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Abstract. We study the distance-profile of the random rooted plane graph Gn with n edges (by a plane graph we
mean a planar map with no loops nor multiple edges). Our main result is that the profile and radius ofGn (with
respect to the root-vertex), rescaled by(2n)1/4, converge to explicit distributions related to the Brownian snake. A
crucial ingredient of our proof is a bijection we have recently introduced between rooted outer-triangular plane graphs
and rooted eulerian triangulations, combined with ingredients from Chassaing and Schaeffer (2004), Bousquet-Mélou
and Schaeffer (2000), and Addario-Berry and Albenque (2013). We also show that the result for plane graphs implies
similar results for random rooted loopless maps and generalmaps.
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1 Introduction
A planar mapis a connected planar graph embedded in the plane consideredup to deformation. Planar
maps can be considered as metric spaces by defining thedistancebetween vertices as the minimal number
of edges of the paths joining them. The study of the metric properties of random planar maps has been
a very active subject of research for the past 10 years. The first key results were obtained in the seminal
paper Chassaing and Schaeffer (2004), focusing on the classof rootedquadrangulations (a map is rooted
by marking a directed edge having the outer face on its right). It was shown there that typical distances in a
uniformly random rooted quadrangulationQn with n vertices is of ordern1/4 (in contrast with the typical
distance ofn1/2 for random plane trees), and that the distance-profile (the collection of distances of then
vertices from the root-vertex) converges in law to an explicit distribution related to theISE(theintegrated
superBrownian excursionis the occupation measure of the Brownian snake introduced in Aldous (1993)).
This result was then generalized to other classes of random maps, in particular to random rooted maps
with n vertices and Boltzmann weights on the faces in Marckert and Miermont (2007); Miermont and
Weill (2008).
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In this article, we prove this type of result on the profile forrooted simple maps, that is, maps without
loops nor multiple edges, which are classically calledplane graphs. We also show that it implies the same
type of result for the class of loopless maps, and for the class of all maps. We now give a few definitions
in view of stating our main result. For a rooted planar mapG = (V,E) with n edges, thedistanced(e) of
an edgee ∈ E (with respect to the root) is the length of a shortest path ofG starting ate and ending at the
root-vertex, thedistance-profileof G is then-set{d(e)}e∈E (note that this is a distance-profile at edges
we consider, not at vertices). Let us now give some terminology for the type of convergence results to be
obtained. We denote byM1 the set of probability measures onR, endowed with theweak topology(that
is, the topology given by the convergence in law). Note that ISE is a random variable taking its values
in M1. Forµ ∈ M1, denote byFµ(x) the cumulative function ofµ, inf(µ) := inf{x : Fµ(x) > 0}
andsup(µ) := sup{x : Fµ(x) < 1}, and define thewidth of µ assup(µ) − inf(µ). We also define
thenonnegative shiftof µ as the probability measure (with support inR+) whose cumulative function is
x 7→ Fµ(x+ inf(µ)).

Definition 1 A sequenceµ(n) of random variables taking values inM1 is said to satisfy theISE limit
propertyif the following properties hold, whereµISE is the random variable inM1 given by the ISE law:

• sup(µ(n)) converges in law to the width ofµISE.

• µ(n) converges in law to the nonnegative shift ofµISE (for the weak topology onM1).

For ann-setx = {x1, . . . , xn} of nonnegative values, and fora > 0, defineµa(x) as the probability
measure

µa(x) =
1

n

n∑

i=1

δxi/(an)1/4 ,

whereδx denotes the Dirac measure atx. Our main result is the following:

Theorem 2 For n ≥ 1, letπn be the distance-profile of the uniformly random rooted planegraph withn
edges. Thenµ2(πn) satisfies the ISE limit property.

Relation with other work and perspectives.Although we focus here on the convergence of the profile
of random maps, much stronger results have now been proved for several classes of maps. More precisely,
for a given classC of maps, one can consider the uniformly random mapCn of sizen on maps as a random
metric space. It is then natural to study the limit of the random metric spaceCn (rescaled byn1/4) in the
Gromov Hausdorff topology. In a series of groundbreaking papers, this type of convergence was proved to
hold for triangulations and2p-angulations in Le Gall (2007, 2013) and independently for quadrangulations
in Miermont (2013). The limit is a (continuous) random metric space called theBrownian map, which has
almost surely spherical topology. Combining the techniques of Le Gall (2013) with some new ingredients,
the same result was proved for simple triangulations and simple quadrangulations in Addario-Berry and
Albenque (2013). At the moment we do not know if we can extend our proof for the profile of random
simple maps in order to obtain convergence to the Brownian map.

