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GNUTEXMACS is a free software for editing scientific documents withmathematical formulas,

which can also be used as an interface for many computer algebra systems. We present

the design of a new experimental mathematical editing mode which preserves the syntactic

correctness of formulas during the editing process (i.e. all formulas can be parsed using

a suitable, sufficiently rich grammar). The main constraint is to remain as closely as possible

to the existing presentation-oriented formula editor, which has the advantage of being very

user friendly.
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1. Introduction

Most mathematical formulas in current scientific papers only carry very poor semantics. For
instance, consider the two formulas f(x + y) and a (b + c). People typically enter these for-
mulas using the LATEX pseudo-code $f(x+y)$ and $a(b+c)$. Doing so, we do not transmit the
important information that we probably meant to apply f to x + y in the first formula and
to multiply a with b + c in the second one. The problem to automatically recover such informa-
tion is very hard in general. For this reason, it would be desirable to have mathematical authoring
tools in which it is easy to write formulas which systematically carry this type of information.

One important application where semantics matters is computer algebra. Popular computer
algebra systems such as Mathematica and Maple contain formula editors in which it is only
possible to input formulas which can at least be understood from a syntactical point of view by
the system. However, these systems were not really designed for writing scientific papers: they
only offer a suboptimal typesetting quality, no advanced document preparation features, and no
support for more informal authoring styles which are typical for scientific papers.

The GNU TEXMACS editor was designed to be a fully fledged wysiwyg alternative for
TEX/LATEX, as well as an interface for many computer algebra systems. The software is free
and can be downloaded from http://www.texmacs.org. Although formulas only carried barely
more semantics than LATEX in old versions of TEXMACS, we have recently started to integrate
more and more semantic editing features. Let us briefly discuss some of the main ideas behind
these developments; we refer to [7] for more details and historical references to related work.

First of all, we are only interested in what we like to call “syntactical semantics”. In the formula
2+3, this means that we wish to capture the fact that+ is an infix operator with arguments 2 and 3,
but that we are uninterested in the fact that + stands for addition on integers. Such syntactical
semantics can be modeled adequately using a formal grammar. Several other mathematical formula
editors are grammar-based [1, 2, 3, 8, 10, 11], and they make use of various kinds of formal
grammars. In TEXMACS, we have opted for so called packrat grammars [4, 5], which are particularly
easy to implement and customize.
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A second question concerns the precise grammar that we should use to parse formulas in
scientific documents. Instead of using different grammars for various areas with different notations,
we were surprised to emperically find out that a well-designed “universal” mathematical grammar is
actually sufficient for most purposes; new notations can still be introduced using a suitable macro
mechanism.

The last main point concerns the interaction between the editor and the grammar. So far, we
implemented a packrat parser for checking the correctness of a formula. While editing a formula,
its correctness is indicated using colored boxes. It is also possible to detect and visualize the scopes
of operators through the grammar. In addition to the parser, we implemented a series of tools
which are able to detect and correct the most common syntactical mistakes and enhance existing
documents with more semantics.

In the present paper, we wish to go one step further and enforce syntactic correctness
throughout the editing process. Ideally speaking, the following requirements should be met:

• As far as user input is concerned, there should be no essential difference between editing
formulas with or without the new mechanism for preserving syntactic correctness. For
instance, we do not wish to force users to provide additional “annotations” for indicating
semantics. It should also be possible to perform any editing action which makes sense from
the purely visual point of view.

• The implementation should be as independent as possible from the actual grammar being
used. In other words, we strive for a generic approach, not one for which specific editing
routines are implemented for each individual grammar symbol.

The main technique that we will use for sticking as close as possible to the old, presentation oriented
editing behaviour is to automatically insert “transient” markup for enforcing correctness during the
editing process. For instance, when typing X + , TEXMACS will display

x+ �

The transient box is used to indicate a missing symbol or subexpression and will be removed as
soon as the user enters the missing part.

The use of transient boxes for missing symbols or subexpressions is common in other editors [9].
The question which interests us here is how to automatically insert such markup when needed
in a way that is essentially independent from specific grammars. In this paper, we work out the
following approach which was suggested in [7]: before and after each editing operation, subject
the formula to suitable “correction” procedures that are only allowed to add or remove transient
markup. Correcting all errors in a general formula is a very difficult problem, but the power of our
approach comes from the fact that the editing process is incremental: while typing, the user only
introduces small errors—mostly incomplete formulas—, which are highly localized; we may thus
hope to deal with all possible problems using a small number of “kinds of corrections”.

