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Topological cell decomposition and dimension

theory in P -minimal fields

Pablo Cubides-Kovacsics∗ Luck darnière† Eva Leenknegt‡

August 28, 2015

Abstract

This paper addresses some questions about dimension theory for P -

minimal structures. We show that, for any definable set A, the dimension

of A\A is strictly smaller than the dimension of A itself, and that A has a

decomposition into definable, pure-dimensional components. This is then

used to show that the intersection of finitely many definable dense subsets

of A is still dense in A. As an application, we obtain that any definable

function f : D ⊆ Km → Kn is continuous on a dense, relatively open

subset of its domain D, thereby answering a question that was originally

posed by Haskell and Macpherson.

In order to obtain these results, we show that P -minimal structures

admit a type of cell decomposition, using a topological notion of cells

inspired by real algebraic geometry.

1 Introduction

Inspired by the successes of o-minimality [vdD98] in real algebraic geometry,
Haskell and Macpherson [HM97] set out to create a p-adic counterpart, a project
which resulted in the notion of P -minimality. One of their achievements was to
build a theory of dimension for definable sets which is in many ways similar to
the o-minimal case. Still, some questions remained open.

The theorem below is one of the main results of this paper. It gives a positive
answer to one of the questions raised at the end of their paper (Problem 7.5).
We will assume K to be a P -minimal expansion of a p-adically closed field with
value group |K|. When we say definable, we mean definable (with parameters)
in a P -minimal structure.

Theorem (Quasi-Continuity) Every definable function f with domain X ⊆
Km and values in Kn (resp. |K|n) is continuous on a definable set U which is
dense and open in X, and dim(X \ U) < dimU .

Haskell and Macpherson already included a slightly weaker version of the
above result in Remark 5.5 of their paper [HM97], under the additional as-
sumption that K has definable Skolem functions. However, they only gave a
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sketch of the proof, leaving out some details which turned out to be more subtle
than expected. The authors agreed with us that some statements in the original
proof required further clarification.

One of the motivations for writing this paper was to remedy this, and also to
show that the assumption of Skolem functions could be removed. This seemed
worthwhile given that the result had already proven to be a useful tool for
deducing other properties about the dimension of definable sets in P -minimal
structures. For example, in [KL14] one of the authors showed how the Quasi-
Continuity Theorem would imply the next result.

Theorem (Small Boundaries) Let A be a non-empty definable subset of Km.
Then it holds that dim(A \A) < dimA.

That both theorems are very much related is further illustrated by the approach
in this paper: we will first prove the Small Boundaries Property, and use it to
derive the Quasi-Continuity Property. The tool used to prove these results is a
‘topological cell decomposition’, which we consider to be the second main result
of this paper.

Theorem (Topological Cell Decomposition) For every definable function
f from X ⊆ Km to Kn (resp. |K|n) there exists a good t-cell decomposition A
of X, such that for every A ∈ A, the restriction f|A of f to A is continuous.

The notions of ‘t-cell’ and ‘good t-cell decomposition’ were originally introduced
by Mathews, whose paper [Mat95] has been a major source of inspiration for
us. They are analogous to a classical notion of cells coming from real algebraic
geometry (see for example the definition of cells in [BCR87]). Exact definitions
will be given in the next section.

By now, there exist many cell decomposition results for P-minimal struc-
tures, which can be quite different in flavour, depending on their aims and
intended level of generality. Historically, the most influential result is probably
Denef’s cell decompositon for semi-algebraic sets [Den86] (which in turn was
inspired by Cohen’s work [Coh69]). This has inspired adaptations to the
sub-analytic context by Cluckers [Clu04], and to multi-sorted semi-algebraic
structures by Pas [Pas90]. Results like [CKL, Mou09, DH15] give generaliza-
tions of Denef-style cell decomposition. Note that full generality is hard to
achieve: whereas [CKL] works for all p-minimal structures without restriction,
it is somewhat weaker than these more specialized results. On the other
hand, [Mou09, DH15] are closer to the results cited above, but require some
restrictions on the class of P -minimal fields under consideration. A somewhat
different result is the Cluckers-Loeser cell decomposition [CL07] for b-minimal
structures.

