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A SIMPLE FORMULA FOR THE SERIES OF CONSTELLATIONS

AND QUASI-CONSTELLATIONS WITH BOUNDARIES

GWENDAL COLLET AND ÉRIC FUSY

Abstract. We obtain a very simple formula for the generating function of

bipartite (resp. quasi-bipartite) planar maps with boundaries (holes) of pre-

scribed lengths, which generalizes certain expressions obtained by Eynard in
a book to appear. The formula is derived from a bijection due to Bouttier, Di

Francesco and Guitter combined with a process (reminiscent of a construction

of Pitman) of aggregating connected components of a forest into a single tree.
The formula naturally extends to p-constellations and quasi-p-constellations

with boundaries (the case p = 2 corresponding to bipartite maps).

1. Introduction

Planar maps, i.e., connected graphs embedded on the sphere, have attracted a
lot of attention since the seminal work of Tutte [21, 22]. By considering rooted
maps (i.e., maps where a corner is marked 1) and using a recursive approach, Tutte
found beautiful counting formulas for many families of maps (bipartite, triangula-
tions,...). Several features occur recurrently (see [3] for a unified treatment): the
generating function y = y(x) is typically algebraic, often lagrangean (i.e., there is
a parametrization as {y = Q1(t), x = Q2(t)}, where Q1(.) and Q2(.) are explicit
rational expressions), yielding simple (binomial-like) formulas for the counting coef-
ficients cn, and the asymptotics of the coefficients is in cγnn−5/2 for some constants
c > 0 and γ > 1. In this article we firstly focus on bipartite maps (all faces have
even degree) and on quasi-bipartite maps (all faces have even degree except for two,
which have odd degree). One of the first counting results obtained by Tutte is a
strikingly simple formula (called formula of slicings) for the number A[`1, . . . , `r]
of maps with r numbered faces f1, . . . , fr of respective degrees `1, . . . , `r, each face
having a marked corner (for simple parity reasons the number of odd `i must be
even).

Solving a technically involved recurrence satisfied by these coefficients, he proved
in [21] that when none or only two of the `i are odd (bipartite and quasi-bipartite
case, respectively), then:

(1) A[`1, . . . , `r] =
(e− 1)!

v!

r∏

i=1

α(`i), with α(`) :=
`!

b`/2c! b(`− 1)/2c! ,

where e =
∑r

i=1 `i/2 and v = e − r + 2 are the numbers of edges and vertices in
such maps. The formula was recovered by Cori [11, 12] (using a certain encoding
procedure for planar maps); and the formula in the bipartite case was rediscovered
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1In the literature, rooted maps are often defined as maps with a marked oriented edge, which

is equivalent to marking a corner, e.g., the corner to the left of the origin of the marked edge.
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Figure 1. (a) A bipartite map with 2 boundaries f1, f2 of re-
spective degree 4, 6. (b) A quasi-bipartite map with 3 boundaries
f1, f2, f3 of respective degree 5, 3, 4.

bijectively by Schaeffer [19], based on a correspondence with so-called blossoming
trees. Alternatively one can use a more recent bijection by Bouttier, Di Francesco
and Guitter [7] (based on a correspondence with so-called mobiles) which itself ex-
tends earlier constructions by Cori and Vauquelin [13] and by Schaeffer [18, Sec. 6.1]
for quadrangulations. The bijection with mobiles yields the following: if we denote
by R ≡ R(t) ≡ R(t;x1, x2, . . .) the generating function specified by

(2) R = t+
∑

i≥1

xi

(
2i− 1

i

)
Ri.

and denote by M(t) ≡ M(t;x1, x2, . . .) the generating function of rooted bipartite
maps, where t marks the number of vertices and xi marks the number of faces of
degree 2i for i ≥ 1, then M ′(t) = 2R(t). And one easily recovers (1) in the bipartite
case by an application of the Lagrange inversion formula to extract the coefficients
of R(t).

As we can see, maps might satisfy beautiful counting formulas, regarding count-
ing coefficients 2. Regarding generating functions, formulas can be very nice and
compact as well. In a book to be published [14], Eynard gives an iterative proce-
dure (based on residue calculations) to compute the generating function of maps
of arbitrary genus and with several marked faces, which we will call boundary-
faces (or shortly boundaries). In certain cases, this yields an explicit expression
for the generating function. For example, he obtains formulas for the (multivari-
ate) generating functions of bipartite and quasi-bipartite maps with two or three
boundaries of arbitrary lengths `1, `2, `3 (in the quasi-bipartite case two of these
lengths are odd), where t marks the number of vertices and xi marks the number
of non-boundary faces of degree 2i:

2We also mention the work of Krikun [15] where a beautiful formula is proved for the number
of triangulations with multiple boundaries of prescribed lengths, a bijective proof of which is still

to be found.
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G`1,`2 = γ`1+`2

b`2/2c∑

j=0

(`2 − 2j)
`1! `2!

j! ( `1−`2
2 + j)! ( `1+`2

2 − j)! (`2 − j)!
,(3)

G`1,`2,`3 =
γ`1+`2+`3−1

y′(1)

(
3∏

i=1

`i!

b`i/2c ! b(`i − 1)/2c !

)
.(4)

In these formulas the series γ and y′(1) are closely related to R(t), precisely γ2 =
R(t) and one can check that y′(1) = γ/R′(t).

In the first part of this article, we obtain new formulas which generalize Eynard’s
ones to any number of boundaries, both in the bipartite and the quasi-bipartite case.
For r ≥ 1 and `1, . . . , `r positive integers, an even map of type (`1, . . . , `r) is a map
with r (numbered) marked faces —called boundary-faces— f1, . . . , fr of degrees
`1, . . . , `r, each boundary-face having a marked corner, and with all the other faces
of even degree. (Note that there is an even number of odd `i by a simple parity
argument.) Let G`1,...,`r := G`1,...,`r (t;x1, x2, . . .) be the corresponding generating
function where t marks the number of vertices and xi marks the number of non-
boundary faces of degree 2i. Our main result is:

Theorem 1. When none or only two of the `i are odd, then the following formula
holds:

(5) G`1,...,`r =
( r∏

i=1

α(`i)
)
· 1

s
· dr−2

dtr−2
Rs,

with α(`) =
`!

b `2c! b `−1
2 c!

, s =
`1 + · · ·+ `r

2
, where R is given by (2).

Our formula covers all parity cases for the `i when r ≤ 3. For r = 1, the formula
reads G2a

′ =
(

2a
a

)
Ra, which is a direct consequence of the bijection with mobiles.

For r = 2 the formula reads G`1,`2 = α(`1)α(`2)Rs/s (which simplifies the constant
in (3)). And for r = 3 the formula reads G`1,`2,`3 = α(`1)α(`2)α(`3)R′Rs−1. Note
that (5) also “contains” the formula of slicings (1), by noticing that A[`1, . . . , `r]
equals the evaluation of G`1,...,`r at {t = 1;x1 = 0, x2 = 0, . . .}, which equals

(
∏r

i=1 α(`i)) · (s−1)!
(s−r+2)! . Hence, (5) can be seen as an “interpolation” between the

two formulas of Eynard given above and Tutte’s formula of slicings. In addition, (5)
has the nice feature that the expression of G`1,...,`r splits into two factors: (i) a
constant factor which itself is a product of independent contributions from every
boundary, (ii) a series-factor that just depends on the number of boundaries and
the total length of the boundaries.

