (16)

Similarly to rPs, let rMs be thepNf ˆNµq real matrix that is constituted of theNf

values of each of theNµ monomialstm
α

pµqu
α

pµq at the mesh nodes. Then, matrix
rPs is constructed as an orthonormalization ofrMs. To do so, the QR algorithm is
used. In order to satisfy Eq. (7), the orthonormalization isperformed with respect
to the inner-product ofA.

Remark.The proposed reduced kinematics, which is presently applied to whole
domainΩ, can also be applied for each subdomainΩ1, . . . ,ΩNs

of a partition
of Ω. If such a partition is introduced, and if the degreeNd of the polynomial
approximation is chosen, for each subdomain, as

(i) Nd “ 0 (which corresponds to a constant displacement field by subdo-
main), we then obtain the formulation introduced in [14] andin such a case, the
projector is defined by Eq. (6) for the continuous case.
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(ii) Nd “ 1, then the reduced kinematics is very close to a rigid body displace-
ments field by subdomain as proposed in [23].

4. Global-displacements ROM

4.1. Effective construction of the ROM

We are interested in constructing a ROM for predicting the global displace-
ments of the stiff master part and not the local displacements of the attached flex-
ible parts. In this method, the filtering of the local displacements is performed
using the approximation previously proposed for the mass matrix.

Let 0 ă σ1 ď . . . ď σng
be the firstng positive eigenvalues of the generalized

eigenvalue problem defined by Eq. (5). LetrΨs “ rψ1 . . .ψng
s be thepm ˆ ngq

real matrix of the associated eigenvectorstψαuα. Dimensionng must be chosen
asng ď Ng. It should be noted that ifng was chosen greater thanNg, then the
eigenvaluesσNg`1 ď . . . ď σng

would be infinite, because the rank ofrMAg
s is

Ng. Let Sglob be the subspace ofRm spanned bytψ1 . . .ψng
u and letSc

glob be its
complexified space. Introducing the approximationUpNd,ngq of U such that

U
pNd,ngqpωq “ rΨs rpωq , (17)

the associated ROM is obtained by projecting Eq. (1) ontoSc
glob, which yields

p ´ω2 rMgs ` iω rDgs ` rKgs q rpωq “ f gpωq , (18)

in whichrpωq is anng-dimensional complex vector of generalized coordinates and
where, forpA,Aq P tpM,Mq , pD,Dq , pK,Kqu, we haverAgs “ rΨsT rAs rΨs,
and withf gpωq “ rΨsT Fpωq. The homogeneous conservative system associated
with Eq. (18) yields the small-dimension generalized eigenvalue problem

rKgs rα “ λg
α rMgs rα , (19)

whose positive eigenvalues0 ă λ
g
1 ď . . . ď λg

ng
yield the eigenfrequenciesf g

α “?
λ
g
α{2π. Let rRs “ rr1 . . . rng

s be thepng ˆ ngq real matrix of the corresponding
eigenvectors, which is normalized such thatrRsT rMgs rRs “ rIng

s. In Eq. (18),
vectorrpωq is written asrpωq “ rRs qgpωq, in whichqgpωq is anng-dimensional
complex vector of generalized coordinates. For allω in frequency bandB, the
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global-displacements ROM is then written as

Upωq » U
pNd,ngqpωq “ rΦgs qgpωq, (20)

p ´ω2 rIng
s ` iω rDgs ` rΛgs q qgpωq “ F

gpωq , (21)

in which rΦgs “ rΨs rRs “ rϕg
1 . . . ϕg

ng
s is thepm ˆ ngq real matrix of theng

global modestϕg
αuα , with rΛgs “ rΦgsT rKs rΦgs and rDgs “ rΦgsT rDs rΦgs.

Theng global modes constitute an orthogonal vector basis ofSglob for the inner-
productă x , y ąK “ yT rKs x.

4.2. Convergence analysis and computational aspects

In Eq. (20), the modal contributions of the local modes are not taken into ac-
count. The convergence analysis ofUpNd,ngqpωq towardsUpωq in frequency band
B must be carried out with respect to degreeNd and, for fixedNd, with respect
to dimensionng. In comparison to the usual modal analysis method, it should
be noted that the method converges towards the results givenby the usual modal
analysis whenNd increases (see, for instance, Fig. 7). In addition, ifAg “ A,
then the proposed theory coincides with the usual modal analysis. An example of
convergence analysis is given in Section 6.1.

Although matrixrMAg
s is a full pm ˆ mq real matrix, its assembly can be

avoided by using an iterative eigensolver (such as the subspace iteration method
[3, 24]). Nevertheless, in the context of the use of commercial softwares, the
extraction of the stiffness matrixrKs can be difficult or even impossible in the
case of a black-box software. We thus propose a method (called indirect method)
for computing the global-displacements basis representedby matrix rΨs, which
consists in working into the subspaceSelas that is spanned by the firstn elastic
modestϕαuα. This method allows for avoiding both the assembly ofrMAg

s and
the extraction ofrKs. Concerning the computational complexity, the overall cost
is dominated by the computation of then usual elastic modes. For constructing the
global-displacements ROM, the additional cost is negligible. Once this ROM is
constructed, the gain is generally important because its dimension is smaller than
the dimension of the ROM that would be required with the usualmodal analysis
(due to the presence of numerous local elastic modes). It should be noted that
the convergence analysis of the ROM with respect toNd is also carried out with
a reduced cost, since, as will be explained after, it involves solving eigenvalue
problems that are of reduced dimension. Global eigenvectors tψαuα are written
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as