Each of these decompositions has its own strengths and weaknesses. The
topological cell decomposition proposed here seems to be the best for our pur-
poses, since it is powerful enough to fill the remaining lacunas in the dimension
theory of definable sets over P -minimal fields, without restriction.

The rest of this paper will be organized as follows. In section 2, we re-
call some definitions and known results, and we set the notation for the re-
maining sections. In section 3, we will prove the t-cell decomposition theorem
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(Theorem 3.2) and deduce the Small Boundaries Property (Theorem 3.5) as a
corollary. Finally, in section 4, we prove the Quasi-continuity Property (The-
orem 4.6). The key ingredient of this proof is the following result (see Theo-
rem 4.5), which is also interesting in its own right.

Theorem Let A1, . . . , Ar ⊆ A be a family of definable subsets of Km. If the
union of the Ak’s has non empty interior in A then at least one of them has
non empty interior in A.

Note that the above statement shows that, if B1, . . . , Br are definable subsets
which are dense in A, then their intersection B1 ∩ · · · ∩Br will also be dense in
A. Indeed, a definable subset is dense in A if and only if its complement in A
has empty interior inside A.

Acknowledgement The authors would like to thank Raf Cluckers for en-
couraging this collaboration and for helpful discussions. The research leading
to these results has received funding from the European Research Council, ERC
Grant nr. 615722, MOTMELSUM, 2014–2019. During the preparation of this
paper, the third author was a Postdoctoral Fellow of the Fund for Scientific
Research - Flanders (FWO)

2 Notation and prerequisites

Let K be a p-adically closed field, i.e., elementarily equivalent to a p-adic field,
and K∗ = K \ {0}. We use multiplicative notation for the p-valuation, which
we then denote by | . | so |ab| = |a||b|, |a+ b| 6 max |a|, |b|, and so on1. For every
set X ⊆ K we will use the notation |X | for the image of X by the valuation. A
natural way to extend the valuation to Km is by putting

‖(x1, . . . , xm)‖ := max
i6m

{|xi|}.

This induces a topology, with balls

B(x, ρ) := {y ∈ Km : ‖x− y‖ < ρ}

as basic open sets, where x ∈ Km and ρ ∈ |K∗|. For every X ⊆ Km, write X
for the closure of X and IntX for the interior of X (inside Km). The relative
interior of a subset A of X inside X , that is X \X \A, is denoted IntX A.

Let us now recall the definition of P -minimality:

Definition 2.1 Let L be a language extending the ring language Lring. A struc-
ture (K,L) is said to be P -minimal if, for every structure (K ′,L) elementarily
equivalent to (K,L), the L-definable subsets of K ′ are semi-algebraic.

In this paper, we always work in a P -minimal structure (K,L). Abusing no-
tation, we simply denote it as K. The word definable means definable using
parameters in K. A set S ⊆ Km × |K|n is said to be definable if the related set
{(x, y) ∈ Km ×Kn : (x, |y1|, . . . |yn|) ∈ S} is definable.

1Compared with additive notation this reverses the order: |a| 6 |b| ⇔ v(b) 6 v(a).
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A function f from X ⊆ Km to Kn (or to |K|n) is definable if its graph is a
definable set. For every such function, let C(f) denote the set

C(f) :=
{
a ∈ X : f is continuous on a neighbourhood of a in X

}
.

It is easy to see that this is a definable set.
We will use the following notation for the fibers of a set. For any set

S ⊆ Km, the subsets I = {i1, . . . , ir} of {1, . . . ,m} induce projections
πI : Km → Kr (onto the coordinates listed in I) . Given an element y ∈ Kr,
the fiber Xy,I denotes the set π−1

I (y) ∩ X . In most cases, we will drop the
sub-index I and simply write Xy instead of Xy,I when the projection πI is
clear from the context. In particular, when S ⊆ Km+n and x ∈ Km, we
write Sx for the fiber with respect to the projection onto the first m coordinates.

One can define a strict order on the set of non-empty definable subsets
of Km, by putting

B ≪ A ⇔ B ⊆ A and B lacks interior in A.

The rank of A for this order is denoted D(A). It is defined by induction:
D(A) > 0 for every non-empty set A, and D(A) > d+1 if there is a non-empty
definable set B ≪ A such that D(B) > d. Then D(A) = d if D(A) > d and
D(A) � d+ 1. By convention D(∅) = −∞.