We close this section by recalling a useful classical result. Forµ andν two elements ofM1, thelinear
Wasserstein distancebetweenµ andν is defined as

W1(µ, ν) =

∫

R

|Fµ(x) − Fν(x)|dx,
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which endowsM1 with a metric structure. Another characterization ofW1(µ, ν) is to be the infimum of
E(|X −Y |) over all couplings(X,Y ) where the law ofX is µ and the law ofY is ν. It is known that if a
sequenceµ(n) of elements ofM1 converges toµ for the metricW1, thenµ(n) also converges toµ for the
weak topology onM1. Hence the following claim:

Claim 3 Letµ(n) andν(n) be two sequences of random variables inM1 (i.e., each variable is a random
probability measure), living in the same probability space. Assume thatµ(n) satisfies the ISE limit property
and that, for each fixedǫ > 0, P (W1(Xn, Yn) ≥ ǫ) converges to0 andP (|sup(µn) − sup(ν(n))| ≥ ǫ)
converges to0. Thenν(n) satisfies the ISE limit property.

2 Bijection between outer-triangular plane graphs and eulerian
triangulations, and transfer of canonical paths

In this section we recall a bijection established in Bernardi et al. (2014) between outer-triangular plane
graphs and eulerian triangulations, and establish a crucial property for canonical paths.

A rooted plane graphC is said to beouter-triangularif its outer face (that is, the root face, drawn as
the infinite face in the planar representation ofC) has degree3. Given an outer-triangular plane graphG,
a 3-orientation with budsof G is an orientation of the inner edges ofG (outer edges are left unoriented),
with additional outgoing half-edges at inner vertices, calledbuds, such that each inner (resp. outer) vertex
has outdegree3 (resp.0), and each inner face of degreed+3 hasd incident buds(i) . It is shown in Bernardi
and Fusy (2012) that each rooted outer-triangular plane graphG admits a unique3-orientation with buds,
called thecanonical 3-orientation, satisfying the following properties:

• Outer-accessibility: there is a directed path from any inner vertex to a vertex of the outer face.
• Minimality: There is no clockwise circuit.
• Local property at buds: the first edge following each bud in clockwise order must be outgoing.

Figure 1.(a) shows such an outer-triangular plane graph endowed with its canonical 3-orientation.

(a) (b) (c)

Fig. 1: (a) An outer-triangular plane graph endowed with its canonical3-orientation with buds, (b) after inflation and
(c) after merging, the resulting eulerian triangulation endowed with its canonical1-orientation.

A rooted eulerian triangulationis a rooted planar map (which may have multiple edges) where each
face has degree3 and each vertex has even degree. Hence faces can be properly bicolored (in light or
(i) WhenG is a maximal plane graph,3-orientations have no bud, and correspond to the well-knownSchnyder structures, introduced

in Schnyder (1989).
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dark) such that each light (resp. dark) face is adjacent onlyto dark (resp. light) faces. By convention
(since there are exactly two possible colorings), the root face is dark.

As shown in Bernardi et al. (2014), there exists a bijection between these two families of maps. We just
recall here how to obtain a rooted eulerian triangulation from a rooted outer-triangular plane graph. Let
C be an outer-triangular plane graph endowed with its canonical 3-orientation with buds. The bijection
illustrated in Figure 1 has two steps:inflation, thenmerging. First, inner edges and inner vertices will be
inflated in the following way:

• Each inner edge becomes a dark triangle as indicated below.

e

σ(e)

• Each inner vertex becomes a light triangle whose edges correspond to the outgoing half-edges
(including buds). The cases with 0,1 or 2 buds are illustrated below.

After inflation, former inner faces of degreed+3 (d ≥ 0) have now degree2d+3 (thed incident buds have
turned into edges). Considering edges coming from buds as opening parenthesis, and remaining edges as
closing parenthesis, one can form a clockwise parenthesis system leaving3 edges unmatched. Hence,
after merging the matched edges, the3 unmatched edges form a light triangle. This ensures that each face
of the resulting map is a triangle; see Figure 1. Moreover, the edges created by the inflation are incident
to a dark and a light face, except for edges coming from buds, which are incident to two light faces. After
merging, these edges are necessarily incident to a dark faceas well. Therefore the triangulation is properly
bicolored and is an eulerian triangulation (the outer face,which is left unchanged, is colored dark).

Let C be an outer-triangular rooted plane graph. For each inner edgee, we define itscanonical path
P (e) to be the directed path in the canonical3-orientation ofC starting ate and following the rightmost
(with respect to the previous edge on the path) outgoing edgeuntil reaching a vertex of the outer face
(P (e) exist because the canonical3-orientation is minimal and outer-accessible). LetG be a rooted
eulerian triangulation. A1-orientationof G is an orientation of some inner edges (outer edges are left
unoriented), such that each dark inner face has one directededge, which is counterclockwise, and each
inner (resp. outer) vertex has outdegree1 (resp. 0). In a similar fashion as for outer-triangular plane
graphs,G has a unique1-orientation, called itscanonical 1-orientation, which satisfiesouter-accessibility;
see Figure 1(c). For each inner vertexv, we define itscanonical pathP (v) to be the unique directed path
in the canonical1-orientation starting atv and following the next outgoing edge until reaching a vertexof
the outer face.