ψα “ rΦs sα, (22)

where then-dimensional real vectorstsαuα are generalized coordinates, which
are the solutions of the reduced-order generalized eigenvalue problem

rΛs sα “ σα rMAg
s sα . (23)

Thepn ˆ nq real mass matrixrMAg
s is a positive-semidefinite symmetric matrix

of rankNg, such thatNg ď Ng andNg ď n, and is defined by

rMAg
s “ rΦsT rMAg

s rΦs . (24)

Let rSs “ rs1 . . . sng
s be the matrix of the eigenvectors associated with the first

ng ď Ng finite positive eigenvalues0 ă σ1 ď . . . ď σng
. Accordingly to Eq. (22),

we haverΨs “ rΦs rSs. Similarly to the direct approach presented before, global
modestϕg

αuα associated with the eigenfrequenciestf g
αuα are written asϕg

α “
rΨs rα, in which trαuα are the solutions of the eigenvalue problem defined by
Eq. (19), for which the matricesrKgs andrMgs are rewritten as

rKgs “ rΣs , (25)

rMgs “ rSsT rSs , (26)

in which rΣs is the diagonal matrix of the firstng eigenvaluestσαuα. Concerning
the construction of matrixrMAg

s, it can be rewritten as

rMAg
s “ rZs rZsT , (27)

in which thepn ˆ Ngq real matrixrZs is given by

rZs “ rΦsT rMs rBs . (28)

For each degreeNd used in the convergence analysis, matrixrMAg
s has to be

constructed. Depending onNg (which rapidly increases with respect toNd), i) the
matrix product betweenrΦsT rMs andrBs as well as ii) the QR decomposition for
the construction ofrBs can be computationally quite demanding. As the increase
of Nd only amounts to adding higher degree polynomials, we propose that the
calculations mentioned in i) and ii) hereinbefore are done once, this for the largest
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degreeNd . This way, matrixrZs that is associated with a lower degreeNd can be
obtained by extracting the corresponding first columns.

5. Multilevel ROM

In this section, a methodology is presented for constructing a multilevel ROM,
using several vector bases whose displacements correspondto the several distinct
structural levels. This methodology is based on the developments presented be-
fore, using several levels of filtering of the local displacements. The strategy
consists in splitting the admissible displacements space into a direct sum of sub-
spaces. Each subspace is spanned by a family of modes whose displacements are
associated with a given structural level.

In general, the local displacements are associated with vibrations having a
more or less small wavelength, as encountered in the MF and HFbands. However,
the paper concerns complex structures for which local displacements also appear
in the LF range. Furthermore, the MF and/or the HF ranges are often studied using
adapted physical models to each frequency band. For instance, it is well known
that the small-wavelength local elastic modes are very sensitive to uncertainties,
while the global elastic modes are relatively more robust with respect to uncertain-
ties. For the complex structures that are considered in thispaper, it is assumed that
there is a mixing of the typical LF and HF behaviors in the LF range, due to the
intertwining of the local displacements with the global displacements in the LF
range, which also occurs in the MF range [1]. It is thus beneficial of being able,
not only to extract the global displacements from the local displacements for the
construction of a small-dimension ROM, but also and more generally, to separate
all the scales of displacements (associated with each structural level). The theory
for constructing the multilevel ROM will be exposed considering three scales of
displacements denoted asL, M, andH.

• For the first scale,L, the displacements are associated with global displace-
ments (as in LF) belonging to a subspace denoted bySL.

• For the second scale,M, the displacements are associated with local dis-
placements (as in MF) belonging to a subspace denoted bySM. These
displacements constitute the first scale of the local displacements.

• For the third scale,H, the displacements are associated with local displace-
ments (as in HF) belonging to a subspace denoted bySH. These displace-
ments constitute the second scale of the local displacements.
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5.1. Formulation of a multilevel ROM

The formulation of the multilevel ROM proposed is partly based on the pro-
jection of the computational model onto subspaceSglob whose construction has
been presented in Section 4. This first filtering of local displacements allows
for obtaining a small-dimension representation for the displacements (belonging
to Sglob and given by Eqs (20)) with a controlled accuracy. The secondstep of
the proposed formulation consists in using several levels of filtering of the lo-
cal displacements, in order to construct the LF-, MF-, and HF-scale modal bases
(spanning subspacesSL, SM, andSH of Sglob). Since polynomial degreeNd

can be chosen arbitrarily (or evenAg set asAg “ A), the global-displacements
ROM is actually constructed upon the use of more or less localdisplacements.
Let AL be the vector subspace whose associated reduced kinematicsis adapted
for representing the LF scale only and consequently, which contains very few lo-
cal displacements. Similarly, letAM be the vector subspace whose associated
reduced kinematics is adapted for representing the LF and MFscales only. Fig-
ure 1 illustrates the strategy, which consists in splittingsubspaceSglob (obtained
using the reduced kinematics associated withAg) into subspacesSL, SM, andSH,
which are non-overlapping, and which are obtained by means of two intermedi-
ate levels of filtering associated withAL andAM. We now present an algebraic
construction of vector bases associated with these subspaces.