Even though the coefficients of G`1,...,`r have simple binomial-like expressions
(easy to obtain from (1)), it does not explain why at the level of generating func-
tions the expression (5) is so simple (and it would not be obvious to guess (5) by
just looking at (1)). Relying on the bijection with mobiles (recalled in Section 2),
we give a transparent proof of (5). In the bipartite case, our construction (de-
scribed in Section 3) starts from a forest of mobiles with some marked vertices, and
then we aggregate the connected components so as to obtain a single mobile with
some marked black vertices of fixed degrees (these black vertices correspond to the
boundary-faces). The idea of aggregating connected components as we do is remi-
niscent of a construction due to Pitman [17], giving for instance a very simple proof
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Figure 2. (a) A 4-constellation with 2 boundaries f1, f2 of re-
spective degree 8, 4. (b) A quasi-3-constellation with 3 boundaries
f1, f2, f3 of respective degree 4, 5, 6.

(see [1, Chap. 26]) that the number of Cayley trees with n nodes is nn−2. Then we
show in Section 4 that the formula in the quasi-bipartite case can be obtained by
a reduction to the bipartite case 3 This reduction is done bijectively with the help
of auxiliary trees called blossoming trees. Let us mention that these blossoming
trees have been introduced in another bijection with bipartite maps [19]. We could
alternatively use this bijection to prove Theorem 1 in the bipartite case (none of
the `i is odd). But in order to encode quasi-bipartite maps, one would have to
use extensions of this bijection [5, 6] in which the encoding would become rather
involved. This is the reason why we rely on bijections with mobiles, as given in [7].

In the second part of the article, we extend the formula of Theorem 1 to constella-
tions and quasi-constellations, families of maps which naturally generalize bipartite
and quasi-bipartite maps. Define an hypermap as an eulerian map (map with all
faces of even degree) whose faces are bicolored —there are dark faces and light
faces— such that any edge has a dark face on one side and a light face on the other
side 4. Define a p-hypermap as a hypermap whose dark faces are of degree p (note
that classical maps correspond to 2-hypermaps, since each edge can be blown into
a dark face of degree 2). Note that the degrees of light faces in a p-hypermap add
up to a multiple of p. A p-constellation is a p-hypermap such that the degrees
of light faces are multiples of p, and a quasi p-constellation is a p-hypermap such
that exactly two light faces have a degree not multiple of p. By the identification
with maps, 2-constellations and quasi 2-constellations correspond respectively to
bipartite maps and quasi-bipartite maps.

Bouttier, Di Francesco and Guitter [7] also described a bijection for hypermaps,
in correspondence with more involved mobiles (recalled in Section 5.1). When
applied to p-constellations, this bijection yields the following: if we denote by Rp =

3It would be interesting as a next step to search for a simple formula for G`1,...,`r when four
or more of the `i are odd (however, as noted by Tutte [21], the coefficients do not seem to be that
simple, they have large prime factors).

4Hypermaps have several equivalent definitions in the literature; our definition coincides with
the one of Walsh [16], by turning each dark face into a star centered at a dark vertex; and coincides
with the definitions of Cori and of James [20] where hypervertices are collapsed into vertices.
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Rp(t) = Rp(t;x1, x2, . . .) the generating function specified by

(6) Rp = t+
∑

i≥1

xi

(
pi− 1

i

)
R(p−1)i

p .

and by Cp(t) = Cp(t;x1, x2, . . .) the generating function of rooted p-constellations
(i.e., p-constellations with a marked corner incident to a light face) where t marks
the number of vertices and xi marks the number of light faces of degree pi for i ≥ 1,
then the bijection of [7] ensures that C ′p(t) = p

p−1Rp(t).

We use this bijection and tools from Sections 3 and 4 to obtain the following
formula for the generating function of constellations (proved in Section 5.2) and

quasi-constellations (proved in Section 5.3). Let G
(p)
`1,...,`r

:= G
(p)
`1,...,`r

(t;x1, x2, . . .)

be the generating function of p-hypermaps with r (numbered) boundaries f1, . . . , fr
of degrees `1, . . . , `r, whose non-marked faces have degrees a multiple of p, where t
marks the number of vertices and xi marks the number of non-boundary faces of
degree pi. Then:

Theorem 2. When none or only two of the `i are not multiple of p, then the
following formula holds:

(7) G
(p)
`1,...,`r

=
( r∏

i=1

α(`i)
)
· c
s
· dr−2

dtr−2
Rs

p,

where α(`) =
`!

b`/pc! (`− b`/pc − 1) !
, s =

p− 1

p
(`1 + · · ·+ `r), Rp is given by (6),

and c =

{
1, when every `i is a multiple of p,
p− 1, when exactly two `i are not multiple of p.

First note that Theorem 1 is the direct application of Theorem 2 when p = 2.
Moreover, this yields the following extension of Tutte’s slicing formula:

Corollary 3. For p ≥ 2, let A(p)[`1, . . . , `r] be the number of p-hypermaps with
exactly r numbered light faces f1, . . . , fr of respective degrees `1, . . . , `r, each light
face having a marked corner.
When none or only two of the `i are not multiple of p (p-constellations and quasi-
p-constellations, respectively), then:

(8) A(p)[`1, . . . , `r] = c
(ε− d− 1)!

v!

r∏

i=1

α(`i), with α(`) :=
`!

b`/pc! (`− b`/pc − 1)!
,

where ε =
∑r

i=1 `i is the number of edges, d =

∑r
i=1 `i
p

is the number of dark faces,

and v = ε− d− r + 2 is the number of vertices,

and c =

{
1, when every `i is a multiple of p,
p− 1, when exactly two `i are not multiple of p.

One gets (8) out of (7) by taking the evaluation of G
(p)
`1,...,`r

at {t = 1;x1 = 0, x2 =

0, . . .}. The expression of the numbers A(p)[`1, . . . , `r] when all `i are multiples of
p has been discovered by Bousquet-Mélou and Schaeffer [4], but to our knowledge,
the expression for quasi-constellations has not been given before (though it could
also be obtained from Chapuy’s results [9], see the paragraphs after Lemma 10 and
Lemma 22).
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Note. This is the full version of a conference paper [10] entitled “A simple formula
for the series of bipartite and quasi-bipartite maps with boundaries” presented
at the conference FPSAC’12. In particular we extend here the formulas obtained
in [10] to constellations and quasi-constellations. We would like to mention that very
recently Bouttier and Guitter [8] have found extensions of the formulas from [10]
in another direction, to so-called 2b-irreducible bipartite maps (maps with all faces
of degrees at least 2b and where all non-facial cycles have length at least 2b+ 2).