Obviously, the simplest kinds of corrections are adding or removing a transient box at the
current cursor position. This is indeed sufficient when typing simple formulas such as x+ y + z,
but additional mechanisms are needed in other situations. For instance, in the formula α + |β
(with the cursor between the “+” and the “β”), entering another + results in α+�+ β (instead of
α+ + �β or a+ + b). Hitting backspace in the same formula α+|β yields α+ β; in this case, the
transient “+” should be parsed as an infix addition, and not as an ordinary symbol (as was the
case for a transient box).

The appropriate corrections are not always so simple. For instance, consider the quantified
expression ∀x, ∃y, P (x, y). Just after we entered the existential quantifier “∃”, the formula will
read ∀x,∃�,�, i.e. it was necessary to add three transient symbols in order to make the expression
syntactically correct. The fact that our approach should apply to general scientific documents with
mathematical formulas raises several further problems. For instance, in the formula

a2+ b2= c2,

the trailing ponctuation “,” is incorrect from a mathematical point of view, but needed inside the
surrounding English sentence. Similarly, more work remains to be done on the most convenient
way to include English text inside formulas while maintaining syntactic correctness.
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Yet another difficulty stems from the implementation: one needs to make sure that the necessary
corrections take place after any kind of editing operation. However, for efficiency reasons, it is
important to only run the correction procedures on small parts of the document. Inside an existing
editor such as TEXMACS, these requirements turn out to be quite strong, so some trade-offs may
be necessary.

In what follows, we report on our first implementation of these ideas inside TEXMACS. We
describe and motivate the current design, discuss remaining problems, and outline directions for
future improvements. Of course, more user feedback will be necessary in order to make the new
mechanisms suitable for wide-spread use.

2. Survey of formula editing with TEXMACS

In this section, we briefly recall the main design philosophy behind the TEXMACS formula editor.
We start with the description of the original, purely presentation-oriented mathematical editing
mode. We pursue with the more recent grammar-based editing features, which are presented in
more detail in [7].

2.1. Presentation oriented editing

The original goal behind TEXMACS was to provide a user friendly editor for mathematical papers
with a similar typesetting quality as TEX. The challenge was to design a real time wysiwyg editor
for complex, structured documents. Some early inspiration came from the idea [1] that graphically
oriented math editors achieve the highest level of user friendliness. For instance, when pressing the
right arrow key, the cursor should move to the right if possible (instead of moving forward in some
abstract document tree, as was the case in some other existing editors). Early versions of TEXMACS

used algorithms for the cursor movement which achieved this in a systematic way [6], while still
making sure that all possible cursor positions in the corresponding document tree could be reached.

Another aspect of user friendliness concerned the efficiency of mathematical input methods.
We designed highly efficient (and easy to memorize) keyboard shortcuts for entering common
mathematical symbols, such as - > for →, <= for 6, < å / for ∈/ , çRçR for R, etc. TEXMACS also
implements many “structured editing operations”, so as to fully exploit the structure of documents.
For instance, adding a row or column to a matrix can be done by pressing a single key or keyboard
combination. Similarly, it is easy to change a matrix into a determinant or vice versa.

2.2. Grammar-based editing

The next challenge for TEXMACS is to ensure that we can only enter syntactically correct formulas,
while keeping a presentation-oriented interface, which proved to be most user friendly. The first
steps of this program were made in [7]. Now syntactic correctness is usually modeled as “parsability
against a suitable grammar”. Before anything else, one should decide on the grammar. In particular,
does a single “universal grammar” suffice, or do we need many different grammars, depending on
the preferred notations of authors?

For reasons that are explained in detail in [7], we opted for the development of a universal
packrat grammar [4, 5] for parsing all our mathematical formulas. In order to conserve a suffi-
cient degree of flexibility for the introduction of new notations, we rely on a combination of two
techniques: on the one hand, TEXMACS comes with a powerful macro language for introducing new
markup elements. On the other hand, we introduced a special construct which allows a symbol or
expression to be behave (i.e. be parsed) as an arbitrary other symbol or expression. This allows you
for instance to annotate the symbol ∨ to behave as +, which implies that a= b∨ c will be parsed
as a=(b∨ c) instead of (a= b)∨ c.