The notion of dimension used by Haskell and Macpherson in [HM97]
(which they denoted as topdimA) is defined as follows:

Definition 2.2 The dimension of a set A ⊂ Km (denoted as dimA) is the
maximal integer r for which there exists a subset I of {1, . . . ,m} such that
πm
I (A) has non-empty interior in Kr, where πm

I : Km → Kr is defined by

πm
I : (x1, . . . , xm) 7→ (xi1 , . . . , xir )

with i1 < · · · < ir an enumeration of I.

We will omit the super-index m in πm
I when it is clear from the context, and

put dim ∅ = −∞. Given a set S ⊆ Km+1, πm+1
{1,...,m}(S) is simply denoted Ŝ.

Note that by P -minimality, if A ⊆ Km is a definable set and dimA = 0,
then A is a finite set. Also, dimA = m if and only if A has non-empty interior.

Let us now recall some of the properties of this dimension that were
already proven by Haskell and Macpherson in [HM97]:

(HM1) Given definable sets A1, . . . , Ar ⊆ Km, it holds that dimA1∪· · ·∪Ar =
max(dimA1, . . . , dimAr). (Theorem 3.2)

(HM2) For every definable function f : X ⊆ Km → |K|, dimX \ C(f) < m.
(Theorem 3.3 and Remark 3.4 (rephrased))

(HM3) For every definable function f : X ⊆ Km → K, dimX \ C(f) < m.
(Theorem 5.4)
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Recall that a complete theory T satisfies the Exchange Principle if the model-
theoretic algebraic closure for T does so. In every model of a theory satisfying
the Exchange Principle, there is a well-behaved notion of dimension for definable
sets, which is called model theoretic rank. Haskell and Macpherson showed that

(HM4) The model-theoretic algebraic closure for Th(K) satisfies the Exchange
Principle. (Corollary 6.2)

(HM5) For every definableX ⊆ Km, dimX coincides with the model-theoretic
rkX . (Theorem 6.3)

The following Additivity Property (Lemma 2.3 below) is known to hold for
the model theoretic rank rk, in theories satisfying the exchange principle. For
a proof, see Lemma 9.4 in [Mat95]. Hence, theorems (HM4) and (HM5) imply
that dim also satisfies the Additivity Property. This fact was not explicitly
stated by Haskell and Macpherson in [HM97], and seems to have been somewhat
overlooked until now. It plays a crucial role in our proof of Theorem 3.2, hence
in all our paper.

Lemma 2.3 (Additivity Property) Let S ⊆ Km+n be a definable set. For
d ∈ {−∞, 0, 1, . . . , n}, write S(d) for the set

S(d) := {a ∈ Km : dimSa = d}.

Then S(d) is definable and

dim
⋃

a∈S(d)

Sa = dim(S(d)) + d.

Combining this with the first point (HM1), it follows easily that dim is a
dimension function in the sense of van den Dries [vdD89].

Haskell and Macpherson also proved that P -minimal structures are model-
theoretically bounded (also known as “algebraically bounded” or also that
“they eliminate the ∃∞ quantifier”), i.e., for every definable set S ⊆ Km+1

such that all the fibers of the projection of S onto Km are finite, there exists
an integer N > 1 such that all of them have cardinality 6 N .

While it is not known whether general P -minimal structures admit definable
Skolem functions, we do have the following weaker version for coordinate
projections with finite fibers.

Lemma 2.4 Let S ⊆ Km+1 be a definable set. Assume that all fibers Sx with
respect to the projection onto the first m coordinates are finite. Then there exists
a definable function σ : Ŝ → Km+1 such that σ(x) ∈ S for every x ∈ Ŝ.

Proof: In Lemma 7.1 of [Den84], Denef shows that this is true on the condi-
tion that the fibers are not only finite, but uniformly bounded. (The original
lemma was stated for semi-algebraic sets, but the same proof holds for gen-
eral P -minimal structures.) Since uniformity is guaranteed by model-theoretic
boundedness, the lemma follows.

