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Abstract: In this paper we provide a theoretical contribution to the point-
wise mean squared error of an adaptive multidimensional term-by-term
thresholding wavelet estimator. A general result exhibiting fast rates of
convergence under mild assumptions on the model is proved. It can be
applied for a wide range of nonparametric models including possible de-
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metric regression function estimation problem (with random design) and
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1. Introduction

Over the last decade, the theoretical and practical aspects of thresholding wavelet
methods in nonparametric estimation have been well-developed. The standard
scheme is to expand the unknown function of interest f on a wavelet basis, es-
timate only the wavelet coefficients having a great magnitude and reconstruct
these wavelet coefficients estimators at suitable levels to form an estimator f̂ .
The most popular selections of the wavelet coefficient estimators are based on
term-by-term thresholding rules introduced by Donoho and Johnstone (1994)
and Donoho et al. (1996) and block thresholding rules introduced by Hall et
al. (1999, 1997) and Cai (1999). The main advantage of these techniques is to
provide adaptive estimators in the sense that they are relatively unaffected by
discontinuities of f .

From the theoretical point of view, rates of convergence under global or
local error over wide function spaces have been determined. In particular, if
we focus our attention on the pointwise mean squared error: R(f̂ , f)(x0) =

E
(

(f̂(x0)− f(x0))2
)

, where x0 is a fixed point in R, numerous results ex-

ist for unidimensional nonparametric models with independent observations.
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In the context of the nonparametric regression model, see for instance Cai
and Brown (1998) for the term-by-term thresholding wavelet estimator, Cai
(1999, 2002a, 2003), Picard and Tribouley (2000) and Efromovich (2005) for
the block thresholding wavelet estimators, Bochkina and Sapatinas (2006, 2009)
and Abramovich et al. (2007) for the Bayes factor wavelet estimators. See also
Cai (2002b) for the block thresholding wavelet estimators related to statistical
inverse problems and Chicken and Cai (2005) for similar estimators but for the
density estimation problem. However, to the best of our knowledge, there is a
lack of theoretical results on the adaptive wavelet estimation for the multidi-
mensional setting including possible dependent observations under the pointwise
mean squared error. This motivates this study.

In the present paper, we consider a general nonparametric framework where
a d-multidimensional function where d is a positive integer: f : [0, 1]d → R,
needs to be estimated from n observations. We propose a general form of a
multidimensional term-by-term thresholding wavelet estimator f̂ : [0, 1]d → R.
Our main result proves that, under suitable assumptions on the wavelet coef-
ficient estimators, the term-by-term thresholding rule, the tuning parameters
and the local smoothness of f , f̂ attains a fast rate of convergence under the

pointwise mean squared error: Rd(f̂ , f)(x0) = E
(

(f̂(x0)− f(x0))2
)

, where x0

is a fixed point in [0, 1]d. The main interest of this result is to be sharp and very
flexible; it can be applied for a wide variety of nonparametric models, including
those based on dependent observations. We illustrate our general result by con-
sidering two different nonparametric estimation problems: the nonparametric
regression function estimation problem in the context of random design and the
conditional density estimation problem. To the best of knowledge, these two
applications provide new results in terms of rate of convergence of f̂ in such a
multidimensional setting.

The rest of this paper is organized as follows. Section 2 introduces the consid-
ered multidimensional wavelet basis and the function spaces used in the study.
The main wavelet estimator and its pointwise mean squared error properties are
presented in Section 3. Applications are given in Section 4. The technical proofs
are postponed in Section 5.

2. Multidimensional wavelet bases

For any positive integer m, define the L2([0, 1]m) spaces as

L2([0, 1]m) =

{
f : [0, 1]m → R;

∫
[0,1]m

(f(x))2dx <∞

}
.