One of the major difficulties of semantic editing is a clean treatment of homoglyphs , i.e. symbols
with the same graphical shape, but a different syntactical meaning. The most annoying homoglyph
is the multiplication/function-application ambiguity mentioned in the introduction. Another good
example concerns the wedge product dx ∧ dy and logical conjunction a= b ∧ x= y, which admit
different binding forces. Fortunately, there are not that many mathematical homoglyphs; for this
reason, we advocate the introduction of separate symbols for them into the Unicode standard.
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3. Preservation of correctness

In this section, we describe several strategies that can be used to preserve the syntactic correct-
ness of formulas under editing operations. TEXMACS currently implements the “multiple correction
schemes” strategy from Sections 3.2 and 3.3. The reader may try this implementation by down-
loading version >1.99.3 or SVN revision >9718. The new editing mode is still experimental and
can be enabled inside math mode by clicking on the icon and checking Semantic correctness.

3.1. The ideal strategy for preserving correctness

Ideally speaking, maintaining the syntactic correctness of mathematical formulas throughout the
editing process can be done by

1. Writing a “formula correction” procedure which takes any (correct or incorrect) formula on
input and which inserts or removes transient markup in order to make it correct.

2. Run the correction procedure on all modified formulas in the document(s) after every editing
operation.

This ideal strategy is simple and robust; it trivially guarantees the correctness of all formulas
throughout the editing process. However, it does not take into account the specific nature of certain
editing operations. In particular, it does not exploit the locality of many editing actions.

Example 1. Consider the strict application of the ideal strategy to the creation of a subscript
in the formula x + �|. Since � is a valid symbol, the main editing action would create an empty
subscript for it. We next launch the correction procedure, which replaces the empty subscript by
a transient box, yielding x + ��|. However, the � being transient, the user would rather expect
to endow the “+” operator with a subscript: this is indeed what happens in the old presentation-
oriented editing mode when ignoring all transient markup. In other words, we rather expect to
obtain x+�|�.

The above example shows that an indiscriminate global correction procedure does not provide
enough control. In fact, there are usually many ways to correct a formula by adding or removing
transient markup. In order to determine the “best” solution, one typically needs to take into account
the precise editing operation and the current cursor position.

Another constraint is that we would like the editor to behave as closely as possible as the old
presentation-oriented editing mode when ignoring all transient markup. The above example shows
that a global correction procedure does not necessarily respect this constraint. One theoretic
solution to this problem is to remove all transient markup before performing the editing action
and then put it back in when running the correction procedure. However, this approach may lead
to non local changes in the document for every editing action, which is obviously not desirable.

Remark 2. For the above reasons, we have not implemented the correction strategy from this
section yet. The idea nevertheless remains interesting for future research. Indeed, on the one hand
side it raises the interesting theoretical question of correcting a string so as to make it parsable by
a given (packrat) grammar. From the practical point of view, the ideal strategy has the important
advantage of trivially guaranteeing syntactic correctness all along. In cases where this is hard to
achieve using other means, it thereby remains a good fallback strategy.

3.2. Multiple correction schemes

Instead of implementing one global correction procedure, our current TEXMACS implementation
relies on multiple “correction schemes”. Each correction scheme is allowed to add or remove
transient markup both before and after the actual editing operation. In other words, it really
encapsulates the editing action into a semantically enhanced editing action. Furthermore, the
correction scheme is allowed to fail (i.e. to produce an incorrect formula at the end). For this
reason, we try multiple correction schemes in a row (the set of “eligible” schemes depends on
the specific editing action), and stop as soon as we managed to obtain a correct formula.

In summary, we proceed as follows:

1. Depending on the editing action, determine a list of eligible correction schemes.
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2. Try each eligible correction scheme in the list until we managed to obtain a correct formula.

3. If none of the correction schemes succeeded, then cancel the editing action.

For the actual implementation, it is clearly crucial to be able to undo editing actions whenever
necessary, and in a way that is orthogonal to the usual undo/redo operations in TEXMACS.

Example 3. When inserting a mathematical symbol, the first correction scheme we try is the
following: first remove all transient markup around the cursor, then insert the symbol, and finally
insert a transient box at the cursor position (if needed). For instance, typing A+B in an empty
mathematical formula successively yields |�, a|, a+|�, and a+ b|.

Example 4. The basic correction scheme from the previous example sometimes fails. For instance,
assume that we are in the situation a ∧ |�, and that we add a second “∧”. When applying the
basic correction scheme, we need to correct a ∧ ∧| through the insertion of a single transient box.
However, the formula a∧∧� is still incorrect. For this particular case, we therefore use the following
correction scheme: first add a transient box (a∧ �|�), then perform the editing action (a∧ �∧|�),
and finally correct (nothing needs to be done at this step).