From this it follows by an easy induction that
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Corollary 2.5 (Definable Finite Choice) Let f : X ⊆ Km → Kn be a new
definable function. Assume that for every y ∈ f(X), f−1(y) is finite. Then
there exists a definable function σ : f(X) → X, such that

(
σ ◦ f(x), f(x)

)
∈ Graph(f)

for all x ∈ X.

Using the coordinate projections from Definition 2.2, we will now give a
definition of t-cells and t-cell decomposition:

Definition 2.6 A set C ⊆ Km is a topological cell (or t-cell for short) if
there exists some (non unique) I ⊆ {1, . . . , n} such that πm

I induces a homeo-
morphism from C to a non-empty open set.

In particular, every non-empty open subset of Km is a t-cell, and the only
finite t-cells in Km are the points. For any definable set X ⊆ Km, a t-cell
decomposition is a partition A of X in finitely many t-cells. We say that the
t-cell decomposition is good, if moreover each t-cell in A is either open in X or
lacks interior in X .

3 Topological cell decomposition

Recall that K is a P -minimal expansion of a p-adically closed field. We will
first show that every set definable in such a structure admits a decomposition
in t-cells:

Lemma 3.1 Every definable set X ⊆ Km has a good t-cell decomposition.

Proof: Put d = dimX and let e = e(X) be the number of subsets I of
{1, . . . ,m} for which πI(X) has non-empty interior in Kd. The proof goes by
induction on pairs (d, e) (in lexicographic order). The result is obvious for d 6 0
so let us assume that 1 6 d, and that the result is proved for smaller pairs.

Let I ⊆ {1, . . . ,m} be such that πI(X) has non-empty interior in Kd. For
every y in IntπI(X), we write Xy for the fiber with respect to the projection
πI . For every integer i > 1 let Wi be the set

Wi := {y ∈ IntπI(X) : CardXy = i}.

By model-theoretic boundedness, there is an integer N > 1 such that Wi is
empty for every i > N . We let I denote the set of indices i for which Wi has
non-empty interior in Kd.

For each i ∈ I, Definable Finite Choice (Corollary 2.5) induces a definable
function

σi := (σi,1, . . . , σi,i) : IntWi → Kmi,

such that Xy = {σi,j(y)}j for every y ∈ IntWi. Put Vi := C(σi), and Ci,j :=
σi,j(Vi). Notice that Ci,j is a t-cell for every i ∈ I and j 6 i. Indeed, the
restrictions of πI and σi,j are reciprocal homeomorphisms between Ci,j and the
open set Vi. We show that each Ci,j is open in X .

Fix i ∈ I and j 6 i. Let x0 be an element of Ci,j and y0 = πI(x0), so that
x0 = σi,j(y0). By construction,

⋃
k Ci,k = π−1

I (Vi) ∩ X is open in X (because
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Vi = C(σi) is open in IntWi, hence open in Kd). So there is ρ ∈ |K×| such that
B(x0, ρ) ∩X is contained in

⋃
k Ci,k. Let ε be defined as

ε := min
k 6=j

‖σi,k(y0)− σi,j(y0)‖ = min
k 6=j

‖σi,k(y0)− x0‖

Because σi is continuous on the open set Vi, there exists δ such that

B(y0, δ) ⊆ σ−1
i (B(σi(y0), ρ)) ⊆ Vi,

and such that for all y ∈ B(y0, δ), we have that

‖σi(y)− σi(y0)‖ < ε.

Making δ smaller if necessary, we may assume that δ < min{ε, ρ}. We will show
that B(x0, δ) ∩X ⊆ Ci,j . Let x be in B(x0, δ) ∩X , and put y := πI(x). Since
δ < ρ, we know that there must exist k such that x = σi,k(y). Assume that
k 6= j. Since δ < ε, we now have that

‖σi,k(y)− σi,k(y0)‖ 6 ‖σi(y)− σi(y0)‖

< ε

6 ‖σi,j(y0)− σi,k(y0)‖

= ‖σi,k(y)− σi,j(y0)‖

= ‖σi,k(y)− x0‖,

but this means that σi,k(y) 6∈ B(x0, δ), and hence we can conclude that x =
σi,j(y) ∈ Ci,j .