LetR and d be positive integers. In this study, we consider a d-multidimensional
wavelet bases on [0, 1]d based on the scaling and wavelet functions φ and ψ
respectively from Daubechies family db2R (see Daubechies (1992)). For any
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x = (x1, . . . , xd) ∈ [0, 1]d, we set

Φ(x) =

d∏
v=1

φ(xv),

and

Ψu(x) =


ψ(xu)

d∏
v=1
v 6=u

φ(xv) for u ∈ {1, . . . , d},

∏
v∈Au

ψ(xv)
∏
v 6∈Au

φ(xv) for u ∈ {d+ 1, . . . , 2d − 1},

where (Au)u∈{d+1,...,2d−1} forms the set of all non void subsets of {1, . . . , d} of
cardinality greater or equal to 2.

For any integer j and any k = (k1, . . . , kd), we consider

Φj,k(x) = 2jd/2Φ(2jx1 − k1, . . . , 2jxd − kd),
Ψj,k,u(x) = 2jd/2Ψu(2jx1 − k1, . . . , 2jxd − kd), for any u ∈ {1, . . . , 2d − 1}.

Let Dj = {0, . . . , 2j−1}d. Then, with an appropriate treatment at the bound-
aries, there exists an integer τ such that, for any integer j∗ ≥ τ , the collection

{Φτ,k,k ∈ Dj∗ ; (Ψj,k,u)u∈{1,...,2d−1}, j ∈ N− {0, . . . , j∗ − 1}, k ∈ Dj}

forms an orthonormal basis of L2([0, 1]d).
For any integer j∗ such that j∗ ≥ τ , a function f ∈ L2([0, 1]d) can be expanded

into a wavelet series as

f(x) =
∑

k∈Dj∗

cj∗,kΦj∗,k(x) +

2d−1∑
u=1

∞∑
j=j∗

∑
k∈Dj

dj,k,uΨj,k,u(x), x ∈ [0, 1]d,(2.1)

where

cj∗,k =

∫
[0,1]d

f(x)Φj∗,k(x)dx, dj,k,u =

∫
[0,1]d

f(x)Ψj,k,u(x)dx. (2.2)

All the details can be found in, e.g., Meyer (1992), Daubechies (1992), Cohen
et al. (1993) and Mallat (2009).

Let M > 0, α ≥ 0 and x ∈ [0, 1]d. Based on the expansion (2.1) and the
wavelet coefficients (2.2), we define the function spaces Λαd (x,M) as

Λαd (x,M) =

{
f ∈ L2([0, 1]d) : sup

u∈{1,...,2d−1}
sup
j≥τ

sup
k∈Ku,j(x)

2j(d/2+α)|dj,k,u| ≤M

}
,

where Ku,j(x) = {k ∈ Dj ; Ψj,k,u(x) 6= 0}.
This class of functions can be viewed as a multidimensional version of the

one considered in Efromovich (2002). One can prove that Λαd (x,M) contains
d-dimensional Besov balls Bs

d,p,q(M) with α = s−d/p (see Delyon and Juditsky
(1996)).
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3. Main theorem

Let us consider a general nonparametric model where an unknown function
f ∈ L2([0, 1]d) needs to be estimated from n observations of a random process
defined on a probability space (Ω,A, P ). Adopting the notations of the wavelet
series expansion (2.1) of f , we define the term-by-term thresholding estimator

f̂ by

f̂(x) =
∑

k∈Dj0

ĉj0,kΦj0,k(x) +

2d−1∑
u=1

j1∑
j=j0

∑
k∈Dj

T (d̂j,k,u, κ2ωjλn)Ψj,k,u(x), (3.1)

x ∈ [0, 1]d, where ĉj0,k and d̂j,k,u are wavelet coefficients estimators of cj0,k and
dj,k,u respectively, T : R× (0,∞)→ R satisfies the inequality:

|T (v, λ)− u| ≤ C
(
min(|u|, λ) + |v − u|1{|v−u|>λ/2}

)
, (3.2)

κ is a large enough constant, λn is a threshold depending on n, and j0 and j1
are integers such that

1

2
2τd(lnn)ν < 2j0(d+2ω) ≤ 2τd(lnn)ν ,

1

2

1

λ2n(lnn)%
≤ 2j1(d+2ω) ≤ 1

λ2n(lnn)%
,

with ν ≥ 0, % ≥ 0 and ω ≥ 0.
Under some assumptions on ĉj,k, d̂j,k,u, κ, λn, ν, % and ω, Theorem 3.1

below explores the performance of f̂ (3.1) in terms of rate of convergence under
pointwise mean squared error over Λαd (x0,M).