In Step 3, we simply canceled the editing action if all correction schemes failed. Several other
fallback strategies can be considered. If we do not aim to maintain correctness at all costs, then we
may apply the editing action without any corrections, and temporarily tolerate incorrect formulas.
We might also implement an unconditionally successful fallback strategy as in Remark 2; by
always adding such a strategy at the end of our list of eligible correction schemes, we will never
reach Step 3. Yet another idea is to introduce a correction scheme which annotates subexpressions
with exotic notations in such a way that they become correct.

3.3. Quick survey of some of the implemented correction schemes

Our approach of using multiple correction schemes allows for fine-grained control, but also requires
an increased amount of manual labour. Indeed, we both have to cover the complete set of editing
actions, and for each editing action, we have to implement at least one correction scheme that will
succeed in all possible situations.

Fortunately, the most common editing operations fall into four main categories: insertions
and deletions that operate either on selections or not. Some other operations such as “search and
replace” have not yet been adapted (see also the next section). Ultimately, the idea would be to
provide manual support for the most common operations and to implement a suitable fallback
strategy for the other ones.

3.3.1. Correction schemes for insertions

Let us briefly list how we perform the most prominent correction schemes for insertions, in absence
of active selections. For each of the schemes, we show the successive states of the formula for
a simple example.

• The basic scheme from Example 3.

• “Starting a prime or right script after a transient box” (e.g. inserting a new subscript in
the formula x+ �| from Example 1): first jump over the box with the cursor (x+|�), then
perform the action (x+|�), and finally add a transient box if necessary (x+|� �).

• “Inserting a pure infix operator after a transient box” (e.g. inserting the infix operator “◦”
in x+�|): perform the editing action (x+�◦|) and add a transient box if necessary (x+�◦|�).

• The scheme from Example 4 for inserting two infix operators in a row.

• “Starting an extensible arrow with a script” (e.g. in the situation E|): remove all transient

markup around the cursor (E|), perform the operation (E→→
|
), add a transient box after the

arrow (E→→
|

�), as well as a transient box at the cursor position (E→→→→→→→→→→
|�

�).

• “Insert content after an ordinary symbol” (e.g. entering ψ after ϕ|): remove all transient
markup around the cursor (ϕ|), insert a transient “explicit space” (ϕ_|), perform the editing
action (ϕ_ψ|), insert further transient boxes if needed (ϕ_ψ|).
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• “Insert content before an ordinary symbol” (e.g. entering ψ before |ϕ): remove all transient
markup around the cursor (|ϕ), insert a transient “explicit space” after the cursor (|_ϕ),
perform the editing action (ψ|_ϕ), insert further transient boxes if needed (ψ|_ϕ).

• “Insert content in the middle of an operator” (e.g. starting a fraction in arc|sin): remove all
transient markup around the cursor (arc|sin), insert transient “explicit spaces” before and
after the cursor (arc_|_sin), perform the editing action (arc_|_sin), insert further transient

boxes if needed (arc_|�
�
_sin).

The last three schemes also show that it is sometimes necessary to insert transient markup with
different semantics as an ordinary symbol in order to make the formula correct.

3.3.2. Correction schemes for deletions

For completion, we continue our list of examples with the most prominent correction schemes for
deletions.

• “The basic deletion scheme if there is transient markup around the cursor” (e.g. hitting
backspace in a + �| or in −�|�): remove the transient markup around the cursor (a + |
resp. −|�), perform the editing action (a| resp. −|�), again remove all transient markup
around the cursor if we deleted any composite tag (a|resp. −|), add transient box if needed (a|
resp. −|).

• “The basic deletion scheme” (e.g. hitting backspace in a + b|): remove transient markup
around the cursor (a+ b|), perform the deletion (a+ |), again remove all transient markup
around the cursor if we deleted any composite tag (a+|), add transient box if needed (a+|�).

• “Removal of actual infix operators” (e.g. hitting backspace in a+|b, but not in −|a): remove
transient markup around the cursor (a + |b), perform the deletion (a|b), add a transient
version of the deleted infix operator after the cursor (a|+ b), add transient boxes around the
cursor if needed (a|+ b).

• “Need to jump over cursor before deletion” (e.g. hitting backspace in
∑

k=1

∞
�| ◦ ϕk): jump

over the cursor (
∑

k=1

∞ |� ◦ ϕk), perform the “deletion” (
∑

k=1

∞|
� ◦ ϕk), add transient boxes

around the cursor if needed (
∑

k=1

∞|
� ◦ ϕk).