Notation. We will often use the following notation: for A and B two (typically
infinite) combinatorial classes and a and b two integers, write a · A ' b · B if there
is a “natural” a-to-b correspondence between A and B (the correspondence will be
explicit each time the notation is used) that preserves several parameters (which
will be listed when the notation is used, typically the correspondence will preserve
the face-degree distribution).

2. Bijection between vertex-pointed maps and mobiles

We recall here a well-known bijection due to Bouttier, Di Francesco and Guit-
ter [7] between vertex-pointed planar maps and a certain family of decorated trees
called mobiles. We actually follow a slight reformulation of the bijection given in [2].
A mobile is a plane tree (i.e., a planar map with one face) with vertices either black
or white, with dangling half-edges —called buds— at black vertices, such that there
is no white-white edge, and such that each black vertex has as many buds as white
neighbours.The degree of a black vertex v is the total number of incident half-edges
(including the buds) incident to v. Starting from a planar map G with a pointed
vertex v0, and where the vertices of G are considered as white, one obtains a mobile
M as follows (see Figure 3):

• Endow G with its geodesic orientation from v0 (i.e., an edge {v, v′} is ori-
ented from v to v′ if v′ is one unit further than v from v0, and is left
unoriented if v and v′ are at the same distance from v0).
• Put a new black vertex in each face of G.
• Apply the following local rules to each edge (one rule for oriented edges

and one rule for unoriented edges) of G:

• Delete the edges of G and the vertex v0.

Theorem 4 (Bouttier, Di Francesco and Guitter [7]). The above construction is
a bijection between vertex-pointed maps and mobiles. Each non-root vertex in the
map corresponds to a white vertex in the mobile. Each face of degree i in the map
corresponds to a black vertex of degree i in the mobile.

A mobile is called bipartite when all black vertices have even degree, and is
called quasi-bipartite when all black vertices have even degree except for two which
have odd degree. Note that bipartite (resp. quasi-bipartite) mobiles correspond to
bipartite (resp. quasi-bipartite) vertex-pointed maps.
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(a) (b) (c)

Figure 3. (a) A vertex-pointed map endowed with the geodesic
orientation (with respect to the marked vertex). (b) The local rule
is applied to each edge of the map. (c) The resulting mobile.

Claim 5. A mobile is bipartite iff it has no black-black edge. A mobile is quasi-
bipartite iff the set of black-black edges forms a non-empty path whose extremities
are the two black vertices of odd degrees.

Proof. Let T be a mobile and F the forest formed by the black vertices and black-
black edges of T . Note that for each black vertex of T , the degree and the number
of incident black-black edges have same parity. Hence if T is bipartite, F has
only vertices of even degree, so F is empty; while if T is quasi-bipartite, F has
two vertices of odd degree, so the only possibility is that the edges of F form a
non-empty path. �

A bipartite mobile is called rooted if it has a marked corner at a white vertex. Let
R := R(t;x1, x2, . . .) be the generating function of rooted bipartite mobiles, where
t marks the number of white vertices and xi marks the number of black vertices of
degree 2i for i ≥ 1. As shown in [7], a decomposition at the root ensures that R
is given by Equation (2); indeed if we denote by S the generating function of bi-

partite mobiles rooted at a white leaf, then R = t+RS and S =
∑

i≥1 xi
(

2i−1
i

)
Ri−1.

For a mobile γ with marked black vertices b1, . . . , br of degrees 2a1, . . . , 2ar, the
associated pruned mobile γ̂ obtained from γ by deleting the buds at the marked
vertices (thus the marked vertices get degrees a1, . . . , ar). Conversely, such a pruned
mobile yields

∏r
i=1

(
2ai−1

ai

)
mobiles (because of the number of ways to place the buds

around the marked black vertices). Hence, if we denote by B2a1,...,2ar the family
of bipartite mobiles with r marked black vertices of respective degree 2a1, . . . , 2ar,

and denote by B̂2a1,...,2ar
the family of pruned bipartite mobiles with r marked

black vertices of respective degree a1, . . . , ar, we have:

B2a1,...,2ar '
r∏

i=1

(
2ai − 1

ai

)
B̂2a1,...,2ar .

3. Bipartite case

In this section, we consider the two following families:
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. . .R R R R R R R R R

a1︷ ︸︸ ︷
a2︷ ︸︸ ︷

ar︷ ︸︸ ︷

b1 b2 br

r3

wk

r0 r1 r2

bj

bi

bi

wk

r3

r1 r2

r0

merge

bj

(a)

(b)

⇒

Figure 4. (a) From a forest with s =
∑r

i=1 ai mobiles to r com-
ponents rooted at black vertices b1, . . . , br. (b) Merging the com-
ponent rooted at bj with the distinct component rooted at bi con-
taining the marked white vertex wk.

• M̂2a1,...,2ar is the family of pruned bipartite mobiles with r marked black
vertices of respective degrees a1, . . . , ar, the mobile being rooted at a corner
of one of the marked vertices,
• Fs is the family of forests made of s :=

∑r
i=1 ai rooted bipartite mobiles,

and where additionnally r − 1 white vertices w1, . . . , wr−1 are marked.

Proposition 6. There is an (r− 1)!-to-(r− 1)! correspondence between the family

M̂2a1,...,2ar and the family Fs. If γ ∈ M̂2a1,...,2ar corresponds to γ′ ∈ Fs, then
each white vertex in γ corresponds to a white vertex in γ′, and each unmarked black
vertex of degree 2i in γ corresponds to a black vertex of degree 2i in γ′.

Proof. We will describe the correspondence in both ways (see Figure 4). First, one
can go from the forest to the pruned mobile through the following operations:

(1) Group the first a1 mobiles and bind them to a new black vertex b1, then
bind the next a2 mobiles to a new black vertex b2, and so on, to get a forest
with r connected components rooted at b1, . . . , br, see Figure 4(a).

(2) The r − 1 marked white vertices w1, . . . , wr−1 are ordered, pick one of the
r−1 components which do not contain wr−1. Bind this component to wr−1

by merging wr−1 with the rightmost white neighbour of bi, see Figure 4(b).
Repeat the operation for each wr−i to reduce the number of components to
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one (r− i possibilities in the choice of the connected component at the ith
step), thus getting a decorated bipartite tree rooted at a corner incident to
some bj , and having r black vertices b1, . . . , br without buds.

Conversely, one can go from the pruned mobile to the forest through the following
operations:

(1) Pick one marked black vertex bk, but the root, and separate it as in Figure
4(b) read from right to left. This creates a new connected component,
rooted at bk.

(2) Repeat this operation, choosing at each step (r − i possibilites at the ith
step) a marked black vertex that is not the root in its connected component,
until one gets r connected components, each being rooted at one of the
marked black vertices {b1, . . . , br} of respective degrees a1, . . . , ar.

(3) Remove all marked black vertices b1, . . . , br and their incident edges; this
yields a forest of s rooted bipartite mobiles.