Given that each Ci,j is a t-cell which is open in X , it remains to show the
result for Z := X \ (

⋃
i∈I,j6iCi,j). We will check that πI(Z) has empty interior

(in Kd), or equivalently that dimπI(Z) < d.
Note that πI(Z) is a disjoint union A1 ⊔ A2 ⊔ A3, where A1 := πI(X) \

IntπI(X), A2 := IntπI(X) \
⋃

i6N Wi, and A3 is the set

A3 :=

( ⋃

i∈I

(
Wi \ IntWi

)
∪
(
IntWi \ Vi

))
∪
⋃

i/∈I

Wi.

By (HM1) it suffices to check that each of these parts has dimension < d. Clearly
A1 has empty interior, hence dimension < d. For every y in A2, the fiber Xy is
infinite, hence A2 must have dimension < d by the Additivity Property.

Next, we need to check that A3 also has dimension smaller than d. By
(HM1), it is sufficient to do this for each part separately. The set Wi \ IntWi

has empty interior for every i ∈ I, and hence dimension < d. For i ∈ I,
IntWi \ Vi has dimension < d by (HM3). And finally, Wi has empty interior
for every i /∈ I by definition of I, hence dimension < d. So dimπI(Z) < d by
(HM1), hence πI(Z) has empty interior.

A fortiori, the same holds for πI(Z1) and πI(Z2) where Z1 := IntX Z and
Z2 := Z \ IntX Z. This implies that, for each k ∈ {1, 2}, either dimZk < d, or
dimZk = d and e(Zk) < e. Hence, the induction hypothesis applies to each Zk

separately and gives a good partition (Dk,l)l6lk of Zk. Since Z1 is open in X
and Z2 has empty interior in X , the sets Dk,l will also be either open in X , or
have empty interior in X . It follows that the family of consisting of the t-cells
Ci,j and Dk,l forms a good t-cell decomposition of X .
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We will now show that this decomposition can be chosen in such a way as
to ensure that definable functions are piecewise continuous, which is one of the
main theorems of this paper.

Theorem 3.2 (Topological Cell Decomposition) For every definable
function f from X ⊆ Km to Kn (or to |K|n) there exists a good t-cell
decomposition C of X, such that for every C ∈ C the restriction f|C of f to C
is continuous.

Proof: We prove the result for functions f : X ⊆ Km → Kn, by induction on
pairs (m, d) where d = dimX . Our claim is obviously true if m = 0 or d 6 0,
so let us assume that 1 6 d 6 m and that the theorem holds for smaller pairs.

Note that it suffices to prove the result for each coordinate function fi of f :=
(f1, . . . , fn) separately. Indeed, suppose the theorem is true for the functions
fi : X → K. This means that, for each 1 6 i 6 n, there exists a good t-cell
decomposition Ci of X adapted to fi. It is then easy, by means of Lemma 3.1,
to build a common, finer good t-cell decomposition of X having the required
property simultaneously for each fi, and hence for f . Thus, we may as well
assume that n = 1.

Consider the set X \ Int C(f), which can be partitioned as A1 ⊔ A2, where
A1 := X \ C(f) and A2 := C(f) \ IntC(f). It follows from (HM3) that dimA1 <
m. Also, dimA2 < m since it has empty interior (inside Km), and therefore the
union, X \ Int C(f), has dimension < m by (HM1). Hence, by throwing away
Int C(f) if necessary (which is a definable open set contained in X , hence a t-cell
open in X if non-empty), we may assume that dimX < m.

Using Lemma 3.1, one can obtain a good t-cell decomposition (Xj)j∈J of X .
For each j ∈ J , we get a subset Ij of {1, . . . ,m}, an open set Uj ⊆ Kdj (with
dj = dimXj < m), and a definable map σj : Uj → Xj. These maps σj can
be chosen in such a way that σj and the restriction of πIj to Xj are reciprocal
homeomorphisms. Now apply the induction hypothesis to each of the functions
f ◦ σj to get a good t-cell decomposition Cj of Xj . Putting C =

⋃
j∈J Cj then

gives the conclusion for f .
The proof for functions f : X ⊆ Km → |K|n is similar, the main difference

being that one needs to use (HM2) instead of (HM3).