Theorem 3.1. Let f̂ be (3.1), with the associated notations. We suppose that

ĉj,k, d̂j,k,u, κ, λn, ν, % and ω satisfy the following properties:

(a) there exists a constant C > 0 such that, for any k ∈ Dj0 ,

E((ĉj0,k − cj0,k)2) ≤ C22ωjλ2n,

(b) there exists a constant C > 0 such that, for any j ∈ {j0, . . . , j1}, k ∈ Dj

and u ∈ {1, . . . , 2d − 1},

E((d̂j,k,u − dj,k,u)4)P
(
|d̂j,k,u − dj,k,u| ≥

κ

2
2ωjλn

)
≤ C24ωjλ8n,

(c) limn→∞(lnn)max(ν,%)λ
2(1−υ)
n = 0 for any υ ∈ [0, 1).

Moreover, we suppose that f ∈ Λαd (x0,M) with M > 0, α ≥ 0 and x0 ∈ [0, 1]d.
Then there exists a constant C > 0 such that, for n large enough,

E
(

(f̂(x0)− f(x0))2
)
≤ C

(
λ2n
)2α/(2α+2ω+d)

.

The proof of Theorem 3.1 is based on a suitable decomposition of the point-
wise mean squared error and sharp upper bounds using (a), (b), (c) and the

calibration of the parameters in f̂ .
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Remark 3.1 (On the application T ). Examples of applications T : R×(0,∞)→
R satisfying (3.2) are term-by-term thresholding rules. The most popular of
them are the hard thresholding rule defined by T (v, λ) = v1{|v|≥λ}, where 1
denotes the indicator function, the soft thresholding rule defined by T (v, λ) =
sign(v) max(|v|−λ, 0), where sign denotes the sign function and the non-negative
garrote thresholding rule defined by T (v, λ) = vmax(1− λ2/v2, 0). We refer to
(Delyon and Juditsky, 1996, Lemma 1) for the technical details.

For a wide variety of nonparametric models one can find (d, λn, ν, %, ω) such
that (a), (b) and (c) are satisfied. The most common configuration is

(d, λn, ν, %, ω) = (1,
√

lnn/n, 0, 0, 0).

It is the one considered in Delyon and Juditsky (1996) for Besov type errors.

Then the obtained rate of convergence becomes (lnn/n)
2α/(2α+d)

, which is the
optimal one in the minimax sense up to a logarithmic term for the standard
white noise model (see Cai (2003) for d = 1).

Thanks to the parameter ω, our Theorem can be applied to some nonpara-
metric inverse problems. It is often related to the smoothness of an auxiliary
(known or unknown) function appearing in the model. See for instance John-
stone and Silverman (1997) for sequential inverse problems and Fan and Koo
(2002) for the density deconvolution estimation problem.

The presence of the parameters ν and % is justified when we deal with depen-
dent data. For the well-known α-mixing case, see for instance Chesneau (2013,
2014) and Chesneau et al. (2015) where they play an important role for several
intermediary results.

4. Applicatons of Theorem 3.1

The interest of Theorem 3.1 is to provide new theoretical results on the rate of
convergence related to the term-by-term thresholding wavelet estimators under
the pointwise mean squared error. We illustrate this aspect by considering two
well-known estimation problems: the regression function estimation problem in
a dependent setting and the conditional density estimation problem.