To an edgee of an outer-triangular rooted plane graph, we denoteσ(e) the inner vertex of the associated
rooted eulerian triangulation which is the origin ofe after inflation of the edgee into a dark triangle.

Proposition 4 LetC be an outer-triangular rooted plane graph andG be the associated eulerian trian-
gulation. The mappingσ gives a bijection between the edges ofC and the inner vertices ofG. Moreover
the canonical path of an edgee ofC has the same length as the canonical path of the vertexσ(e) ofG.
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Proof: The canonical 3-orientation ofC gives a partial orientationΩ of G. It is not hard to see thatΩ a 1-
orientation, thereforeσ gives a bijection between the edges ofC and the inner vertices ofG. Moreover all
the canonical paths ofC are directed paths in the orientationΩ (that is, they are preserved by the inflation
process), thusΩ is outer-accessible. ThusΩ is the canonical 1-orientation ofG, and the canonical path of
e becomes the canonical path ofσ(e). This completes the proof. ✷

Remark 5 Beside the bijection between outer-triangular plane graphs and eulerian triangulations, we
will also use the following injection between rooted outer-triangular plane graphs and rooted simple
triangulations. Given a rooted outer-triangular plane graphC endowed with its canonical 3-orientation,
every inner face of degreed + 3 containsd buds. We consider the triangulationT obtained fromC
by triangulating each inner face by completing the buds intocomplete edges and gluing these edges
in counter-clockwise order around each inner face; see Figure 2. The 3-orientation ofC gives a 3-
orientation ofT (which implies thatT is simple) and we contend that it is thecanonical3-orientation of
T . This follows easily from the fact that the canonical paths of C are canonical paths inT ( because of
the local property at buds) and therefore no clockwise cycle exist.

Fig. 2: Generic situation in a face of degree7 with its 4 incident buds, and its canonical
triangulation (dashed lines).

3 The profile of random rooted eulerian triangulations
3.1 Profile with respect to the root-vertex
Let T be a rooted eulerian triangulation withn + 1 vertices, letV be the vertex-set and letv0 be the
root-vertex. Recall that the faces ofT are properly bicolored with the outer face being dark. A pathP
from a vertexv to a vertexv′ is calledadmissibleif each traversed edge ofP has a dark face on its left.
Let ℓ(v) be the length of a shortest admissible path fromv to v0. Then-set{ℓ(v)}v∈V \v0 is called the
root-vertex profileof T .

Proposition 6 Letπn be the root-vertex profile of a uniformly random rooted eulerian triangulation with
n+ 1 vertices. Thenµ2(πn) satisfies the ISE limit property.

Proof: It is shown in Bouttier et al. (2004) that random rooted eulerian triangulations withn+ 1 vertices
are in bijection with so-calledvery well-labelled treeswith n nodes, i.e., rooted plane trees withn nodes,
each node having a positive label such that adjacent node labels differ by1 in absolute value, and the root
is at a node of label1. In addition the root-vertex profile of the eulerian triangulation corresponds to the
n-set of labels of the corresponding tree. Henceπn is distributed as then-set of labels of the random very
well-labelled tree withn nodes. The article Le Gall (2006) ensures(ii) thatµ2(πn) satisfies the ISE limit
property. ✷

(ii) See in particular Theorem 8.2 where the methodology is applied to the very close model where adjacent node labels differ by at
most1 in absolute value.
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Remark 7 Alternatively one could prove Proposition 6 by recycling the combinatorial arguments from
Sections 4.4 and 4.5 in Chassaing and Schaeffer (2004). Thiswould require a detour via a model of
“blossoming trees” (actually the one used in Bousquet-Mélou and Schaeffer (2000)) in order to drop the
condition that the labels are positive.

3.2 Profile with respect to the outer face

Let T be a rooted eulerian triangulation, and letV be its set of inner vertices. Forv ∈ V , we denote by
d̃(v) the length of canonical path ofv. The set{d̃(v)}v∈V is called theroot-face profileof T . Then it is
easily checked from Bousquet-Mélou and Schaeffer (2000) thatd̃(v) is the length of a shortest admissible
path fromv to (a vertex of) the root-face. Henceℓ(v)−2 ≤ d̃(v) ≤ ℓ(v). Thus Proposition 6 immediately
gives (via Claim 3) the following result.

Proposition 8 Letπn be the root-face profile of a uniformly random rooted eulerian triangulation withn
inner vertices. Thenµ2(πn) satisfies the ISE limit property.