AL AM

Ag

SL SM SH

Sglob

Figure 1: Scheme showing the overlap of approximation subspacesAg, AL, andAM (left) and
scheme representing subspaceSglob “ SL Y SM Y SH such thatSL X SM X SH “ H (right).

5.1.1. LF-scale basis
We work within a subspaceSglob of dimensionng, associated with a global-

displacements ROM that has been constructed as presented inSection 4 and whose
accuracy is adjusted to the required level through a convergence analysis with
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respect to parametersNd andng. This ROM is represented by matrixrΛgs of
eigenvalues and by reduction basisrΦgs. The LF-scale eigenvectorstψL

αuα are
represented inSglob by

ψL
α “ rΦgs sLα , (29)

in which theng-dimensional real vectorstsLαuα are generalized coordinates, which
are the solutions of the small-dimension generalized eigenvalue problem

rΛgs sLα “ σL
α rMAL

s sLα , (30)

in which thepng ˆngq real mass matrixrMAL
s is a positive-semidefinite symmet-

ric matrix which is written as

rMAL
s “ rΦgsT rMAL

s rΦgs . (31)

The rankNL of matrix rMAL
s verifies the inequalitiesNL ď NL andNL ď

ng in which NL is the rank of matrixrMAL
s. Let rSLs “ rsL1 . . . sLnL

s be the
png ˆnLq real matrix of the eigenvectors associated with the firstnL finite positive
eigenvalues0 ă σL

1 ď . . . ď σL
nL

. The matrix of the LF-scale eigenvectorstψL
αuα

is written asrΨLs “ rΦgs rSLs. ThenL LF-scale modestϕL
αuα are then defined

by

ϕL
α “ rΨLs rLα , (32)

in which thenL-dimensional real vectorstrLαuα are the solutions of the small-
dimension generalized eigenvalue problem

rKLs rLα “ λL
α rMLs rLα , (33)

in which rKLs andrMLs are positive-definite symmetricpnL ˆ nLq real matrices
that are such thatrKLs “ rΣLs andrMLs “ rSLsT rSLs, with rΣLs the diagonal
matrix of the firstnL eigenvaluestσL

αuα. The generalized eigenvalue problem
defined by Eq. (33) admitsnL real eigenvalues0 ă λL

1 ď . . . ď λL
nL

from which
the eigenfrequenciestfL

α uα associated with the LF-scale modestϕL
αuα are written

asfL
α “

a

λL
α{2π. ThenL LF-scale modestϕL

αuα constitute an orthogonal vector
basis (with respect torKs) of SL that is a subspace ofSglob. As rΨLs “ rΦgs rSLs
and considering Eq. (32), it can be seen that the generalizedcoordinatestwL

αuα
such thatϕL

α “ rΦgs wL
α are given bywL,α “ rSLs rLα. Let rΦLs “ rϕL

1 . . .ϕ
L
nL

s
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be thepm ˆ nLq real matrix made up of the LF-scale modal basis. LetrWLs “
rwL

1 . . .w
L
nL

s be thepng ˆ nLq real matrix such that

rΦLs “ rΦgs rWLs . (34)

These matrices will be used for constructing the MF- and HF-scale bases and the
matrices of the multilevel ROM.

5.1.2. MF-scale basis
The MF-scale modestϕM

β uβ are constructed using approximation subspace
AM whose associated reduced kinematics allows for obtaining agood repre-
sentation for the LF and MF scales of displacements. Vector subspaceSM “
spantϕM

1 , . . . , ϕM
nM

u is constructed in order that it does not intersectSL. Sim-
ilarly to the construction of the LF-scale eigenvectors presented in Section 5.1.1,
the MF-scale eigenvectorstψM

β uβ are represented inSglob by

ψM
β “ rΦgs sMβ , (35)

in which theng-dimensional real vectorstsMβ uβ are the solutions of the small-
dimension generalized eigenvalue problem

rΛgs sMβ “ σM
β rMAM

s sMβ , (36)

in which rMAM
s is a positive-semidefinite symmetricpng ˆngq real matrix which

is written as

rMAM
s “ rΦgsT rMAM

s rΦgs . (37)

The rankNM of matrix rMAM
s satisfies the inequalitiesNM ď NM andNM ď

ng in whichNM is the rank of matrixrMAM
s. Let rSMs “ rsM1 . . . sMνMs be the

png ˆ νMq real matrix constituted of the eigenvectorstsMβ uβ associated with the
first νM finite positive eigenvalues0 ă σM

1 ď . . . ď σM
νM

. The matrixtψM
β uβ of

the MF-scale eigenvectors is written as

rΨMs “ rΦgs rSMs . (38)

TheνM MF-scale modestϕM
β uβ are then defined by

ϕM
β “ rΨMs vM

β , (39)
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in which tvM
β uβ are νM-dimensional real vectors. In order thatSM does not

intersectSL, the MF-scale modestϕM
β uβ are constructed under the constraint

of being orthogonal toSL (with respect torKs), which means that for allβ “
1, . . . , nM (nM will be defined after), we have

rΦLsT rKsϕM
β “ 0 . (40)

From Eqs. (39) and (40), it can be deduced that, for allβ “ 1, . . . , nM,

rCMs vM
β “ 0 , (41)

in which thepnL ˆ νMq real matrixrCMs “ rΦLsT rKs rΨMs can be rewritten,
using Eqs. (34) and (38), as

rCMs “ rWLsT rΛgs rSMs . (42)

The nM vectorstvM
β uβ satisfying Eq. (41) belong to the null space ofrCMs.