In both ways, there are
∏r−1

i=1 (r − i) = (r − 1)! possibilities, that is, the corre-
spondence is (r − 1)!-to-(r − 1)!. �

As a corollary we obtain the formula of Theorem 1 in the bipartite case:

Corollary 7. For r ≥ 1 and a1, . . . , ar positive integers, the generating function
G2a1,...,2ar

satisfies (5), i.e.,

(9) G2a1,...,2ar
=

(
r∏

i=1

(2ai)!

ai! (ai − 1)!

)
· 1

s
· dr−2

dtr−2
Rs, where s =

r∑

i=1

ai.

Proof. As mentioned in the introduction, for r = 1 the expression reads G2a
′ =(

2a
a

)
Ra, which is a direct consequence of the bijection with mobiles (indeed G2a

′ is
the series of mobiles with a marked black vertex v of degree 2a, with a marked corner
incident to v). So we now assume r ≥ 2. Let B2a1,...,2ar = B2a1,...,2ar (t;x1, x2, . . .)
be the generating function of B2a1,...,2ar

, where t marks the number of white ver-

tices and xi marks the number of black vertices of degree 2i. Let M̂2a1,...,2ar
=

M̂2a1,...,2ar
(t;x1, x2, . . .) be the generating function of M̂2a1,...,2ar

, where again t
marks the number of white vertices and xi marks the number of black vertices of

degree 2i. By definition of M̂2a1,...,2ar
, we have:

s ·B2a1,...,2ar =

(
r∏

i=1

(
2ai − 1

ai

))
· M̂2a1,...,2ar

where the factor s is due to the number of ways to place the root (i.e., mark a
corner at one of the marked black vertices), and the binomial product is due to
the number of ways to place the buds around the marked black vertices. Moreover,
Theorem 4 ensures that:

G2a1,...,2ar

′ =

(
r∏

i=1

2ai

)
·B2a1,...,2ar

where the multiplicative constant is the consequence of a corner being marked in
every boundary face, and where the derivative (according to t) is the consequence
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(a) (b)

Figure 5. (a) A blossoming tree. (b) The corresponding rooted
bipartite mobile.

of a vertex being marked in the bipartite map. Next, Proposition 6 yields:

M̂2a1,...,2ar =
dr−1

dtr−1
Rs

hence we conclude that:

G2a1,...,2ar

′ =
1

s

(
r∏

i=1

2ai

(
2ai − 1

ai

))
· dr−1

dtr−1
Rs,

which, upon integration according to t, gives the claimed formula. �

4. Quasi-bipartite case

So far we have obtained an expression for the generating function G`1,...,`r when
all `i are even. In general, by definition of even maps of type (`1, . . . , `r), there
is an even number of `i of odd degree. We deal here with the case where exactly
two of the `i are odd. This is done by a reduction to the bipartite case, using
so-called blossoming trees (already considered in [19]) as auxililary structures, see
Figure 5(a) for an example.

Definition 8 (Blossoming trees). A planted plane tree is a plane tree with a marked
leaf; classically it is drawn in a top-down way; each vertex v (different from the root-
leaf) has i (ordered) children, and the integer i is called the arity of v. Vertices
that are not leaves are colored black (so a black vertex means a vertex that is not
a leaf). A blossoming tree is a rooted plane tree where each black vertex v, of arity
i ≥ 1, carries additionally i − 1 dangling half-edges called buds (leaves carry no
bud). The degree of such a black vertex v is considered to be 2i.

By a decomposition at the root, the generating function T := T (t;x1, x2, . . . ) of
blossoming trees, where t marks the number of non-root leaves and xi marks the
number of black vertices of degree 2i, is given by:

(10) T = t+
∑

i≥1

xi

(
2i− 1

i

)
T i.
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Claim 9. There is a bijection between the family T of blossoming trees and the
family R of rooted bipartite mobiles. For γ ∈ T and γ′ ∈ R the associated rooted
bipartite mobile, each non-root leaf of γ corresponds to a white vertex of γ′, and
each black vertex of degree 2i in γ corresponds to a black vertex of degree 2i in γ′.

Proof. Note that the decomposition-equation (10) satisfied by T is exactly the
same as the decomposition-equation (2) satisfied by R. Hence T = R, and one can
easily produce recursively a bijection between T and R that sends black vertices
of degree 2i to black vertices of degree 2i, and sends leaves to white vertices, for
instance Figure 5 shows a blossoming tree and the corresponding rooted bipartite
mobile. �

The bijection between T and R will be used in order to get rid of the black path
(between the two black vertices of odd degrees) which appears in a quasi-bipartite
mobile. Note that, if we denote by R′ the family of rooted mobiles with a marked
white vertex (which does not contribute to the number of white vertices), and by
T ′ the family of blossoming trees with a marked non-root leaf (which does not
contribute to the number of non-root leaves), then T ′ ' R′.

Let τ be a mobile with two marked black vertices v1, v2. Let P = (e1, . . . , ek) be
the path between v1 and v2 in τ . If we untie e1 from v1 and ek from v2, we obtain
3 connected components: the one containing P is called the middle-part τ ′ of τ ;
the edges e1 and ek are called respectively the first end and the second end of τ ′

in τ . The vertices v1 and v2 are called extremal.

Let H be the family of structures that can be obtained as middle-parts of quasi-
bipartite mobiles where v1 and v2 are the two black vertices of odd degree (hence
the path between v1 and v2 contains only black vertices). And let K be the family
of structures that can be obtained as middle-parts of bipartite mobiles with two
marked black vertices v1, v2.

Lemma 10. We have the following bijections:

H ' T ′ ' R′ K ' R′ ×R
Hence:

K ' H×R.

In these bijections each non-extremal black vertex of degree 2i in an object on
the left-hand side corresponds to a non-extremal black vertex of degree 2i in the
corresponding object on the right-hand side.

Proof. Note that any τ ∈ H consists of a path P of black vertices, and each vertex
of degree 2i in P carries (outside of P ) i− 1 buds and i− 1 rooted mobiles (in R),
as illustrated in Figure 6(b). Let τ ′ be τ where each rooted mobile attached to P is
replaced by the corresponding blossoming tree (using the isomorphism of Claim 9),
and where the ends of γ are considered as two marked leaves (respectively the root-
leaf and a marked non-root leaf). We clearly have τ ′ ∈ T ′. Conversely, starting
from τ ′ ∈ T ′, let P be the path between the root-leaf and the non-root marked leaf.
Each vertex of degree 2i on P carries (outside of P ) i−1 buds and i−1 blossoming
trees. Replacing each blossoming tree attached to P by the corresponding rooted
mobile, and seeing the two marked leaves as the first and second end of P , one gets
a structure in H. So we have H ' T ′.
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Figure 6. middle-parts in the bipartite case (a) and in the quasi-
bipartite case (b).