4 The profile of random rooted plane graphs

4.1 Profile of random rooted outer-triangular plane graphs

Let G be a rooted outer-triangular plane graph, and letEi be its set of inner edges. Fore ∈ Ei we denote
by d̃(e) the length of the canonical path ofe, and byd(e) the length of a shortest path starting ate and
ending at (a vertex of) the root-face. The set{d̃(e)}e∈Ei is called thecanonical path profileof G, and
the set{d(e)}e∈Ei is called thedistance-profile at inner edgesof G. By Proposition 4 the canonical path
profile ofG coincides with the root-face profile of the rooted eulerian triangulation associated withG by
the bijection of Section 2. Thus Proposition 8 gives:

Proposition 9 Letπn be the canonical path profile of a uniformly random rooted outer-triangular plane
graph withn+ 3 edges. Thenµ2(πn) satisfies the ISE limit property.

We will now prove that with high probability the canonical path profile is close from the distance-profile
using the following (non-random) result from Addario-Berry and Albenque (2013).

Lemma 10 (Addario-Berry and Albenque (2013))There exists positive constantsk1, k2 such that the
following holds. LetG be a rooted simple triangulation, lete be an inner edge ofG, letP be the canonical
path ofe (for the canonical3-orientation ofG), and letQ be another path from the origin ofe to the root-
face. If the lengthd of P is greater than the lengthd′ of Q, then there exists a cycleC contained in
P ∪ Q of length a mostk1d′/(d − d′)) such that each of the two parts ofG resulting from cutting along
C contains a (consecutive) subpath ofQ of length at leastk2(d− d′).

This implies the following (non-random)statement for rooted plane graphs, where thediameterDiam(G)
of a graphG is the maximal distance between pairs of vertices.

Lemma 11 The statement of Lemma 10 also holds if one replaces “simple triangulation” by “outer
triangular plane graph”. Consequently, for any∆ > 0, if G is a rooted outer-triangular plane graphG,
ande is an inner edge such thatd(e) ≤ d̃(e)−∆, thenG has a cycleC of length at mostk1d(e)/∆ such
that the two partsGℓ, Gr resulting from cutting alongC each have diameter at leastk2∆.
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Proof: Let G be a rooted outer triangular plane graph. We consider its minimal 3-orientation with buds.
As explained in Remark 5, there is a canonical way to completethe buds ofG into complete edges so
as to triangulate each inner face ofG and obtain a simple triangulation̂G endowed with its minimal 3-
orientation. Moreover, for any inner edgee of G canonical path ofe is the same inG and inĜ. This
proves the first statement. The second statement is a simple consequence obtained by considering the
canonical pathP of an edgee of G and a geodesic pathQ. In this caseG has a cycleC of length at most
k1d(e)/(d̃(e) − d(e))) ≤ k1d(e)/∆ such that the two partsGℓ, Gr resulting from cutting alongC each
have a subpath ofQ of length at leastk2(d̃(e) − d(e)) ≥ k2∆. Since a subpath of a geodesic path is
geodesic, we conclude that each ofGℓ, Gr has a diameter at leastk2∆. ✷

Definition 12 A sequenceXn of real random variables is said to have theuniform exponential decay
propertyif there exist constantsa, b > 0 such that for alln, P (Xn ≥ x) = a exp(−b x)).

Lemma 13 LetHn be the uniformly random rooted outer-triangular plane graph withn+3 edges. Then
Diam(Hn)/n

1/4 satisfies the uniform exponential decay property.

Proof: The property is inherited from eulerian triangulations. Precisely, letπn denote the root-vertex
profile of the uniformly random rooted eulerian. The calculations done in Section 6.2 of Chassaing and
Schaeffer (2004) for well-labeled trees (which correspondto rooted quadrangulations) can be adapted
verbatim to very well-labelled trees (which correspond to rooted eulerian triangulations) in order to show
thatsup(µ2(πn)) has the uniform exponential decay property. Hence, ifπ′

n denotes the root-face profile
of the uniformly random rooted eulerian triangulation withn vertices, thensup(µ2(π

′
n)) has the uniform

exponential decay property. This is in turn transferred (bijectively) tosup(µ2(π
′′
n)), whereπ′′

n is the canon-
ical path profile ofHn. Then, sinced(e) ≤ d̃(e), the property is also satisfied bysup(µ2(π

′′′
n )), where

π′′′
n = {d(e)}e∈Ei is the distance-profile at inner edges ofHn. SinceDiam(Hn) ≤ 2 ·maxe∈Ei(d(e)),

we conclude thatDiam(Hn)/n
1/4 satisfies the uniform exponential decay property. ✷

Forn ≥ 0 we denote byMn the set of rooted plane graphs withn edges, andCn the subset of outer-
triangular maps. It was shown in Bernardi et al. (2014) that

|Cn| = 3 · 2n−1 (2n)!

n!(n+ 2)!
= O(8nn−5/2). (1)

Observe that there is an injective mapφ fromMn toM(3)
n+2 as shown in the figure below.