4.1. Regression function estimation in a dependent setting

Model. Let d be a positive integer, (Zt)t∈Z = ((Yt,Xt))t∈Z be a strictly station-
ary bivariate random process defined on the probability space (R× [0, 1]d,B(R×
[0, 1]d), P ) where

Yt = f(Xt) + εt, t ∈ Z,
(Xt)t∈Z is a stationary random process following the uniform distribution on
[0, 1]d, (εt)t∈Z is a stationary random process with E(ε1) = 0, and f : [0, 1]d → R
is an unknown regression function. Moreover, it is understood that εt is indepen-
dent of Xt, for any t ∈ Z. We aim to estimate f from Z1, . . . ,Zn in a dependent
setting; we assume that (Zt)t∈Z is α-mixing.
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Numerous applications exists for this problem in dynamic economic systems
and financial time series. We refer to Härdle (1990) and the references therein.
Recent results on wavelet methods for this problem can be found in, e.g., Masry
(2000), Patil and Truong (2001), Chaubey et al. (2013) and Chesneau (2013,
2014).

The contribution of our study is to prove that, under mild assumptions on
the noise and the dependence structure, one can construct an adaptive mul-
tidimensional wavelet estimator which is efficient in terms of pointwise mean
squared error properties.
Definitions. Let (Ut)t∈Z be a strictly stationary random process. For j ∈ Z,
define the σ-fields FU

−∞,j = σ(Ui, i ≤ j) and FU
j,∞ = σ(Ui, i ≥ j). For any

m ∈ Z, we define the m-th α-mixing coefficient of (Ut)t∈Z by

αm = sup
(A,B)∈FU

−∞,0×FU
m,∞

|P (A ∩B)− P (A)P (B)| . (4.1)

We say that (Ut)t∈Z is α-mixing if and only if limm→∞ αm = 0.
Full details on the α-mixing dependence can be found in, e.g., Doukhan (1994)

and Carrasco and Chen (2002).
Assumptions. We formulate the following assumptions.

(A1) There exist two constants σ > 0 and θ > 0 such that, for any t ∈ R,

E(etε1) ≤ θet
2σ2/2.

(A2) There exists a constant C > 0 such that

sup
x∈[0,1]d

|f(x)| ≤ C.

(A3) For any m ∈ Z, let g(X0,Xm) be the density of (X0,Xm). We suppose that
there exists a constant C > 0 such that

sup
m≥1

sup
(x,x∗)∈[0,1]2d

g(X0,Xm)(x,x∗) ≤ C.

(A4) There exist two constants a > 0 and b > 0 such that the m-th α-mixing
coefficient (4.1) of (Zt)t∈Z satisfies

αm ≤ ae−bm.

Wavelet estimator. We consider the following estimator f̂ for f :

f̂(x) =
∑

k∈Dj0

ĉj0,kΦj0,k(x) +

2d−1∑
u=1

j1∑
j=j0

∑
k∈Dj

d̂j,k,u1{|d̂j,k,u|≥κ
√

lnn/n}Ψj,k,u(x),(4.2)

where

ĉj0,k =
1

n

n∑
i=1

YiΦj0,k(Xi), d̂j,k,u =
1

n

n∑
i=1

YiΨj,k,u(Xi), (4.3)
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κ is a large enough constant,

λn =

√
lnn

n
,

and j0 and j1 are integers such that

1

2
2τd(lnn)2 < 2j0d ≤ 2τd(lnn)2,

1

2

n

(lnn)4
≤ 2j1d ≤ n

(lnn)4
.

This estimator is adaptive; its construction does not depend on the smoothness
of f in its construction. It is a particular case of (3.1).

Result. The following result determines the rate of convergence of f̂ under
the pointwise mean squared error.

Proposition 4.1. Let f̂ be defined by (4.2). Suppose that (A1)-(A4) hold and
f ∈ Λαd (x0,M) with M > 0, α ≥ 0 and x0 ∈ [0, 1]d. Then there exists a constant
C > 0 such that, for n large enough,

E
(

(f̂(x0)− f(x0))2
)
≤ C

(
lnn

n

)2α/(2α+d)

.

This result completes (Chesneau, 2013, Theorem 4.1) where the mean inte-
grated squared error and Besov balls are considered.