Let rZMs be apνM ˆ nMq real matrix made up of a vector basis of the null space
of rCMs. DimensionnM is thus given by

nM “ νM ´ nL , nM ď ng , (43)

and thenM vectorstvM
β uβ are written as

vM
β “ rZMs rMβ , (44)

with rMβ annM-dimensional real vector. Substituting Eq. (44) into the right-hand
side of Eq. (39) and using Eq. (38) yieldϕM

β “ rΦgs rSMs rZMs rMβ , which can
be rewritten as

ϕM
β “ rΦgs rSM

Z s rMβ , (45)

in whichrSM
Z s “ rSMs rZMs is apngˆnMq real matrix. Substituting this last rep-

resentation ofϕM
β in the usual generalized eigenvalue problem defined by Eq. (2)

yields the following small-dimension generalized eigenvalue problem

rKM
Z s rMβ “ λM

β rMM
Z s rMβ , (46)
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in which rKM
Z s andrMM

Z s are positive-definite symmetricpnM ˆnMq real matri-
ces such thatrKM

Z s “ rSM
Z sT rΛgs rSM

Z s andrMM
Z s “ rSM

Z sT rSM
Z s. This gener-

alized eigenvalue problem admitsnM positive eigenvalues0 ă λM
1 ď . . . ď λM

nM

from which the eigenfrequenciestfM
β uβ associated with the MF-scale modes

tϕM
β uβ are given byfM

β “
b

λM
β {2π. ThenM MF-scale modestϕM

β uβ form

an orthogonal vector basis (with respect torKs) of SM, which is a subspace of
Sglob. Introducing the generalized coordinatestwM

β uβ such thatϕM
β “ rΦgs wM

β

and comparing with Eq. (45) yieldswM
β “ rSM

Z s rMβ . Let rΦMs “ rϕM
1 . . .ϕM

nM
s

be thepmˆnMq real matrix constituted of the MF-scale modal basis. LetrWMs “
rwM

1 . . .wM
nM

s be thepng ˆ nMq real matrix such that

rΦMs “ rΦgs rWMs . (47)

These matrices will be used for constructing the HF-scale basis and the matrices
of the multilevel ROM.

5.1.3. HF-scale basis
ThenH HF-scale modestϕH

γ uγ allow for obtaining the representation for the
remaining contribution of the displacements, which belongs toSglobzpSL Y SMq.
AsϕH

γ belongs toSglob, it can be written as

ϕH
γ “ rΦgs wH

γ , (48)

in which wH
γ is anng-dimensional real vector. The dimensionnH of vector sub-

spaceSH “ spantϕH
1 , . . . , ϕH

nH
u is such that

nH “ ng ´ nL ´ nM , (49)

and consequently,ng ě nH. Similarly to the construction introduced forSM,
subspaceSH must not intersectSL Y SM and consequently,ϕH

γ must satisfy, for
all γ “ 1, . . . , nH,

rΦLMsT rKsϕH
γ “ 0 , (50)

in which thepm ˆ nLMq real matrixrΦLMs is given (using block writing) as

rΦLMs “ r rΦLs rΦMs s, (51)
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with nLM “ nL ` nM. From Eqs. (34) and (47), and introducing thepng ˆ
nLMq real matrixrWLMs “ r rWLs rWMss (block writing), matrixrΦLMs that
is defined by Eq. (51) can be rewritten as

rΦLMs “ rΦgs rWLMs . (52)

Substituting Eq. (48) into Eq. (50) yieldsrΦLMsT rKs rΦgs wH
γ “ 0. Substituting

Eq. (52) into this last equation and usingrΛgs “ rΦgsT rKs rΦgs yield, for all
γ “ 1, . . . , nH,

rCHs wH
γ “ 0 , (53)

in which thepnLM ˆ ngq real matrixrCHs is written as

rCHs “ rWLMsT rΛgs . (54)

From Eq. (53), it can be deduced that thenH vectorstwH
γ uγ must belong to the

null space ofrCHs. Let rZHs be apng ˆnHq real matrix made up of a vector basis
of the null space ofrCHs. ThenH vectorstwH

γ uγ are thus written as

wH
γ “ rZHs rHγ , (55)

in which trHγ uγ arenH-dimensional real vectors. From Eqs. (48) and (55), it can
be deduced that

ϕH
γ “ rΦgs rZHs rHγ . (56)

Substituting Eq. (56) into Eq. (2) and left multiplying the resulting equation by
rZHsT rΦgsT yield the small-dimension generalized eigenvalue problem

rKH
Z s rHγ “ λH

γ rMH
Z s rHγ , (57)

in which rKH
Z s andrMH

Z s are positive-definite symmetricpnH ˆnHq real matrices
that are such thatrKH

Z s “ rZHsT rΛgs rZHs andrMH
Z s “ rZHsT rZHs. This gener-

alized eigenvalue problem admitsnH real eigenvalues0 ă λH
1 ď . . . ď λH

nH
from

which the eigenfrequenciestfH
γ uγ associated with the HF-scale modestϕH

γ uγ are

written asfH
γ “

b

λH
γ {2π. ThenH HF-scale modestϕH

γ uγ constitute an orthog-

onal vector basis (with respect torKs) of SH, which is a subspace ofSglob. Let
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rΦHs “ rϕH
1 . . .ϕH

nH
s be thepmˆnHq real matrix made up of the HF-scale modal

basis. LetrWHs “ rwH
1 . . .wH

nH
s be thepng ˆ nHq real matrix such that

rΦHs “ rΦgs rWHs . (58)

These matrices will be used for constructing the matrices ofthe multilevel ROM.