φ

Thus |Mn| ≤ |Cn+2| = O(8nn−5/2). MoreoverDiam(G) = Diam(φ(G)). Thus (observing that
|Mn|
|Cn+2|

≥ |Cn|
|Cn+2|

is bounded away from 0) Lemma 13 implies the following.

Corollary 14 LetGn be the uniformly random plane graphs withn edges. ThenDiam(Gn)/n
1/4 sat-

isfies the uniform exponential decay property. Therefore there exists constantsa, b > 0 such that for all
n ≥ 0 andx > 0 the number of elements inM of diameter at leastxn1/4 is at mosta8nn−5/2 exp(−bx)).
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Lemma 15 Let ǫ > 0 and letGn be the random rooted outer-triangular plane graph withn edges. Let
En,ǫ be the event thatGn has an edgee for whichd(e) ≤ d̃(e)− ǫn1/4. Thenlimn→∞ P (En,ǫ) = 0.

Proof: We first show the statement for the eventEn,ǫ,A = En,ǫ ∩ {Diam(Gn) ≤ An1/4}, whereA is an
arbitrary fixed positive constant. LetUn be the set of rooted outer-triangular plane graphs withn edges
of diameter at mostAn1/4 having an edgee for which d(e) ≤ d̃(e) − ǫn1/4. By (1), it suffices to show
that |Un| = o(8nn−5/2). By Lemma 11 (applied to∆ = ǫn1/4), any map inUn has a cycle of length
c ≤ k1d(e)/ǫn

1/4 ≤ k1A/ǫ separating two maps of diameter at leastk2ǫn
1/4. We now fix a positive

integerc, and denoteV c
n the set of pairs(G,C) whereG is a rooted outer-triangular plane graph withn

edges andC is a cycle ofG of lengthc such that the two parts ofG obtained by cutting alongC each
have diameter at leastk2ǫn1/4. It suffices to prove that|V c

n | = o(8nn−5/2). Let wi,n be the number
of maps inMi of diameter at leastk2ǫn1/4. By Corollary 14 there are constantsa, b′ > 0 such that
wi,n ≤ a8ii−5/2 exp(−b′(n/i)1/4). Decomposing pairs(G,C) ∈ V c

n into two maps gives

|V c
n | ≤

∑

i+j=n+c

2n · wi,nwj,n

where the factor2n accounts for choosing the position of the root edge ofG. Let S be the above sum
restricted to{i > n/(log(n)8)} ∩ {j > n/(log(n)8)} andS′ the sum of the other terms. Sincewi,n ≤
a8ii−5/2,

S ≤ (n+ c) · 2n · a28n+c(n/ log(n)8)−5 = o(8nn−5/2).

And sincewi,n ≤ a8i exp(−b′(n/i)1/4),

S′ ≤ 2n/(log(n)8) · 2n · a28n+c exp(−b′(log(n))2) = o(8nn−5/2).

Hence|V c
n | = o(8nn−5/2) and this completes the proof that for anyA > 0, limn→∞ P (En,ǫ,A) = 0.

Thus for allA > 0,

lim
n→∞

P (En,ǫ) ≤ lim
n→∞

(P (En,ǫ,A) + P (Diam(Gn) > An1/4)) ≤ sup
n

P (Diam(Gn) > An1/4)).

And since by Lemma 13,limA→∞ supn P (Diam(Gn) > An1/4)) = 0, we getlimn→∞ P (En,ǫ) = 0. ✷

Remark 16 A result similar to Lemma 15 is given in Addario-Berry and Albenque (2013) for random
rooted simple triangulations. However, we could not deduceLemma 15 from that result and instead had
to start from Lemma 10 above.

We can now prove the main result of this section.

Proposition 17 Letπn be the distance-profile at inner edges of a uniformly random rooted outer-triangular
plane graph withn+ 3 edges. Thenµ2(πn) satisfies the ISE limit property.

Proof: Let Gn be the uniform random rooted outer-triangular plane graph with n inner edges, and letEi

be the set of inner edges. We consider then-setsd = {de}e∈Ei andd̃ = {d̃(e)}e∈Ei . WhenEn,ǫ does
not hold, thenW1(µ2(d), µ2(d̃)) ≤ ǫ/21/4, and|sup(µ2(d))− sup(µ2(d̃))| ≤ ǫ/21/4. Hence, the result
follows from Proposition 9 and Lemma 15, using Claim 3. ✷



On the distance-profile of random rooted plane graphs 9

4.2 Profile of random rooted plane graphs
We now transfer our result for outer-triangular plane graphs to general plane graphs. For this we exploit
an easy decomposition (already described in Bernardi et al.(2014)) of rooted plane graphs in terms of
rooted outer-triangular plane graphs. LetM be the family of rooted plane graphs, and letC be the family
of rooted outer-triangular plane graphs. Letp be the rooted plane graph with two edges meeting at a point,
which is the root-vertex, and letD = C ∪ {p}. For an element ofD, theright-edgeis the edge following
the root-edge in counterclockwise order around the root-face. It is shown in Bernardi et al. (2014) that
each graphγ ∈ M is uniquely obtained from a sequenceγ1, . . . , γk of elements ofD where the following
operations are performed:

(i) for i ∈ [1..k−1], merge the right-edge ofγi with the root-edge ofγi+1 (identifying the root-vertices),

(ii) delete the right-edge ofγk.