Remark 3.3 With the notation of Theorem 3.2, let U be the union of the cells
in C which are open in X . Clearly U ⊆ C(f) and X \U is the union of the other
cells in C, each of which lacks interior in X . To conclude that C(f) is dense in
X , it remains to check that this union still has empty interior in X . This will
be the subject of section 4.

The Topological Cell Decomposition Theorem is a strict analagon of the Cell
Decomposition Property (CDP) considered by Mathews in the more general
context of t-minimal structures. In his paper, Mathews showed that the CDP
holds in general for such structures, if a number of rather restrictive conditions
hold (e.g., he assumes that the theory of a structure has quantifier elimination),
see Theorem 7.1 in [Mat95]. Because of these restrictions, we could not simply
refer to this general setting for a proof of the CDP for P -minimal structures.

Further results from Mathews’ paper justify why proving Theorem 3.2 is
worth the effort. In Theorem 8.8 of [Mat95] he shows that, if the CDP and
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the Exchange Principle are satisfied for a t-minimal structure with a Hausdorff
topology, then several classical notions of ranks and dimensions, including D
and dim, coincide for its definable sets. Because of Theorem 3.2 and (HM4),
we can now apply the observation from Theorem 8.8 to P -minimal fields, to get
that

Corollary 3.4 For every definable set A ⊆ Km, dimA = D(A).

The Small Boundaries Property then follows easily.

Theorem 3.5 (Small Boundaries Property) For every definable set A ⊆
Km, one has that dim(A \A) < dimA.

Proof: First note that D(A \A) < D(A), since A \A has empty interior in A.
This means that dim(A \ A) < dimA by Corollary 3.4. Applying (HM1), we
get that dimA = dimA, and therefore dim(A \A) < dimA.

4 Relative interior and pure components

Given a definable set A ⊆ Km and x ∈ Km, let dim(A, x) denote the smallest
k ∈ N ∪ {−∞} for which there exists a ball B ⊆ Km centered at a, such that
dimA ∩ B = k (see for example [BCR87]). Note that dim(A, x) = −∞ if and
only if x /∈ A. We call this the local dimension of A at x. A is said to be
pure dimensional if it has the same local dimension at every point x ∈ A.

Claim 4.1 Let S ⊆ Km be a definable set of pure dimension d.

1. Every definable set dense in S has pure dimension d.

2. For every definable set Z ⊆ S, Z has empty interior in S if and only if
dimZ < dimS.

Proof: Let X ⊆ S be a definable set dense in S. Consider a ball B with center
x ∈ X . Then B ∩ S is non-empty, and therefore we have that dimB ∩ S = d.
Moreover, it is easy to see that B ∩ X is dense in B ∩ S, which implies that
dimB ∩ X = d as well, by the Small Boundaries Property and (HM1). This
proves the first part.

Let us now prove the second point. If Z has empty interior in S, this means
that S \ Z is dense in S, and hence Z is contained in (S \ Z) \ (S \ Z). But
then dimZ < dim(S \ Z) by the Small Boundaries Property, and therefore
dimZ < dimS. Conversely, if Z has non-empty interior inside S, there exists
a ball B centered at a point z ∈ Z such that B ∩ S ⊆ Z. By the purity of S,
dimB∩S = d, and hence dimZ > d. Since Z ⊆ S, this implies that dimZ = d.

For every positive integer k, we put

∆k(A) := {a ∈ A | dim(A, a) = k},

and we write Ck(A) for the topological closure of ∆k(A) inside A. It is easy to
see that ∆k(A) is pure dimensional, and of dimension k if the set is non-empty.
By part 1 of Claim 4.1, the same holds for Ck(A) . Moreover, since Ck(A) is
closed in A, one can check that it is actually the largest definable subset of A
with pure dimension k (if it is non-empty). For this reason, we call the sets
Ck(A) the pure dimensional components of A.
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Remark 4.2 If dim(A, x) < k for some x ∈ A, then there exists a ball B
centered at x for which dimB ∩ A < k. Such a ball must be disjoint from
Ck(A), because Ck(A) either has pure dimension k or is empty. But then Ck(A)
is disjoint from every ∆l(A) with l < k, which means that it must be contained
in the union of the ∆l(A) with l > k.