5.1.4. Construction of the multilevel ROM
By construction, subspacesSL, SM, andSH with dimensionnL, nM, andnH

respectively, are orthogonal subspaces (with respect torKs) of spaceSglob that has
dimensionng. Sinceng “ nL ` nM ` nH (see Eq. (49)), subspacesSL, SM, and
SH are such that

Sglob “ SL ‘ SM ‘ SH , (59)

in which‘ denotes the direct sum. For allω inB, the approximationUpnL,nM,nHqpωq
P Sc

glob of Upωq (Upωq being the solution of Eq. (1)) is written as

U
pnL,nM,nHqpωq “ rΦLs qLpωq ` rΦMs qMpωq ` rΦHs qHpωq, (60)

where the complex vectorsqLpωq, qMpωq, andqHpωq with dimensionnL, nM,
andnH respectively, are associated with the LF-, MF-, and HF-scales. Equa-
tion (60) can be rewritten as

U
pnL,nM,nHqpωq “ rΦLMHs qLMHpωq , (61)

in which qLMHpωq “
`

qLpωq , qMpωq , qHpωq
˘

is anng-dimensional complex
vector and whererΦLMHs “ r rΦLs rΦMs rΦHs s is apmˆngq real matrix (defined
by a block writing). From Eqs. (2) and (61), it can be deduced that

p ´ω2 rMs ` iω rDs ` rKs q qLMHpωq “ F
LMHpωq , (62)

in whichFLMHpωq “ rΦLMHsT Fpωq and where, forpA,Aq P tpM,Mq , pD,Dq ,
pK,Kqu, we haverAs “ rΦLMHsT rAs rΦLMHs. It can be seen that matrixrAs
can be rewritten (block writing) as

rAs “

»

–

rALL s rALM s rALH s
rAMLs rAMMs rAMHs
rAHL s rAHM s rAHH s

fi

fl , (63)
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in which, forI andJ in tL,M,Hu, rAIJ s “ rΦIsT rAs rΦJ s is apnI ˆnJ q real
matrix. In the following, the normalization ofrΦIs is chosen such thatrMIIs “
rInI

s. Consequently, matrixrKs can be written as

rKs “

»

–

rΛL s r 0 s r 0 s
r 0 s rΛMs r 0 s
r 0 s r 0 s rΛH s

fi

fl , (64)

in whichrΛLs, rΛMs, andrΛHs are the diagonal matrices of the LF-, MF-, and HF-
scale eigenvaluestλL

αuα, tλM
β uβ, andtλH

γ uγ. For optimizing the computational
cost, matricesrMs andrDs are rewritten using matricesrWLs, rWMs, andrWHs.
From Eqs. (34), (47), and (58), it can be deduced that, forI andJ in tL,M,Hu,
rMIJ s “ rW IsT rWJ s andrDIJ s “ rW IsT rDgs rWJ s, in which rDgs has been
introduced in Eq. (21).

Remark 1.For allω in B, UpnL,nM,nHqpωq coincides withUpNd,ngqpωq. The role of
the multilevel representation (see Eq. (60)) lies in its ability to adapt the physical
models with respect to each type of coordinatesqLpωq, qMpωq, andqHpωq. This
ROM allows a greater flexibility to be obtained regarding theuncertainty mod-
eling (particularly when using the nonparametric probabilistic approach [27] for
which the nominal reduced matrices are replaced by random matrices) as well as
regarding the damping modeling.

Remark 2.The multilevel ROM has been constructed using an indirect method,
which consists in working in subspaceSglob. If rΦgs is taken asrΦs andrΛgs as
rΛs (which means thatSglob coincides withSelas), then no approximation is intro-
duced in the multilevel ROM, in comparison to a classical modal analysis.

In the next section, we apply the proposed method to an automobile, which is
a complex structure, in order to construct an adapted global-displacements ROM,
which is then used for constructing a multilevel ROM.

6. Application to the computational model of an automobile

This complex structure is made up of a stiff master part on which flexible parts
are attached, as it can be seen in Fig. 2 in which the gray intensity is related to
the level of rigidity. It can be seen that there are numerous flexible parts spread
over the whole structure (not only well identified components such as the roof or
the floor panels, but also erratically distributed flexible parts, see for instance the
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parts located at the front of the car). The presence of the flexible parts induces
a high modal density. The computational model hasNf “ 243, 783 free nodes
andm “ 1, 462, 698 DOFs. It contains various types of finite elements such
as volume, surface, beam, bar elements, and also rigid body elements. We are
interested in predicting the FRFs of the stiff master part inthe frequency band
B “ 2πˆs0, 500s rad/s. There aren “ 1, 457 elastic modestϕαuα below600Hz
and1, 048 elastic modes in frequency bandB. Forω in B, responseUpnqpωq is
computed by using the classical ROM given by Eqs. (3) and (4).The large value of
dimensionn for the classical ROM is induced by the presence of numerous local
elastic modes intertwined with the usual global elastic modes, due to the numerous
flexible parts aforementioned. The first elastic modeϕ1 with f1 “ 24Hz is a
local elastic mode while the third oneϕ3 with f3 “ 39Hz is a global elastic
mode (see Fig. 3). In general, each elastic mode cannot be identified either as a
pure local elastic mode or as a pure global elastic mode. An example of elastic
mode with mixed global and local displacements is shown in Fig 4. Such a mixed
modeϕ18 is constituted of a global deformation of the structure assorted with
local deformations of distinct structural levels (the roof, the flexible part in the left
back). Furthermore, as the frequency increases, the contributions of the global
displacements in the elastic modes are becoming less and less perceptible. Most
of the mode shapes are dominated by large-amplitude local displacements that are
irregularly distributed over the structure, as it can be seen for modeϕ300 in Fig. 4.