In the decomposition,γi (if it exists, i.e., if i ≤ k) is called theith component. This decomposition also
ensures that the generating functionsM(z) of M andC(z) of C (according to the number of edges) are
related by

M(z) =
∑

k≥1

(z + C(z)/z)k =
D(z)

1−D(z)
, whereD(z) := z + C(z)/z.

LetGn be the random rooted plane graph withn edges, and fori, j ≥ 1, letE(i,j)
n be the event that, in the

decompositionγ1, . . . , γk of Gn, theith componentγi exists (i.e.,i ≤ k) and hasn − j + 1 edges. And
let π(i,j)

n be the probability thatE(i,j)
n occurs.

Lemma 18 For any i, j ≥ 0, there exists a non-negative constantπ(i,j) such thatπ(i,j)
n converges to

π(i,j). In addition
∑

i,j π
(i,j) = 1.

Proof: Let mn be the number of rooted plane graphs withn edges,m(i,j)
n the number of rooted plane

graphs withn edges for whichE(i,j)
n occurs (note thatπ(i,j)

n = m
(i,j)
n /mn), anddn be the number of

elements ofD with n edges. From the explicit expression

C(z) =
∑

n≥1

3 · 2n−1(2n)!

n!(n+ 2)!
zn+2 =

z2(−1 + 12z +
√
1− 8z)

(1 +
√
1− 8z)2

it is easy to find thatD(z) andM(z) have the following singular expansion atz = 1/8 (with the notation
Z =

√
1− 8z):

D(z) =
5

32
− 9

32
Z2 +

1

4
Z3 + O(Z4), M(z) =

5

27
− 32

81
Z2 +

256

729
Z3 +O(Z4),

which we rewrite, withd := 5/32 ande = 1/4, as

D(z) = d+ eZ3 − 9Z2/32 +O(Z4), M(z) =
d

1− d
+

e

(1− d)2
Z3 − 32Z2/81 +O(Z4).

Now, let M (i,j)(z) =
∑

n m
(i,j)
n zn. It is easy to see thatM (i,j)(z) = a(i,j)zjD(z), wherea(i,j) =

[zj]
D(z)i−1

1−D(z)
accounts for the choice of the componentsγs for s 6= i. HenceM (i,j)(z) has a singular
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expansion of the formM (i,j)(z) = d(i,j) + e(i,j)Z3/2 + g(i,j)Z2 + O(Z4), with e(i,j) = a(i,j) · e · 8−j.
By classical transfer lemmas of singularity analysis in Flajolet and Sedgewick (2009),

mn ∼ 1√
π

e

(1− d)2
8nn−5/2, m(i,j)

n ∼ 1√
π
a(i,j) · e · 8−j · 8nn−5/2.

Henceπ(i,j)
n = m

(i,j)
n /mn converges to the constantπ(i,j) given by

π(i,j) := (1− d)28−j[zj]
D(z)i−1

1−D(z)
.

We have for eachi ≥ 1,
∑

j π
(i,j) = (1 − d)2 · F (1/8), whereF (z) = D(z)i−1/(1 − D(z)). Since

F (1/8) = D(1/8)i−1/(1−D(1/8)) = di−1/(1− d), we conclude that
∑

i,j π
(i,j) = 1. ✷

Lemma 19 For i, j ≥ 0 fixed, letπn be the profile of the random rooted plane graphG
(i,j)
n with n edges

conditioned onE(i,j)
n . Thenµ2(πn) satisfies the ISE limit property.

Proof: Let E be the set of edges ofG(i,j)
n and letEi be the set of inner edges ofγi. Letd = {de}e∈E be

then-set of distances of the edges ofG
(i,j)
n from the root-vertex, and letd′ = {de}e∈Ei be the(n−j−2)-

set of distances of inner edges ofγi from the root-vertex ofγi (which is also the root-vertex ofG(i,j)
n ).

It is easy to see that there exists a constantA > 0 (depending only oni andj) such that, for any rooted
plane graph withn edges and satisfyingE(i,j)

n ,

W1(µ2(d), µ2(d
′)) ≤ A · Diam(γi)

n
.