The bijection K ' R′×R is simpler. Indeed, any τ ∈ K can be seen as a rooted
mobile γ with a secondary marked corner at a white vertex (see Figure 6(a)). Let
w (resp. w′) be the white vertex at the root (resp. at the secondary marked corner)
and let P be the path between w and w′. Each white vertex on P can be seen as
carrying two rooted mobiles (in R), one on each side of P . Let r, r′ be the two
rooted mobiles attached at w′ (say, r is the one on the left of w′ when looking
toward w). If we untie r from the rest of γ, then w′ now just acts as a marked
white vertex in γ, so the pair (γ, r) is in R′×R. The mapping from (γ, r) ∈ R′×R
to τ ∈ K processes in the reverse way. We get K ' R′ ×R. �

At the level of generating function expressions, Lemma 10 has been proved by
Chapuy [9, Prop.7.5] in an even more precise form (which keeps track of a certain
distance-parameter between the two extremities). We include our own proof to
make the paper self-contained, and because the new idea of using blossoming trees
as auxiliary tools yields a short bijective proof.

Now from Lemma 10 we can deduce a reduction from the quasi-bipartite to the
bipartite case (in Lemma 11 thereafter, see also Figure 6). Let a1 and a2 be positive
integers. Define B2a1,2a2 as the family of bipartite mobiles with two marked black
vertices v1, v2 of respective degrees 2a1, 2a2. Similarly, define Q2a1−1,2a2+1 as the
family of quasi-bipartite mobiles with two marked black vertices v1, v2 of respective
degrees 2a1 − 1, 2a2 + 1 (i.e., the marked vertices are the two black vertices of

odd degree). Let B̂2a1,2a2 be the family of pruned mobiles (recall that “pruned”
means “where buds at marked black vertices are taken out”) obtained from mobiles

in B2a1,2a2
, and let Q̂2a1−1,2a2+1 be the family of pruned mobiles obtained from

mobiles in Q2a1−1,2a2+1.

Lemma 11. For a1, a2 two positive integers:

B̂2a1,2a2
' Q̂2a1−1,2a2+1.
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In addition, if γ ∈ B̂2a1,2a2
corresponds to γ′ ∈ Q̂2a1−1,2a2+1, then each non-marked

black vertex of degree 2i (resp. each white vertex) in γ corresponds to a non-marked
black vertex of degree 2i (resp. to a white vertex) in γ′.

Proof. Let γ ∈ Q̂2a1−1,2a2+1, and let τ be the middle-part of γ. We construct

γ′ ∈ B̂2a1,2a2 as follows. Note that v2 has a black neighbour b (along the branch
from v2 to v1) and has otherwise a2 white neighbours. Let w be next neighbour
after b in counter-clockwise order around v2, and let r be the mobile (in R) hanging
from w. According to Lemma 10, the pair (τ, r) corresponds to some τ ′ ∈ K. If we
replace the middle-part τ by τ ′ and take out the edge {v2, w} and the mobile r, we

obtain some γ′ ∈ B̂2a1,2a2
. The inverse process is easy to describe, so we obtain a

bijection between Q̂2a1−1,2a2+1 and B̂2a1,2a2
. �

Lemma 11 (in an equivalent form) has first been shown by Cori [11, Theo.VI p.75]
(again we have provided our own short proof to be self-contained).

As a corollary of Lemma 11, we obtain the formula of Theorem 1 in the quasi-
bipartite case, with the exception of the case where the two odd boundaries are of
length 1 (this case will be treated later, in Lemma 13).

Corollary 12. For r ≥ 2 and a1, . . . , ar positive integers, the generating function
G2a1−1,2a2+1,2a3,...,2ar satisfies (5).

Proof. We first consider the case r = 2. Let B̂2a1,2a2
= B̂2a1,2a2

(t;x1, x2, . . .) (resp.

B2a1,2a2
= B2a1,2a2

(t;x1, x2, . . .)) be the generating function of B̂2a1,2a2
(resp. of

B2a1,2a2) where t marks the number of white vertices and xi marks the number of

non-marked black vertices of degree 2i. There are
(

2ai−1
ai

)
ways to place the buds

at each marked black vertex vi (i ∈ {1, 2}), hence:

B2a1,2a2
=

(
2a1 − 1

a1

)(
2a2 − 1

a2

)
B̂2a1,2a2

.

In addition Theorem 4 ensures that G2a1,2a2
′ = 2a12a2B2a1,2a2

(the multiplicative
factor being due to the choice of a marked corner in each boundary-face). Hence:

G2a1,2a2

′ = 4a1a2

(
2a1 − 1

a1

)(
2a2 − 1

a2

)
B̂2a1,2a2 .

Similarly, if we denote by Q̂2a1−1,2a2+1 = Q̂2a1−1,2a2+1(t;x1, x2, . . .) the generating

function of the family Q̂2a1−1,2a2+1 where t marks the number of white vertices and
xi marks the number of non-marked black vertices of degree 2i, then we have:

G2a1−1,2a2+1
′ = (2a1 − 1)(2a2 + 1)

(
2a1 − 2

a1 − 1

)(
2a2

a2

)
Q̂2a1−1,2a2+1.

Since B̂2a1,2a2
= Q̂2a1−1,2a2+1 by Lemma 11, we get (with the notation α(`) =

`!
b`/2c!b(`−1)/2c! ):

α(2a1 − 1) · α(2a2 + 1) ·G2a1,2a2 = α(2a1) · α(2a2) ·G2a1−1,2a2+1.

In a very similar way (by the isomorphism of Lemma 11), we have for r ≥ 2:

α(2a1 − 1) ·α(2a2 + 1) ·G2a1,2a2,2a3,...,2ar
= α(2a1) ·α(2a2) ·G2a1−1,2a2+1,2a3,...,2ar

.

Hence the fact that G2a1−1,2a2+1,2a3,...,2ar
satisfies (5) follows from the fact (already

proved in Corollary 7) that G2a1,2a2,2a3,...,2ar
satisfies (5). �
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It remains to show the fomula when the two odd boundary-faces have length 1.
For that case, we have the following counterpart of Lemma 11:

Lemma 13. Let B2 be the family of bipartite mobiles with a marked black vertex of
degree 2, and let B′2 be the family of objects from B2 where a white vertex is marked.
Then

Q1,1 ' B′2.
In addition, if γ ∈ B′2 corresponds to γ′ ∈ Q1,1, then each white vertex of γ corre-
sponds to a white vertex of γ′, and each non-marked black vertex of degree 2i in γ
corresponds to a non-marked black vertex of degree 2i in γ′.

Proof. A mobile in Q1,1 is completely reduced to its middle-part, so we have

Q1,1 ' H ' T ′ ' R′.
Consider a mobile in R′, i.e., a bipartite mobile where a corner incident to a white
vertex is marked, and a secondary white vertex is marked. At the marked corner
we can attach an edge connected to a new marked black vertex b of degree 2 (the
other incident half-edge of b being a bud). We thus obtain a mobile in B′2, and the
mapping is clearly a bijection. �

By Lemma 13 we have 2G1,1 = G′2, and similarly 2G1,1,2a3,...,2ar = G2,2a3,...,2ar
′.