It should be noted that Fig. 2 shows two complementary pointsof view of the
automobile in order to put into evidence the stiff part skeleton, Fig. 3 illustrates the
key concept of local modes, as opposed to global modes, and finally, Fig. 4 illus-
trates the facts that the elastic modes are not either purelylocal or purely global,
and that the local displacements become predominant in higher frequencies.

Figure 2: Computational model, in which the gray intensity is related to the level of rigidity (the
darker is the stiffer)
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Figure 3: Elastic modesϕ1, f1 “ 24Hz (left) andϕ3, f3 “ 39Hz (right), in which the gray
intensity is related to the level of amplitude of the displacements (the greater amplitude is the
lighter)

Figure 4: Elastic modesϕ18, f18 “ 72Hz (left) andϕ300, f300 “ 262Hz (right), in which the
gray intensity is related to the level of amplitude of the displacements (the greater amplitude is the
lighter)

6.1. Implementation of the global-displacements ROM

The indirect method proposed in Section 4.2 is used for constructing a global-
displacements ROM of small dimension, given by Eqs. (20) and(21). Subspace
Ag that is spanned by multivariate polynomials as presented inSection 3.3, is
constructed for an approximation degreeNd ranging from0 to 40. For instance,
the calculated rank of matrixrMAg

s isNg “ 168 for Nd “ 5, Ng “ 855 for Nd “
10, andNg “ n “ 1, 457 for bothNd “ 15 andNd “ 20. In general, forNg “ n,
it would be possible to computen global eigenvectorstψαuα that would belong
(by construction) to subspaceSelas of dimensionn, and which would constitute
a vector basis ofSelas. In this case, then global modestϕg

αuα constructed via
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then solutionstrαuα of Eq. (19) would coincide with the elastic modestϕαuα
and consequently, no gain would be obtained with respect to the dimension of
the ROM. The modal density of the global modes thus strongly depends on the
truncation orderng. In this application, the truncation rule adopted is to setng

as the smallest value such thatf g
ng

ě 525Hz. ForNd “ 5, 10, 15, 20, the modal
density (averaged number of modes per Hz) is plotted in Fig. 5and is compared
to the modal density of the elastic modes. It can be seen that the modal density
increases accordingly to the polynomial degree chosen for the reduced kinematics
associated withAg.

Figure 5: Modal densities: elastic modes (thick black solidline); global modes with:Nd “ 20

(thin black solid line),Nd “ 15 (thin black dashed line),Nd “ 10 (thin gray solid line), and
Nd “ 5 (thin gray dashed line).

For Nd “ 5, the constructed global modes do not cover the whole frequency
band of analysis. The dimensionsng of the global-displacements ROM areng “
168, 355, 479, 624 for Nd “ 5, 10, 15, 20 respectively.

A convergence analysis with respect toNd andng has been carried out in
studying the FRFs. The inputs are unit forces applied in thex- andz- directions
and unit moments applied around thex- andy- axes, relative to the excitation
nodes exc1 and exc2 (see Fig. 6). ForNd ranging from0 to 40, and for allω in
B, responseUpNd,ngqpωq is computed using the global-displacements ROM given
by Eqs. (20) and (21). The outputs are the norm of the displacements vector of
26 observations nodes denoted byΓ ref

obs,dBpωq “ 20 log10 }Upnq
obs} for the converged

reference and byΓ ROM
obs,dBpω;ngq “ 20 log10 }UpNd,ngq

obs } for the computational ROM,
among which the FRFs are shown in Fig. 8 to Fig. 11 for the four observation
nodes obs1, obs2, obs3, and obs4 whose locations are depicted in Fig. 6.
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Figure 6: Excitation nodes exc1 and exc2, and observation nodes obs1, obs2, obs3, and obs4.