4.2. Conditional density estimation

Model. Let d and n be a positive integers, (Xi)i∈{1,...,n} be n i.i.d. random vec-

tors defined on the probability space ([0, 1]d,B([0, 1]d), P ). The density function
of X1 is given by f . Let d∗ ∈ {1, . . . , d− 1} and, for any i ∈ {1, . . . , n}, let X∗i
be the first d∗ components of Xi and Xo

i be the others do = d−d∗ components.
So Xi = (X∗i ,X

o
i ). We define the conditional density function g by

g(x) = fX∗1 (x∗| Xo
1 = xo) =

f(x)

fXo
1
(xo)

, x = (x∗,xo) ∈ [0, 1]d, (4.4)

where fX∗1 (x∗| Xo
1 = xo) denotes the density function of X∗1 conditionally to

the event {Xo
1 = xo} and fXo

1
denotes the density function of Xo

1. We aim to
estimate g from X1, . . . ,Xn.

The literature about the conditional density estimation problem is very vast.
We refer the reader to Akakpo and Lacour (2011), Le Pennec and Cohen (2013),
Chagny (2013) and the references therein. Our contribution to the subject is to
provide an adaptive wavelet estimator which is efficient in a multidimensional
setting and under the pointwise mean squared error.
Assumptions. We formulate the following assumptions.

(B1) There exists a constant C > 0 such that

sup
x∈[0,1]d

f(x) ≤ C.
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(B2) There exists a constant c > 0 such that

c ≤ inf
x∈[0,1]d

f(x).

Wavelet estimators. We consider the following ratio estimator ĝ for g:

ĝ(x) =
f̂(x)

f̂Xo
1
(xo)

1{
f̂Xo

1
(xo)≥c/2

}, x = (x∗,xo) ∈ [0, 1]d, (4.5)

where c refers to the constant in (B2),

• the estimator f̂ is defined by

f̂(x) =
∑

k∈Dj0

ĉj0,kΦj0,k(x) +

2d−1∑
u=1

j1∑
j=j0

∑
k∈Dj

d̂j,k,u1{|d̂j,k,u|≥κ
√

lnn/n}Ψj,k,u(x),

where

ĉj0,k =
1

n

n∑
i=1

Φj0,k(Xi), d̂j,k,u =
1

n

n∑
i=1

Ψj,k,u(Xi), (4.6)

κ is a large enough constant,

λn =

√
lnn

n
,

and j0 and j1 are integers such that

1

2
2τd < 2j0d ≤ 2τd,

1

2

n

lnn
≤ 2j1d ≤ n

lnn
,

• the estimator f̂Xo
1

is the analog of f̂ but with do instead of d and Xo
i

instead of Xi.

Remark 4.1. The thresholding in (4.5) is to ensure that f̂Xo
1
(xo) is large

enough, and a fortiori, justified the ratio form of ĝ. This idea was recently de-
veloped by Vasiliev (2014) in a general context under mean integrated errors.

The following result investigates the rate of convergence attained by ĝ under
the pointwise mean absolute error.

Proposition 4.2. Let g be (4.4), ĝ be defined by (4.5) and x0 = (x∗0,x
o
0) ∈

[0, 1]d. Suppose that (B1) and (B2) hold and f ∈ Λαd (x0,M) with M > 0 and

α ≥ 0 and fXo
1
∈ Λβdo(xo0,M

o) with Mo > 0 and β ≥ 0. Then there exists a
constant C > 0 such that, for n large enough,

E
(
(ĝ(x0)− g(x0))2

)
≤ C

(
lnn

n

)min(2α/(2α+d),2β/(2β+do))

.

The proof of Proposition 4.2 uses a suitable decomposition of the pointwise
mean absolute error of ĝ and Theorem 3.1 applied to f̂ and f̂Xo

1
. This result

shows the consistence of ĝ and the influence of the smoothness of f and fXo
1

in
the estimation of g by ĝ.
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5. Proofs

In this section, C denotes any constant that does not depend on j, k and n. Its
value may change from one term to another.