Hence, again the fact that G1,1,2a3,...,2ar
satisfies (5) follows from the fact that

G2,2a3,...,2ar
satisfies (5), which has been shown in Corollary 7.

5. Extension to p-constellations and quasi p-constellations

We show in this next section that the formula obtained for bipartite and quasi-
bipartite maps (Theorem 1) naturally extends to a formula (Theorem 2) for p-
constellations and quasi p-constellations. The ingredients are the same (bijection
with mobiles and aggregation process to get the formula for p-constellations, and
then use blossoming trees to reduce the formula for quasi p-constellations to the
formula for p-constellations).

5.1. Bijection between vertex-pointed hypermaps and hypermobiles. Hy-
permaps admit a natural orientation by orienting each edge so as to have its incident
dark face to its left. The following bijection is again a reformulation of the bijection
in [7] between vertex-pointed eulerian maps and mobiles. Starting from a hypermap
G with a pointed vertex v0, and where the vertices of G are considered as round
vertices, one obtains a mobile M as follows:

• Endow G with its natural orientation.
• Endow G with its geodesic orientation by keeping oriented edges which

belong to a geodesic oriented path from v0.
• Label vertices of G by their distance from v0.
• Put a light (resp. dark) square in each light (resp. dark) face of G.
• Apply the following rules to each edge (oriented or not) of G:

i i

j +i 1

−i j+1w =
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Figure 7. (a) A vertex-pointed hypermap endowed with its ge-
odesic orientation (with respect to the marked vertex). (b) The
local rule is applied to each edge of the hypermap. (c) The result-
ing hypermobile.

• Forget labels on vertices.

Definition 14 (Hypermobiles). A hypermobile is a tree with three types of vertices
(round, dark square, and light square) and positive integers (called weights) on
some edges, such that:

• there are two types of edges: between a round vertex and a light square
vertex, or between a dark square vertex and a light square vertex (these
edges are called dark-light edges),
• dark square vertices possibly carry buds,
• dark-light edges carry a strictly positive weight, such that, for each square

vertex (dark or light), the sum of weights on its incident edges equals the
degree of the vertex.

Theorem 15 (Bouttier, Di Francesco and Guitter [7]). The above construction is
a bijection between vertex-pointed hypermaps and hypermobiles. Each non-pointed
vertex in the hypermap corresponds to a round vertex in the associated hypermobile,
and each dark (resp. light) face corresponds to a dark (resp. light) square vertex of
the same degree in the associated hypermobile.

5.2. Proof of Theorem 2 for p-constellations. For p ≥ 2, hypermobiles corre-
sponding to vertex-pointed p-constellations are called p-mobiles.

Claim 16 (Characterization of p-mobiles [7]). A p-mobile satisfies the following
properties:

• dark-light edges have weight p,
• each dark square vertex, of degree p, has one light square neighbour and
p − 1 buds (thus can be seen as a “big bud” attached to the light square
neighbour),
• each light square vertex, of degree pi for some i ≥ 1, has i dark square

neighbours (i.e., carries i big buds) and (p− 1)i round neighbours.

Proof. The first assertion is proved as follows. Let T be a p-mobile and F the
forest formed by the edges whose weight is not a multiple of p, and their incident
vertices. By construction, for each vertex of T , the degree and the sum of weights
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(a) (b) (c)

Figure 8. (a) A vertex-pointed p-constellation, p = 4, endowed
with its geodesic orientation (with respect to the marked vertex).
(b) The local rule is applied to each edge of the map. (c) The
resulting p-mobile (weights on dark-light edges, which all equal p,
are omitted).

are multiple of p. Assume F is non-empty. Then F has a leaf v. Hence v has a
unique incident edge whose weight is not a multiple of p, which implies that the
degree of p is not a multiple of p, a contradiction. Hence F is empty and each
weight in T is a multiple of p. Moreover, dark square vertices have degree p, which
implies that weights are at most equal to p. Hence all weights are equal to p. Then
the second and third assertion follow directly from the first one. �

Since the weights are always p they can be omitted, and seeing dark square
vertices as “big buds” it is clear that in the case p = 2 we recover the mobiles for
bipartite maps. A rooted p-mobile is a p-mobile with a marked corner at a round
vertex. Let Rp ≡ Rp(t) ≡ Rp(t;x1, x2, . . .) be the generating function of rooted
p-mobiles where t marks the number of white vertices and, for i ≥ 1, xi marks
the number of light square vertices of degree pi. By a decomposition at the root
(see [7]), Rp satisfies (6).

One can now use the same processus as in Section 3 to describe p-constellations
with r boundaries. For a p-mobile γ with marked light square vertices b1, . . . , br
of degrees pa1, . . . , par, the associated pruned p-mobile γ̂ is obtained from γ by
deleting the (big) buds at the marked vertices (thus the marked vertices get degrees
(p − 1)a1, . . . , (p − 1)ar). Conversely, such a pruned mobile yields

∏r
i=1

(
pai−1

ai

)

mobiles (because of the number of ways to place the big buds around the marked

light square vertices). Hence, if we denote by B(p)
pa1,...,par the family of p-mobiles

with r marked light square vertices of respective degrees pa1, . . . , par, and denote

by B̂(p)
pa1,...,par the family of pruned p-mobiles with r marked light square vertices of

respective degree (p− 1)a1, . . . , (p− 1)ar, we have:

B(p)
pa1,...,par

'
r∏

i=1

(
pai − 1

ai

)
B̂(p)
pa1,...,par

We consider the two following families:

• M̂(p)
pa1,...,par is the family of pruned p-mobiles with r marked light square

vertices v1, . . . , vr of respective degrees (p− 1)a1, . . . , (p− 1)ar, the mobile
being rooted at a corner of one of the marked vertices,
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• F (p)
s is the family of forests made of s := (p− 1)

∑r
i=1 ai rooted p-mobiles,

and where additionnally r − 1 round vertices w1, . . . , wr−1 are marked.

Proposition 17. There is an (r−1)!-to-(r−1)! correspondence between the family

M̂(p)
pa1,...,par and the family F (p)

s . If γ ∈ M̂(p)
pa1,...,par corresponds to γ′ ∈ F (p)

s , then
each round vertex in γ corresponds to a round vertex in γ′, and each light square
vertex of degree pi in γ corresponds to a light square vertex of degree pi in γ′.

Proof. This correspondence works in the same way as in Theorem 6, where light
square vertices act as black vertices and round vertices act as white vertices, and
where one groups the first (p − 1)a1 components of the forest, then the following
(p− 1)a2 components, and so on, and then uses the same aggregation process as in
the bipartite case. �

As a corollary we obtain the formula of Theorem 2 in the case of p-constellations:

Corollary 18. For r ≥ 1 and a1, . . . , ar positive integers, the generating function

G
(p)
pa1,...,par satisfies:

(11) G(p)
pa1,...,par

=

(
r∏

i=1

(pai)!

((p− 1)ai − 1)! ai!