For the convergence analysis, the error functionεdBpngq “ ř

obs εobs,dBpngq{nobs

is introduced in which the errorεobs,dBpngq is such that

ε2obs,dBpngq “
ş

B
pΓ ref

obs,dBpωq ´ Γ ROM
obs,dBpω;ngq q2 dω

ş

B
pΓ ref

obs,dBpωq q2 dω
, (65)

which depends on dimensionng obtained viaNd (following the adopted trunca-
tion rule). In Figs. 7 to 11, it can be seen that the error tendsto decrease with
the increase ofNd. However, the decrease of the error is accompanied with an
increase of dimensionng. Consequently, the degreeNd as well as the resulting
dimensionng must be adjusted regarding the engineering targets. It can be seen
that the differences between the reference and the approximated FRFs are larger
in higher frequencies, while it is known that the experimental variabilities are also
generally larger in higher frequencies.
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Figure 7: ErrorεdB with respect to dimensionng

For the complex structure studied, it can be seen in Figs. 7 to11 that a reason-
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able accuracy is obtained for a ROM dimension of about500, which has to be
compared to the reference-ROM dimension of about1, 500. With respect to the
residual errors induced by the use of the proposed global-displacements ROM of
reasonable small dimension, it should be noted that the experimental variabilities
of the FRFs of such a complex structure [25, 26] are more important than these
residual errors.
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Figure 8: For obs1, logarithm of the norm of the displacements (m) versus frequency (Hz): refer-
enceUpnq

obs1 (black solid line), ROM responsestU
pNd,ngq
obs1 uNd“5,10,15,20 (gray dashed line).
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Figure 9: For obs2, logarithm of the norm of the displacements (m) versus frequency (Hz): refer-
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pNd,ngq
obs2 uNd“5,10,15,20 (gray dashed line).
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Figure 10: For obs3, logarithm of the norm of the displacements (m) versus frequency (Hz):

referenceUpnq
obs3 (black solid line), ROM responsestU

pNd,ngq
obs3 uNd“5,10,15,20 (gray dashed line).
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Figure 11: For obs4, logarithm of the norm of the displacements (m) versus frequency (Hz):
referenceUpnq

obs4 (black solid line), ROM responsestU
pNd,ngq
obs4 uNd“5,10,15,20 (gray dashed line).

6.2. Implementation of a multilevel ROM
6.2.1. Multilevel ROM inSglob

Based on the previous convergence analysis,Nd “ 20 along withng “ 624

yield a subspaceSglob associated with a sufficiently accurate global-displacements
ROM. In light of the previous results, the methodology presented in Section 5 is
applied using subspacesAL andAM for whichNd “ 5 andNd “ 15, respectively.
As an example, withNd “ 5, the sharp peaks are well represented in the low
frequencies. A more accurate choice of subspaces that definethe levels of filtering
would be required if a multilevel physical modeling was introduced within the
multilevel ROM (by example, for damping and uncertainties). In such a case, a
sensitivity analysis would allow for better choosing the degrees.

LF-scale basis.The calculated rank of matrixrMAL
s is NL “ 168. The trunca-

tion ordernL is taken as the value ofng obtained in the application of Section 6.1
with Nd “ 5. Hence, thenL “ 168 eigenvectorstsLαuα are obtained by solving
Eq. (30). ThenL LF-scale modestϕL

αuα are then computed following the method
proposed.

MF-scale basis.Similarly to the LF-scale basis, the calculated rank of matrix
rMAM

s is NM “ 624 (which corresponds to the value ofng). The truncation
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orderνM is taken as the value ofng obtained in the application of Section 6.1 with
Nd “ 15. Hence, the firstνM “ 479 eigenvectorstsMβ uβ are computed by using
Eq. (36). ThenM “ νM ´ nL “ 311 MF-scale modestϕM

β uβ are constructed
following the method, in whichrZMs is made up of the right eigenvectors of the
SVD of matrixrCMs.

HF-scale basis.SincenH “ ng ´ nL ´ nM, the HF-scale basis is constituted of
nH “ 145 modestϕH

γ uγ , which are computed following the method.

For each one of these three bases, the modal density is plotted in Fig. 12. It can
be seen that none of these bases covers all the frequency bandB. Nevertheless,
the union of these three bases spanSglob whose eigenfrequencies cover whole the
bandB. It should be noted that the modal density of each basis is maximum at the
frequency of interest (the maximum is about180 Hz for the LF basis, about280
Hz for the MF basis, and about360 Hz for the HF basis).
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Figure 12: Modal densities: elastic modes (n “ 1, 457 ; black solid line), LF-scale modes (nL “
168 ; gray dashed line), MF-scale modes (nM “ 311 ; gray solid line), and HF-scale modes
(nH “ 145 ; light-gray dashed line).

Studying the contribution of each scale basis in the responses. ForI in tL,M,Hu,
the responseUIpωq is calculated using only the IF-scale modestϕI

αuα represented
by matrix rΦIs and the contributions of each scale basis is plotted in Fig. 13 for
observation nodes obs1, obs2, obs3, and obs4.
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Figure 13: For observation nodes obs1, obs2, obs3, and obs4, graphs of the norm of the dis-
placements in log scale as a function of frequency using: elastic modes (black solid line), LF-
scale modes (gray dashed line), MF-scale modes (gray solid line), and HF-scale modes (light-gray
dashed line).

For each observation node, it can be seen that the amplitude levels of the FRFs
that correspond to the three bases are different. The LF-scale basis allows the
resonance peaks in low frequencies to be well represented. Furthermore, the level
of the FRFs is of the same order than the reference in a large part of the frequency
band. In contrast, the MF- and HF-scale bases yield FRFs whose amplitudes are
much lower in low frequencies. Nevertheless, the FRFs obtained using the MF-
scale basis show that the MF-scale modes contribute for an important part in the
response as soon as the middle of the frequency band. For the HF-scale modes,
the contributions are more important in the high part of the frequency band.