Sinceγi is a uniformly random rooted outer-triangular plane graph with n − j + 1 edges, Lemma 13
ensures thatDiam(γi)/n

1/4 satisfies the uniform exponential decay property hence

P (W1(µ2(d), µ2(d
′)) ≥ A/

√
n) = O(exp(−Ω(n1/4))).

Similarly
P (|sup(µ2(d))− sup(µ2(d

′))| ≥ A/
√
n) = O(exp(−Ω(n1/4))).

Sinceµ2(d
′) satisfies the ISE limit property according to Proposition 17, we conclude from Claim 3 that

µ2(d) also satisfies the ISE limit property. ✷

Proof of Theorem 2.Let η > 0. Let k be the smallest value such that
∑

i≤k,j≤k π
(i,j) > 1 − η, and

let En,η be the event thatE(i,j)
n holds for somei ≤ k andj ≤ k. By Lemma 19, conditioned onEn,η,

the random rooted plane graph withn edges satisfies the ISE limit property. Note that, asn → ∞ the
probability thatEn,η holds converges tocη :=

∑
i≤k,j≤k π

(i,j) (because forn large enough two events

E(i,j)
n andE(i′,j′)

n do not intersect), hence forn large enough, the probability thatEn,η holds is at least
1− η. Takingη arbitrarily small, we conclude thatGn satisfies the ISE limit property. �

We define theradiusr(G) of a planar mapG as the largest possible distance of a vertex ofG from the
root-vertex.
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Proposition 20 LetRn be the radius of the random rooted plane graphGn withn edges. ThenRn/(2n)
1/4

converges in law to the width ofµISE, and the convergence also holds for the moments.

Proof: The convergence in law follows immediately from Theorem 2. The convergence of the moments
then follows from the uniform exponential decay property ofRn/(2n)

1/4 which is given by Corollary 14.
✷

5 The profile of two other map families
In this section we prove that Theorem 2 and Proposition 20 imply similar results for the class of rooted
loopless maps, and the class of general rooted maps. The key tool (proved in Gao and Wormald (1999);
Banderier et al. (2001)) is that a rooted loopless maps has almost surely a “giant” simple component
of linear size (concentrated around2n/3), and a rooted map has has almost surely a “giant” loopless
component of linear size (concentrated around2n/3). Some details are omitted by lack of space.

5.1 Profile of random rooted loopless maps
It is well known that a rooted loopless mapM decomposes as a rooted simple map where each edge
e is either left alone or one patches an arbitrary loopless mapMe at e (so thate and the root-edge of
Me have the same extremities). One can recursively apply the same procedure to each of the substituted
loopless mapsMe, which in the end yields atree-decompositionof M where the nodes correspond either
to multiple edges ofM or to rooted simple maps, and each edge of the tree corresponds to an edge of a
simple component being part of a multiple edge ofM .

We denoteGn the uniformly random rooted loopless map withn edges. Note that upon conditioning on
the size of the simple maps appearing in the tree-decomposition of Gn, these simple maps are uniformly
random (for their prescribed size) and independent.

Lemma 21 There exists constantsα, β such that for allǫ > 0, and alln ≥ 0,P (Diam(Gn) ≥ n1/4+ǫ) ≤
α exp(−nβǫ).

Proof: By Corollary 14 there exista, b > 0 such that the probability that each simple components of
Gn has diameter greater thann1/4+ǫ is at mosta exp(−bnǫ). Thus the probability that one of these
components has diameter greatern1/4+ǫ is at mostna exp(−bnǫ) < a′ exp(−nb′ǫ) for somea′, b′ > 0.
Now, let τ be the tree of the tree-decomposition ofGn. Using the arguments of Lemma 4.8 in Chapuy
et al. (2010), one easily proves that there exista′′, b′′ > 0 such that for allǫ > 0, P (Diam(τ) > nǫ) <
a′′ exp(−nb′′ǫ). SinceDiam(Gn) ≤ 2 ·D ·Diam(τ), we easily conclude. ✷

Given a rooted loopless mapGn with n edges, we now define some events forGn. We defineEn
as the event that the largest simple componentB of Gn has its number of edges in the interval[2n/3 −
n3/4, 2n/3+n3/4], and the loopless components attached at each of the edges ofB are all of size (number
of edges) at mostn3/4; from now on we calllooplessB-componentsof Gn these components. Assuming
thatEn holds we defineE ′

n as the event that the diameter of all looplessB-components is at mostn7/32,
and the diameter ofB is at mostn1/4 log(n)2. LetE be the set of edges ofGn andEB the set of edges
of B. We define theroot-edgeof B as the edge ofB bearing the loopless B-component containing the
root-edge ofGn; call root-vertex ofB the origin of this edge endowed with an arbitrary orientation. For
each edgee ∈ EB denote bydB(e) the length of a shortest path inB starting frome and ending at
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the root-vertex ofB. For each edgee ∈ E, let eB be the edge ofB bearing the loopless B-component
containinge, definedB(e) := dB(eB). For eachi ≥ 1 denote byE(i) the set of edges ofE such that
dB(e) ≤ i, and denote byEB(i) the set of edges ofB such thatdB(e) ≤ i. We defineE ′′′

n as the event
|E(i)| ∈ [ |EB|

|E| |EB(i)| − n3/4, |EB |
|E| |EB(i)|/3 + n3/4] ∀i ≥ 1. Lastly, we defineE∗

n as the event that all
of En, E ′

n, E ′′′
n hold.