These examples show that the correction schemes have to be implemented with quite a lot of care.
This is due to the fact that it is convenient to design the schemes to apply with the right level of
generality (e.g. not only to the deletion of symbols for the basic schemes, but also to the deletion
of more complex structures, such as subscripts, fractions, etc.).

4. Problematic cases and challenges

Several problems arose during the implementation of the new semantic mathematical editing mode
which preserves syntactic correctness. Some of them were more or less expected and have been
solved; others require more work and further experimentation. So far, all problematic cases that
we encountered fall into two categories:

1. The incorrect treatment of special syntactic forms (and informal content in particular).

2. Complex editing operations (such as search and replace) that require special attention.

In this section, we will survey the most interesting issues that came up and highlight some of the
remaining challenges.

4.1. Informal content inside formulas

One difficulty with mathematical formulas in scientific papers with respect to formulas in, say,
computer algebra systems, is that they may contain ponctuation, decorations, typesetting direc-
tives, or explicative text. For instance, consider the following formula:

Z = {i∈ I: fi(x)= 0 and gi(x)= 0 almost everywhere}

= {i∈ I: (fi
2+ gi

2)(x)= 0 almost everywhere}.
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This formula concentrates three difficulties:

• We used a trailing punctuation period “.” to finish the formula.

• Since the formula does not fit on a single line, we used an “equation array” to manually
break it into two rows. The cells of the underlying table should not be regarded as separate
formulas (in which case the empty lower left cell would be incorrect), but rather be con-
catenated from left to right and from top to bottom.

• The formula involves English text “and” and “almost everywhere”. The word “and” has the
same semantics as the “∧” operator, whereas “almost everywhere” should be interpreted as
a “postfix quantification”.

The best approach to these problems is to introduce suitable annotation markup which describes
the semantics of informal content of this kind. For instance, we might introduce a tag “punctuation”
for annotating the trailing period, and which would be ignored by the parser. Alternatively, one
might use a special symbol “punctuation period in math mode”. In a similar spirit, AMS-LATEX
provides special environments (split, align, gather, etc.) for typesetting large formulas while
preserving some of the intended semantics. TEXMACS also contains a general purpose tag “syntax”,
which may be used to parse an expression according to the rules of another specified expression.
This allows us for instance to parse the word “and” in the same way as the infix operator “∧”.
However, we have no “postfix quantification” rule in our grammar yet. More generally, the design
of a complete DTD for informal annotations is an interesting challenge.

Assuming suitable markup, the design of user friendly ways to perform the necessary annota-
tions is another matter. Trailing periods are so common that we actually would like to enter them
simply by pressing .. There are two approaches to this problem. Our current solution is to adapt
the grammar for displayed formulas so as to accept trailing punctuation (which also means that we
do not need any special annotation semantics). A better solution would be to “requalify” symbols
whenever needed. For instance, in the formula

x+ y,

the trailing comma would be interpreted by default as a “punctuation symbol”. However, as soon as
we add a new character z to the line, we remove the annotation markup and requalify the comma
to become a separator.

Of course, for arbitrarily complex informal text (such as the “almost everywhere” example), it
will be hard to completely avoid user feedback on how to insert the necessary annotations. Never-
theless, some of the most common words (“and”, “or”, “iff”, etc.) might be annotated automatically.

4.2. Special syntactic constructs

One obvious drawback of our strategy to manually design the necessary correction schemes is com-
pleteness: every additional mathematical notation potentially requires one or more new correction
schemes. Fortunately, most mathematical notations are quite simple, so this disadvantage is not
as bad as it might seem. General purpose scientific papers nevertheless involve far more special
syntactic constructs than, say, computer algebra input. Let us illustrate some typical issues that
occur on the hand of a few somewhat unorthodox constructs.

• The “universal grammar” from [7] contains special rules for decorated operators (as in
a +E

′ b ∗̂ c) and big operators (as in
∑

k=1

∞ 1 / k2 = p
2 / 6). The usual correction schemes

are mostly sufficient for editing this kind of formulas. One example of a remaining problem
is entering a +̂ b. In the old, presentation-oriented editing mode, we would type A %^+� B

(insert a, start an empty hat, enter +, move out of the hat, insert b). However, in the

new semantic mode, this successively yields a|, a_|�̂, a_�+|�, a_�+�_b|; a new correc-
tion scheme should be designed to treat this case more smoothly. Notice that an alternative
way to enter a +̂ b is to first type a+ b, then select “+”, and finally insert a hat.