Proof of Theorem 3.1. Using the triangular inequality and the inequality: (x+
y + z)2 ≤ 3(x2 + y2 + z2), (x, y, z) ∈ R3, we obtain

E
(

(f̂(x0)− f(x0))2
)
≤ 3(Q1 +Q2 +Q3), (5.1)

where

Q1 = E


 ∑

k∈Dj0

|ĉj0,k − cj0,k||Φj0,k(x0)|

2
 ,

Q2 = E


2d−1∑
u=1

j1∑
j=j0

∑
k∈Dj

|T (d̂j,k,u, κ2ωjλn)− dj,k,u||Ψj,k,u(x0)|

2


and

Q3 =

2d−1∑
u=1

∞∑
j=j1+1

∑
k∈Dj

|dj,k,u||Ψj,k,u(x0)|

2

.

Bound for Q1: Using the Cauchy-Schwarz inequality, (a), the inequality∑
k∈Dj0

|Φj0,k(x0)| ≤ C2j0d/2 (since Card({k ∈ Dj0 ; Φj0,k(x0) 6= 0}) ≤ C and

supx∈[0,1]d |Φj0,k(x)| ≤ C2j0d/2) and (c), we have

Q1 ≤

 ∑
k∈Dj0

(
E
(
(ĉj0,k − cj0,k)2

))1/2 |Φj0,k(x0)|

2

≤ Cλ2n22ωj0

 ∑
k∈Dj0

|Φj0,k(x0)|

2

≤ Cλ2n2j0(d+2ω) ≤ Cλ2n(lnn)ν

≤ C
(
λ2n
)2α/(2α+2ω+d)

. (5.2)

Bound for Q2: By the inequality: (x+ y)2 ≤ 2(x2 + y2), (x, y) ∈ R2, and the
definition of the term-by-term thresholding (3.2), we obtain

Q2 ≤ C(Q2,1 +Q2,2), (5.3)

where

Q2,1 =

2d−1∑
u=1

j1∑
j=j0

∑
k∈Dj

min(|dj,k,u|, κ2ωjλn)|Ψj,k,u(x0)|

2
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and

Q2,2 = E


2d−1∑
u=1

j1∑
j=j0

∑
k∈Dj

|d̂j,k,u − dj,k,u|1{|d̂j,k,u−dj,k,u|≥κ2ωjλn/2}|Ψj,k,u(x0)|

2
 .

Bound for Q2,1: Recall that f ∈ Λαd (x0,M) implies that, for any k ∈ Ku,j(x0),
|dj,k,u| ≤M2−j(d/2+α). Let j2 be an integer satisfying

1

2

(
1

λ2n

)1/(2α+2ω+d)

< 2j2 ≤
(

1

λ2n

)1/(2α+2ω+d)

.

This inequality with: (x+y)2 ≤ 2(x2+y2), (x, y) ∈ R2, and
∑

k∈Dj
|Ψj,k,u(x0)| ≤

C2jd/2 (since Card({k ∈ Dj ; Ψj,k,u(x0) 6= 0}) ≤ C and supx∈[0,1]d |Ψj,k,u(x)| ≤
C2jd/2), yield

Q2,1 ≤ 2

2d−1∑
u=1

j2∑
j=j0

∑
k∈Dj

min(|dj,k,u|, κ2ωjλn)|Ψj,k,u(x0)|

2

+ 2

2d−1∑
u=1

j1∑
j=j2+1

∑
k∈Dj

min(|dj,k,u|, κ2ωjλn)|Ψj,k,u(x0)|

2

≤ 2κ2λ2n

2d−1∑
u=1

j2∑
j=j0

2ωj
∑
k∈Dj

|Ψj,k,u(x0)|

2

+ 2M2

2d−1∑
u=1

j1∑
j=j2+1

2−j(d/2+α)
∑
k∈Dj

|Ψj,k,u(x0)|

2

≤ C

λ2n
 j2∑
j=τ

2j(d+2ω)/2

2

+

 ∞∑
j=j2+1

2−jα

2


≤ C
(
λ2n2j2(d+2ω) + 2−2j2α

)
≤ C

(
λ2n
)2α/(2α+2ω+d)

.