Studying the contribution of combinations of scale bases inthe responses.The
responseULMpωq is calculated using both the LF-scale modestϕL

αuα and the MF-
scale modestϕM

β uβ. Figure 14 displays, for observation nodes obs1, obs2, obs3,
and obs4, the graphs related toULpωq (previously computed),ULMpωq (computed
as explained hereinbefore), andUpnL,nM,nHqpωq (computed with Eq. (61)). It can
be seen that these FRFs are close to the FRFs related toUpNd,ngqpωq computed in
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Section 6.1 with Eq. (20) for whichNd “ 5 (ng “ 168),Nd “ 15 (ng “ 479), and
Nd “ 20 (ng “ 624).
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Figure 14: For observation nodes obs1, obs2, obs3, and obs4, graphs of the norm of the dis-
placements in log scale as a function of frequency using: (1)elastic modes (black solid line); (2)
LF-scale modes (gray dashed line); (3) LF-scale modes and MF-scale modes (gray solid line); (4)
LF-scale modes, MF-scale modes, and HF-scale modes (light-gray dashed line).

6.2.2. Multilevel ROM inSelas

In this last part of the application, the construction of themultilevel ROM is
performed in takingrΦs for rΦgs and rΛs for rΛgs (Sglob coincides withSelas).
Consequently, neither approximation nor reduction are introduced with respect to
the usual modal analysis, but only the displacements of the distinct structural lev-
els are separated. In this case, we haveng “ n “ 1, 457. Again, the methodology
presented in Section 5 is applied usingAL andAM with Nd “ 5 andNd “ 15.

LF-scale basis.The calculated rank of thepng ˆ ngq real matrixrMAL
s is NL “

168. Similarly to the previous results, truncation ordernL is 168, and the LF-scale
basis is constituted ofnL “ 168 LF-scale modestϕL

αuα.

MF-scale basis.The calculated rank of matrixrMAM
s is NM “ 1, 457 (which

corresponds to the value ofng). As in Section 6.2.1, truncation orderνM is 479
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and the MF-scale basis is constituted ofnM “ νM ´ nL “ 311 MF-scale modes
tϕM

β uβ.

HF-scale basis.SincenH “ ng ´ nL ´ nM, the HF-scale basis is constituted of
nH “ 978 modestϕH

γ uγ .

For each one of these three bases, the modal density is plotted in Fig. 15. Compar-
ing with the previous results of Section 6.1, there are numerous HF-scale modes
tϕH

γ uγ in the high part of the frequency band.
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Figure 15: Modal densities: elastic modes (n “ 1, 457 ; black solid line), LF-scale modes (nL “
168 ; gray dashed line), MF-scale modes (nM “ 311 ; gray solid line), and HF-scale modes
(nH “ 978 ; light-gray dashed line).

For each one of observation nodes obs1, obs2, obs3, and obs4, and forI equal
to L, M, andH, Fig. 16 displays the graphs of the FRFs related toU

Ipωq. The
conclusions are the same as for Section 6.1, except for the HF-scale basis that
contributes more in the high part of the frequency band. Figure 17 displays the
FRFs related toULpωq,ULMpωq, andUpnL,nM,nHqpωq. The FRFs related toULpωq
andULMpωq are close to the FRFs related toUpNd,ngqpωq computed in Section 6.1
with Eq. (20) for whichNd “ 5 (ng “ 168) andNd “ 15 (ng “ 479). On the
other hand, the responseUpnL,nM,nHqpωq is, as expected, exactly superimposed to
the reference.
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Figure 16: FRF of the norm of the displacements in log scale, for observation nodes obs1, obs2,
obs3, and obs4, using: the elastic modes (black solid line), the LF-scale modes (gray dashed line),
the MF-scale modes (gray solid line), and the HF-scale modes(light-gray dashed line).
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Figure 17: FRF of the norm of the displacements in log scale, for observation nodes obs1, obs2,
obs3, and obs4, using: (1) the elastic modes (black solid line); (2) the LF-scale modes (gray dashed
line); (3) the LF-scale modes and the MF-scale modes (gray solid line); (4) the LF-scale modes,
the MF-scale modes, and the HF-scale modes (light-gray dashed line).
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7. Conclusions

A general method has been presented for constructing a small-dimension ROM
of global displacements, which is adapted for analyzing thedynamical responses
of the stiff master part of complex structures exhibiting numerous local elastic
modes in the whole frequency band (including the LF band) dueto the presence
of numerous flexible parts and to the structural complexity.The dimension of the
ROM constructed is smaller than the dimension of the classical ROM that would
be constructed using the usual modal analysis. The method proposed has been es-
pecially developed to be non-intrusive with respect to the commercial softwares,
and induces a negligible additional numerical cost with respect to the usual modal
analysis. The method has been applied to the complex computational model of an
automobile, for which the reduction factor of the ROM dimension is about3. A
detailed convergence analysis of the global-displacements ROM has been carried
out and validates the proposed method dedicated to the construction of a small-
dimension ROM whose accuracy is controlled.

Furthermore, a general method has been proposed for constructing a multi-
level representation of the solution space, which is expressed as a direct sum of
constructed subspaces (that are associated with the distinct structural levels). The
purpose of the multilevel ROM is to allow the implementationof separated phys-
ical modelings depending on the family of modes. In this method, these families
of modes are constructed in projecting the physical computational model onto
the adjusted global-displacements subspace of reduced dimension, such that the
computational cost allocated to their construction is negligible.
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