• The “universal grammar” from [7] also contains a few rules that are uncommon in pro-
gramming languages, but crucial for general purpose mathematical texts. For instance, the
formula a≺≺ b6 c=d=/ e is interpreted as a≺≺ b∧ b6 c∧ c=d∧d=/ e, and the formula x1, ...,
xn∈E as x1∈E ∧ ··· ∧xn∈E. Less common is n=1, ..., 10; what is the correct semantics?
Fortunately, these special rules do not require any special correction schemes.
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• Different authors use wildly varying notations for quantified expressions:

∀x, ∃y, P (x, y)
∀x∃y:P (x, y)

(∀x)(∃y)P (x, y)
···

We already noticed in the introduction that it is “nice” to correct ∀x, ∃ into ∀x, ∃�, �.
However, (∀x) might be corrected just as well as (∀x, �) or as (∀x)�, depending on the
author’s preferred style. Our present solution to this kind of ambiguities is to further relax
our grammar, by considering (∀x) to be a correct expression.

• One of the advantages of the new correctness-preserving editing mode is that missing expres-

sions are clearly indicated to the user. When entering a 2× 2 matrix
(

� �

� �

)

in a computer
algebra system, this is indeed quite pleasant. But in the example





λ1
···

λn





of a diagonal matrix, this also forces users to manually fill out six of the cells with “invisible
zeros”. Our present solution is therefore to only require tables cells to be explicitly entered
inside computer algebra sessions.

• The “universal grammar” from [7] also contains a few rules for “personal use”. In particular,
inside subscripts, we allow for notations such as L×ϕ,+ψ and fn;. Here ×ϕ has the semantics
of “post-multiplication” with ϕ. Given a power series f = f0+ f1 z+ f2 z

2+ ···, the notation
fn; stands for fn zn+ fn+1 z

n+1 + ···. Now we are facing a dilemma: on the one hand, we
are fond of these notations, which do not harm anyone. On the other hand, some users
might want to be constrained to input something behind the “;” in fn;�. One solution would
be to depart from the idea from [7] to promote using a “universal grammar”. Instead, we
might provide special style packages for specific notations. Another approach is to introduce
suitable prefix and postfix homoglyphs of × and ;, together with simple keyboard shortcuts
for entering them.

4.3. Special editing operations and markup

Let us finally investigate to which extent existing editing operations have to be adapted to the
new, more semantic editing mode. We will start with a few issues that are already dealt with and
then turn our attention to the remaining challenges.

• TEXMACS provides a special “\-style” input method for people who already know LATEX.
For instance, one may enter α by typing \ A L P HA © , or start a fraction by typing \ F R AC ©.
The fact that a wide variety of editing actions can be triggered in this way required us to
implement special correction schemes for this input method.

• The main TEXMACS input method for mathematical symbols is particularly powerful and
intuitive. For instance, one may enter→ and 6 by typing - > resp. < =. However, this facility
requires a lot of control over the undo-mechanism: when typing a shortcut - >, TEXMACS

“forgets” the incomplete keystroke - and treats the shortcut - > as an atomic operation.
In other words, typing - > and pressing “undo” will remove the entire arrow and not leave
any −. Now remember from Section 3.2 that trying several correction schemes in succession
also makes use of the undo-mechanism inside TEXMACS. Trying corrections while entering
shortcuts such as - > necessitates the mechanism to work in a nested way. We had to further
tweak our implementation so as to make that possible.

• Certain editing operations such as “save the current selection as an image” have side-effects
that cannot be undone. Additional care is needed when implementing correction schemes
for such operations. Fortunately, such operations usually do not need to be corrected.
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• One interesting editing action which is not necessarily local is “search and replace”. Global
editing actions of this kind are harder to support since the corresponding correction schemes
need to track all modifications made throughout the document, and less indication is pro-
vided by the local context which corrections to choose in case of ambiguities. The “search
and replace” operation also raises the question whether adapting the operation to a semantic
context actually involves more than corrections via the addition or removal of transient
markup: if we replace y by a+ b in x · y, do we expect to obtain x · a+ b or x · (a+ b)?

• For some editing operations, it is not always clear what their semantic counterparts should
be. One good example concerns the facility to compute and inspect the structured differ-
ences between two versions of a document. When applied to the formulas a+ b c − d and
a+ b c y, the differences are indicated using red and green colors: a+ b c− d y. How should
we parse this formula? Both a+ b c−d and a+ b c y do make sense, but not a+ b c− d y. It
is not clear to us yet how the editor should behave in this situation.
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