Bound for Q2,2: By the Cauchy-Schwarz inequality we get

Q2,2 ≤2d−1∑
u=1

j1∑
j=j0

∑
k∈Dj

(
E
(

(d̂j,k,u − dj,k,u)21{|d̂j,k,u−dj,k,u|≥κ2ωjλn/2}
))1/2

|Ψj,k,u(x0)|

2

.

imsart-generic ver. 2009/12/15 file: mult-point.tex date: September 29, 2015



Chesneau & Navarro/ 11

It follows from the Cauchy-Schwarz inequality and (b) that(
E
(

(d̂j,k,u − dj,k,u)21{|d̂j,k,u−dj,k,u|≥κ2ωjλn/2}
))1/2

≤
(
E
(

(d̂j,k,u − dj,k,u)4
)
P
(
|d̂j,k,u − dj,k,u| > κ2ωjλn/2

))1/4
≤ C2ωjλ2n.

Owing to the inequality
∑

k∈Dj
|Ψj,k,u(x0)| ≤ C2jd/2 and (c), we have

Q2,2 ≤ Cλ4n

2d−1∑
u=1

j1∑
j=j0

2ωj
∑
k∈Dj

|Ψj,k,u(x0)|

2

≤ Cλ4n

 j1∑
j=τ

2j(d+2ω)/2

2

≤ Cλ4n2j1(d+2ω) ≤ Cλ4n
1

λ2n(lnn)%
≤ Cλ2n ≤ C

(
λ2n
)2α/(2α+2ω+d)

. (5.4)

Putting (5.3) and (5.4) together, we obtain

Q2 ≤ C
(
λ2n
)2α/(2α+2ω+d)

. (5.5)

Bound for Q3: Owing to f ∈ Λαd (x0,M), again
∑

k∈Dj
|Ψj,k,u(x0)| ≤ C2jd/2

and (c), we have

Q3 ≤ M2

2d−1∑
u=1

∞∑
j=j1+1

2−j(d/2+α)
∑
k∈Dj

|Ψj,k,u(x0)|

2

≤ C

 ∞∑
j=j1+1

2−jα

2

≤ C2−2j1α ≤ C
(
λ2n(lnn)%

)2α/(d+2ω) ≤ C
(
λ2n
)2α/(2α+2ω+d)

. (5.6)

Combining (5.1), (5.2), (5.5) and (5.6), we prove that

E
(

(f̂(x0)− f(x0))2
)
≤ C

(
λ2n
)2α/(2α+2ω+d)

.

The proof of Theorem 3.1 is completed.

�

Proof of Proposition 4.1. Let us investigate the assumptions (a), (b) and (c) of
Theorem 3.1 with the configuration (d, λn, ν, %, ω) = (d,

√
lnn/n, 2, 4, 0). Using

(A1)-(A4), it follows from (Chesneau, 2013, Proposition 5.1) that

E((ĉj0,k − cj0,k)2) ≤ C 1

n
≤ C lnn

n
, E((d̂j,k,u − dj,k,u)4) ≤ Cn

and, for κ large enough,

P

(
|d̂j,k,u − dj,k,u| ≥

κ

2

√
lnn

n

)
≤ C 1

n5
.
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Hence

E((d̂j,k,u − dj,k,u)4)P

(
|d̂j,k,u − dj,k,u| ≥

κ

2

√
lnn

n

)
≤ C 1

n4
≤ C

(
lnn

n

)4

.

So (a) and (b) are satisfied. Note that (c) holds since

lim
n→∞

(lnn)max(ν,%)

(
lnn

n

)(1−υ)

= 0

for any υ ∈ [0, 1). Theorem 3.1 can be applied with (d, λn, ν, %, ω) = (d,
√

lnn/n, 2, 4, 0)
which yields the desired result: if f ∈ Λαd (x0,M), there exists a constant C > 0
such that, for n large enough,

E
(

(f̂(x0)− f(x0))2
)
≤ C

(
lnn

n

)2α/(2α+d)

.

This ends the proof Proposition 4.1.