)
·1
s
· d

r−2

dtr−2
Rs

p, where s = (p−1)

r∑

i=1

ai.

Proof. In the case r = 1, the expression reads G
(p)
pa
′ =

(
pa
a

)
Ra

p, which is a direct

consequence of the bijection with p-mobiles (indeed G
(p)
pa
′ is the series of p-mobiles

with a marked light square vertex v of degree pa, with a marked corner incident to
v). So we now assume r ≥ 2. The formula derives (as formula (9)) by combining the
bijection of Theorem 15 and the correspondence of Proposition 17, upon consistent
rooting and placing of the buds, and a final integration.

�

5.3. Proof of Theorem 2 for quasi p-constellations. In a similar way as for
quasi bipartite maps, we prove Theorem 2 in the case of quasi p-constellations (two
boundaries have length not a multiple of p) by a reduction to p-constellations, with
some more technical details. We call quasi p-mobiles the hypermobiles associated to
quasi p-constellations by the bijection of Section 5.1, see Figure 9 for an example.
In the following, we will refer to vertices whose degree is not a multiple of p as
non-regular vertices and edges whose weight is not a multiple of p as non-regular
edges.

Claim 19 (Alternating path in a quasi-p-mobile). In a quasi-p-mobile, all weights
of edges are at most p (so regular edges have weight p) and the set of non-regular
edges forms a non-empty path whose extremities are the two non-regular vertices.
Moreover, if the degrees of the non-regular vertices v1, v2 are pi−d = p(i−1)+p−d
and pj + d, i, j ≥ 1, 1 ≤ d ≤ p− 1 (the sum of the two degrees must be a multiple
of p), the weights along the path from v1 to v2 start with p − d, alternate between
p− d and d, and end with d.

Proof. The fact that the weights are at most p just follows from the fact that dark
square vertices have degree p. Let T be a quasi-p-mobile, and let F be the forest
formed by the non-regular edges of T . Leaves of F are necessarily non-regular, hence
F has only two leaves which are v1, v2, so F is reduced to a path P connecting v1

and v2. Starting from v1, the first edge of P must have weight p− d. This edge is
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Figure 9. (a) A vertex-pointed quasi-3-constellation endowed
with the geodesic orientation. (b) The local rule is applied to
each edge of the map. (c) The resulting quasi-3-mobile, where the
weights on the alternating path are (1, 2, 1, 2).

incident to a black square vertex of degree p, so the following edge of P must have
weight d. The next vertex on P is either v2 or is a regular light square vertex, in
which case the next edge along P must have weight p−d. The alternation continues
the same way until reaching v2 (necessarily using an edge of weight d). �

As for p-mobiles, weights on regular edges (always equal to p) can be omitted, and
dark square vertices not on the alternating path can be seen as “big buds” (those
on the alternating path are considered as “intermediate” dark square vertices). It
is easy to check that regular light square vertices of degree pi are adjacent to i big
buds, and non-regular light square vertices of degree pi+d (for some 1 ≤ d ≤ p−1)
are adjacent to i big buds.

Definition 20 (Blossoming p-trees [4]). For p ≥ 2, a planted p-tree is a planted
tree (non-leaf vertices are light square, leaves are round) where the arity of internal
vertices is of the form (p− 1)i. A blossoming p-tree is a structure obtained from a
planted p-tree where:

• on each edge going down to a light square vertex, a dark square vertex (called
intermediate) is inserted that additionally carries p− 2 buds,
• at each light square vertex of arity (p − 1)i one further attaches i − 1 new

dark square vertices (called big buds), each such dark square vertex carrying
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Figure 10. A blossoming 4-tree.

additionally p− 1 buds. (After these attachments, the light square vertex is
considered to have degree pi.)

Note that in a blossoming p-tree, dark square vertices have degree p. When p = 2,
dark square vertices can be erased, and we obtain the description of a standard
blossoming tree. By a decomposition at the root [4], the generating function Tp :=
Tp(t;x1, x2, . . . ) of rooted blossoming p-trees, where t marks the number of non-
root (round) leaves and xi marks the number of light square vertices of degree pi,
is given by:

(12) Tp = t+
∑

i≥1

(p− 1) · xi
(
pi− 1

i− 1

)
T (p−1)i
p = t+

∑

i≥1

xi

(
pi− 1

i

)
T (p−1)i
p ,

where the factor (p − 1) in the sum represents the number of ways to place the
(p− 2) buds at the dark square vertex adjacent to the root.

Claim 21. There is a bijection between the family Tp of blossoming p-trees and
the family Rp of rooted p-mobiles. For γ ∈ Tp and γ′ ∈ Rp the associated rooted
p-mobile, each non-root round leaf of γ corresponds to a round vertex of γ′, each
light square vertex of degree pi in γ corresponds to a light square vertex of degree
pi in γ′.

Proof. Note that the decomposition-equation (12) satisfied by Tp is exactly the
same as the decomposition-equation (6) satisfied by Rp. Hence Tp = Rp, and one
can easily produce recursively a bijection between Tp andRp that sends light square
vertices of degree pi to light square vertices of degree pi, and sends non-root round
leaves to round vertices. �

The bijection between Tp and Rp will be used in order to get rid of the al-
ternating path between the non-regular two light square vertices that appear in a
quasi-p-mobile. Note that, if we denote by R′p the family of rooted p-mobiles with a
marked round vertex (which does not contribute to the number of round vertices),
and by T ′p the family of blossoming p-trees with a marked round leaf (which does
not contribute to the number of round leaves), then T ′p ' R′p.
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Figure 11. Middle-parts in a quasi-4-mobile (a), and in a 4-
mobile (b).

As in the (quasi-) bipartite case, for a hypermobile with two marked light-square
vertices v1, v2, we can consider the operation of untying the two ends of the path P
connecting v1 and v2. The obtained structure (taking away the connected compo-
nents not containing P ) is called the middle-part of the hypermobile. Let Hp be the
family of structures that can be obtained as middle-parts of quasi-p-mobiles, where
v1 and v2 are the two (ordered) non-regular vertices (thus P is the alternating path
of the quasi p-mobile). And let Kp be the family of structures that can be obtained
as middle-parts of p-mobiles with two marked light square vertices v1, v2. In the
case of Hp, note that, according to Claim 21, the weights along the alternating
path only depend on the degrees (modulo p) of the end vertices. In particular, the
shape of the middle-part and the labels along the path are independent. Hence,
from now on the weights can be omitted when considering middle-parts from Hp.

Lemma 22. We have the following bijections:

Hp ' (p− 1) · T ′p ' (p− 1) · R′p Kp ' R′p ×Rp

Hence:

(p− 1) · Kp ' Hp ×Rp.

In these bijections, each light square vertex of degree pi in an object on the left-
hand side corresponds to a light square vertex of degree pi in the corresponding
object on the right-hand side.