Lemma 4.3 For every definable set A ⊆ Km and every k, one has that

dim


Ck(A) ∩

⋃

l 6=k

Cl(A)


 < k.

Proof: By (HM1), it suffices to check that dimCk(A) ∩ Cl(A) < k for every
l 6= k. This is obvious when l < k, since in these cases Cl(A) already has
dimension l or is empty. Hence we may assume that l > k. Using Remark 4.2,
one gets that

Ck(A) ∩ Cl(A) ⊆ Ck(A) ∩
⋃

i>k

∆i(A) =
⋃

i>k

Ck(A) ∩∆i(A).

Using (HM1) again, it now remains to check that dimCk(A) ∩ ∆i(A) < k
whenever i > k. But since ∆i(A) is disjoint from ∆k(A), we find that
Ck(A) ∩ ∆i(A) ⊆ Ck(A) \ ∆k(A). This concludes the proof because of the
Small Boundaries Property.

Lemma 4.4 Let Z ⊆ A ⊆ Km be definable sets. Then Z has empty interior
inside A if and only if dimZ ∩ Ck(A) < k for every k.

Proof: For every k, we will consider the set

Dk(A) = A \
⋃

l 6=k

Cl(A).

Clearly, this set is open in A and contained in ∆k(A). We claim that Dk(A)
is also dense in Ck(A). Indeed, Ck(A) is either empty or has pure dimension
k. The first case is obvious, so assume that Ck(A) has pure dimension k. By
part 2 of Claim 4.1, it suffices to check that Ck(A) \Dk(A) has dimension < k.
But this follows from Lemma 4.3, so our claim holds.

If Z has non-empty interior in A, there exists z ∈ Z and r ∈ |K×|, such
that B(z, r) ∩ A ⊆ Z. If we put k := dim(A, z), then z ∈ ∆k(A). Since Dk(A)
is dense in ∆k(A), the set Dk(A) ∩ B(z, r) is non-empty. Pick a point z′ in
this intersection. Because Dk(A) is open in A, there exists r′ ∈ |K×| such that
B(z′, r′) ∩A ⊆ Dk(A) and r′ 6 r. But then

B(z′, r′) ∩Dk(A) ⊆ B(z′, r) ∩ A = B(z, r) ∩A ⊆ Z,

and B(z′, r′) ∩ Dk(A) is non-empty since it contains z′. This shows that
Z ∩ Dk(A) has non-empty interior inside Dk(A). Since Dk(A) is open in
A (and hence in Ck(A)), Z ∩ Dk(A) has non-empty interior inside Ck(A) as
well. Because Ck(A) is pure dimensional, part 2 of Claim 4.1 implies that
dim(Z ∩ Ck(A)) = k.
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Conversely, assume that dim(Z ∩ Ck(A)) = k for some k. By the Small
Boundaries Property, one has that dim(Ck(A) \ Dk(A)) < k. From this, we
can deduce that dim(Z ∩Dk(A)) = k, using (HM1). The purity of Dk(A) and
part 2 of Claim 4.1 then imply that Z∩Dk(A) has non-empty interior in Dk(A),
and hence in A (since Dk(A) is open in A). A fortiori, Z itself has non-empty
interior in A.

We can now prove the results which were the aim of this section.

Theorem 4.5 Let A1, . . . , Ar ⊆ A be a finite family of definable subsets of Km.
If their union has non empty interior in A then at least one of them has non
empty interior in A. In particular, a piece Ai has non-empty interior in A if
dimAi ∩Ck(A) = k for some k.

Proof: If Z := A1∪· · ·∪Ar has non-empty interior in A, then dim(Z∩Ck(A)) =
k for some k by Lemma 4.4. Then by (HM1), dim(Ai ∩ Ck(A)) = k for some i
and some k, and thus Ai has non-empty interior in A by Lemma 4.4.

Theorem 4.6 Every definable function f from X ⊆ Km to Kn (resp. |K|n) is
continuous on a definable set U which is dense and open in X, and dim(X\U) <
dimX.

Proof: The existence of U , dense and open in X on which f is continuous,
follows from Theorems 3.2 and 4.5 by Remark 3.3. That dim(X \ U) < dimX
then follows from the Small Boundaries Property.
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