�

Proof of Proposition 4.2. First of all, let us investigate the rates of convergence
attained by f̂ and f̂Xo

1
under the pointwise mean squared error. Let us investi-

gate the assumptions (a), (b) and (c) of Theorem 3.1 with the configuration
(d, λn, ν, %, ω) = (d,

√
lnn/n, 0, 0, 0). Using (B1), similar arguments to (Donoho

et al., 1996, Section 5.1.1.) (i.e., the Rosenthal inequality and the Bernstein in-
equality) give

E((ĉj0,k − cj0,k)2) ≤ C 1

n
≤ C lnn

n
, E((d̂j,k,u − dj,k,u)4) ≤ C 1

n2

and, for κ large enough,

P

(
|d̂j,k,u − dj,k,u| ≥

κ

2

√
lnn

n

)
≤ C 1

n2
.

So

E((d̂j,k,u − dj,k,u)4)P

(
|d̂j,k,u − dj,k,u| ≥

κ

2

√
lnn

n

)
≤ C 1

n4
≤ C

(
lnn

n

)4

.

So (a) and (b) are satisfied. Note that (c) holds since

lim
n→∞

(lnn)max(ν,%)

(
lnn

n

)(1−υ)

= 0

for any υ ∈ [0, 1). Therefore, we can apply Theorem 3.1 with (d, λn, ν, %, ω) =
(d,
√

lnn/n, 0, 0, 0) which yields the desired result: if f ∈ Λαd (x0,M), there exists
a constant C > 0 such that, for n large enough,

E
(

(f̂(x0)− f(x0))2
)
≤ C

(
lnn

n

)2α/(2α+d)

. (5.7)
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On the other hand, observe that (B1) imply supx∈[0,1]do fXo
1
(x) ≤ C. There-

fore, using similar arguments, one can prove (a), (b) and (c) with the simple
configuration (d, λn, ν, %, ω) = (do,

√
lnn/n, 0, 0, 0). Owing to Theorem 3.1, if

fXo
1
∈ Λβdo(xo0,M

o), then there exists a constant C > 0 such that, for n large
enough,

E
(

(f̂Xo
1
(xo0)− fXo

1
(xo0))2

)
≤ C

(
lnn

n

)2β/(2β+do)

. (5.8)

Let us now determine the rate of convergence attains by ĝ under the pointwise
mean absolute error. We use the following natural decomposition:

ĝ(x0)− g(x0) =
f̂(x0)

f̂Xo
1
(xo0)

1{
f̂Xo

1
(xo

0)≥c/2
} − f(x0)

fXo
1
(xo0)

=
1

f̂Xo
1
(xo0)fXo

1
(xo0)

(
fXo

1
(xo0)(f̂(x0)− f(x0)) + f(x0)(fXo

1
(xo0)− f̂Xo

1
(xo0))

)
1{

f̂Xo
1
(xo

0)≥c/2
}

− f(x0)

fXo
1
(xo0)

1{
f̂Xo

1
(xo

0)<c/2
}.

Observe that (B2) gives infx∈[0,1]do fXo
1
(x) ≥ c which implies

{
f̂Xo

1
(xo0) < c/2

}
⊆{

|f̂Xo
1
(xo0)− fXo

1
(xo0)| > c/2

}
and, by the Markov inequality,

1{
f̂Xo

1
(xo

0)<c/2
} ≤ 2

c
|f̂Xo

1
(xo0)− fXo

1
(xo0)|.

The triangular inequality, the above inequality and the boundedness assump-
tions on the functions yield

|ĝ(x0)− g(x0)| ≤ C(|f̂(x0)− f(x0)|+ |f̂Xo
1
(xo0)− fXo

1
(xo0)|).

By the inequality: (x+ y)2 ≤ 2(x2 + y2), (x, y) ∈ R2, (5.7) and (5.8), we obtain

E((ĝ(x0)− g(x0))2) ≤ C
(
E
(

(f̂(x0)− f(x0))2
)

+ E
(

(f̂Xo
1
(xo0)− fXo

1
(xo0))2

))
≤ C

((
lnn

n

)2α/(2α+d)

+

(
lnn

n

)2β/(2β+do)
)

≤ C

(
lnn

n

)min(2α/(2α+d),2β/(2β+do))

.

This ends the proof Proposition 4.2.

�
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