Proof. For Kp ' R′p ×Rp, the proof is similar to Lemma 10, see Figure 11(b). To
prove Hp ' (p − 1) · T ′p (see also Figure 11(a)), we start similarly as in the proof
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of Lemma 10, replacing each rooted p-mobile “adjacent” to the alternating path P
by the corresponding blossoming p-tree. Let b be the (intermediate) dark square
vertex adjacent to v2 on P . If we erase the p − 2 buds at b, then we naturally
obtain a structure in T ′p (b acts as a secondary marked leaf once its incident buds
are taken out). Conversely there are p− 1 ways to distribute the buds at b, which
gives a factor p− 1. �

Again, at the level of generating function expressions, an even more precise
statement (keeping track of a certain distance parameter between the two marked
vertices) is given by Chapuy [9, Prop.7.5] (we include our quite shorter and com-
pletely bijective proof to make the paper self-contained).

Now from Lemma 22 we reduce pruned quasi-p-mobiles to pruned p-mobiles
(pruned means: big buds at the marked light square vertices are taken out). Let

a1, a2 be positive integers, and 1 ≤ d ≤ p−1. Define B̂(p)
pa1,pa2 as the family of pruned

p-mobiles with two marked black vertices v1, v2 of respective degrees (p−1)a1, (p−
1)a2. Similarly define Q̂(p)

pa1−d,pa2+d as the family of pruned quasi-p-mobiles with

two marked black vertices v1, v2 of respective degrees (p−1)a1−d+1, (p−1)a2 +d
(the two marked light square vertices are the non-regular ones).

Lemma 23. For a1, a2 two positive integers, and 1 ≤ d ≤ p− 1:

(p− 1) · B̂(p)
pa1,pa2

' Q̂(p)
pa1−d,pa2+d.

In addition, if γ ∈ B̂(p)
pa1,pa2 corresponds to γ′ ∈ Q̂(p)

pa1−d,pa2+d, then each non-marked
light square vertex of degree pi in γ corresponds to a non-marked light square vertex
of degree pi in γ′.

Proof. The proof is similar to Lemma 11, where we additionally have to transfer a
part of the degree contribution from one end of the alternating path to the other,

in order to obtain a well-formed pruned p-mobile. Let γ ∈ Q̂(p)
pa1−d,pa2+d, and let

τ be the middle-part of γ. We construct γ′ ∈ B̂(p)
pa1,pa2 as follows. Note that v2

has a dark square neighbour b (along the path from v2 to v1) and has otherwise
(p−1)a2 +d−1 white neighbours. Let w0, . . . , wd−1 be the d next neighbourd after
b in counter-clockwise order around v2, and let r0, . . . , rd−1 be the mobiles (in Rp)
hanging from w0, . . . , wd−1. According to Lemma 10, the pair (τ, r0) corresponds
to some pair (i, τ ′), where 1 ≤ i ≤ p− 1 and τ ′ ∈ Kp. If we replace the middle-part
τ by τ ′ and take out the edge {v2, w0} and the mobile r0, then transfer r1, . . . , rd−1

from v2 to v1, we obtain some γ′ ∈ B̂(p)
pa1,pa2 . We associate to γ the pair (i, γ′). The

inverse process is easy to describe, so we obtain a bijection between Q̂(p)
pa1−d,pa2+d

and (p− 1) · B̂(p)
pa1,pa2 . �

Denote by Qpa1−d1,pa2+d,pa3,...,par
the family of quasi p-constellations where the

marked light faces are of degrees pa1 − d, pa2 + d, pa3, . . . , par. As a corollary of
Lemma 23 (the additionnal factors correspond to the number of ways to place the
big buds at the pruned marked vertices), we obtain

(
pa1 − 1

a1

)(
pa2 − 1

a2

)
Q(p)

pa1−d,pa2+d ' (p−1)·
(
pa1 − d− 1

a1 − 1

)(
pa2 + d− 1

a2

)
B(p)
pa1,pa2

,
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and very similarly (since the isomorphism of Lemma 23 preserves light square vertex
degrees): (

pa1 − 1

a1

)(
pa2 − 1

a2

)
Q(p)

pa1−d,pa2+d,pa3,...,par

' (p− 1) ·
(
pa1 − d− 1

a1 − 1

)(
pa2 + d− 1

a2

)
B(p)
pa1,pa2,pa3,...,par

,

which yields Theorem 2 in the case where at least one of the two non-regular (degree
not multiple of p) light faces is of degree larger than p. In the remaining we show
the formula of Theorem 2 when the two non-regular light faces are of degree smaller
than p.

Lemma 24. Let Bp be the family of p-mobiles with a marked light square vertex
of degree p, and let B′p be the family of objects from Bp where a round vertex is
marked. Then, for any d ∈ [1..p− 1],

Q(p)
d,p−d ' B′p.

In addition, if γ ∈ B′p corresponds to γ′ ∈ Q(p)
d,p−d, then each non-marked light

square vertex of degree pi in γ corresponds to a non-marked light square vertex of
degree pi in γ′.

Proof. A mobile in Q(p)
d,p−d can be decomposed as follows: two marked light squares

v1, v2, their incident rooted p-mobiles (one for each round neighbour) and the
middle-part. Hence we have:

Q(p)
d,p−d ' Rd−1

p ×Hp ×Rp−d−1
p

' (p− 1) · T ′p ×Rp−2
p

' (p− 1) · R′p ×Rp−2
p .

If we now consider an object γ′ ∈ B′p, the marked light square vertex (of degree p)
carries one big bud, and has p−1 white neighbours w1, . . . , wp−1. From each white
neighbour wi hangs a rooted p-mobile ri, and one of these rooted p-mobiles has a
secondary marked round vertex (the secondary marked vertex of γ′). Thus

B′p ' (p− 1) · R′p ×Rp−2
p ,

where the factor p − 1 is due to the choice of which of the mobiles r1, . . . , rp−1

carries the secondary marked round vertex. �

By Lemma 24 we have:

pG
(p)
d,p−d = d(p− d) (G(p)

p )′,

(the additional factors are due to marking a corner in each marked light face), and
similarly:

pG
(p)
d,p−d,pa3,...,par

= d(p− d) G(p)
p,pa3,...,par

′.

Hence, again the fact that G
(p)
d,p−d,pa3,...,par

satisfies (7) follows from the fact (already

proved) that G
(p)
p,pa3,...,par satisfies (7). This concludes the proof of Theorem 2.
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[13] R. Cori and B. Vauquelin. Planar maps are well labeled trees. Canad. J. Math., 33(5):1023–

1042, 1981.

[14] B. Eynard. Counting surfaces. Springer, 2011.
[15] M. Krikun. Explicit enumeration of triangulations with multiple boundaries. Electronic J.

Combin., v14 R61, 2007.

[16] R. Nedela. Maps, hypermaps and related topics. www.savbb.sk/∼nedela/CMbook.pdf, 21–24,
2007.

[17] J. Pitman. Coalescent random forests. J. Comb. Theory, Ser. A, 85(2):165–193, 1999.

[18] G. Schaeffer. Conjugaison d’arbres et cartes combinatoires aléatoires. PhD thesis, Université
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