Lemma 22 The probability ofE∗
n is 1−O(exp(−Ω(log(n)2))).

Proof: Using the asymptotic estimates in Gao and Wormald (1999); Banderier et al. (2001) (see also
Lemma 3.7 in Chapuy et al. (2010)), it can be proved thatP (En) > 1 − a exp(−nδ)) for somea, δ > 0.
Now if En occurs, Corrolary 14 and Lemma 21 easily prove thatP (E ′

n) > 1 − a′ exp(−nδ′)) for some
a′, δ′ > 0. Lastly if En occurs,

dB(e) ≤ d(e) ≤ dB(e) + 2n7/32 for all e ∈ E.

Moreover, asymptotic estimates in Gao and Wormald (1999); Banderier et al. (2001) that, conditioned on
En,

P (|E(i)| ∈ [2|EB(i)|/3− n1/2+δ, 2|EB(i)|/3 + n1/2+δ]) = 1−O(exp(−n−δ′′))

for someδ′′ > 0. HenceP (En) > 1− a′′ exp(−nδ′′) for somea′′, δ′′ > 0. ✷

Lemma 23 For M an arbitrary rooted loopless map withn edges satisfyingE∗
n, let

µM :=
1

n

∑

e∈E

δd(e)/(4n/3)1/4 , µB :=
1

|EB|
∑

e∈EB

δdB(e)/(2|EB |)1/4 .

ThenW1(µM , µB) = O(n−1/32), and|sup(µM )− sup(µB)| = O(n−1/32).

Proof: Let

µ̃M :=
1

n

∑

e∈E

δdB(e)/(4n/3)1/4 , µ̃B :=
1

|EB|
∑

e∈EB

δdB(e)/(4n/3)1/4 ,

and letFµ̃M
(x) andFµ̃B

(x) be the respective cumulative functions ofµ̃M andµ̃B. The property given
by E ′′′

n ensures that|Fµ̃M
(x) − Fµ̃B

(x)| ≤ n3/4/n = n−1/4. SinceFµ̃M
(x) = Fµ̃B

(x) = 1 for
x ≥ (3/4)1/4 log(n)2 we conclude thatW1(µ̃M , µ̃B) ≤ (3/4)1/4 log(n)2n−1/4. Moreover, since|d(e)−
dB(e)| ≤ 2n7/32, we haveW1(µM , µ̃M ) ≤ 2n7/32/(4n/3)1/4 ≤ 2n−1/32. Finally, since|EB|−1/4 =
(4n/3)−1/4 · (1+O(n−1/4)), we haveW1(µB, µ̃B) = O(n−1/4). To conclude, we haveW1(µM , µB) ≤
W1(µM , µ̃M )+W1(µ̃M , µ̃B)+W1(µ̃B , µB) = O(n−1/32). By similar arguments one proves|sup(µM )−
sup(µB)| = O(n−1/32). ✷

This lemma, Theorem 2, and Claim 3 then imply:

Theorem 24 Let πn be the distance-profile of the random rooted loopless map with n edges. Then
µ4/3(πn) satisfies the ISE limit property.

One can also easily prove the analogue of Proposition 20 for random rooted loopless maps:

Proposition 25 LetRn be the radius of the random rooted loopless mapGn withn edges. ThenRn/(4n/3)
1/4

converges in law to the width ofµISE, and the convergence also holds for the moments.



On the distance-profile of random rooted plane graphs 13

Proof: The convergence in law to the width of ISE directly follows from Theorem 24. It remains to show
that the latter convergence also holds for the moments. First note thatP (¬ E∗

n) = O(exp(−Ω(log(n)2))),
which iso(n−k)) for all k ≥ 1. Hence for computing the moments ofr(Gn) we can condition onE∗

n.
Moreover conditioning onE∗

n we haver(Gn) ≤ Diam(B) + 2n7/32, hencer(Gn)/n
1/4 has the uniform

exponential decay property, hence the convergence of the moments holds. ✷

5.2 Profile of random rooted maps
Very similarly as for loopless maps, a rooted map decomposes(along loops) as a tree of components that
are loopless maps. All the arguments used in Section 5.1 can be recycled here (starting with the result
proved in Banderier et al. (2001) that the random rooted map with n edges has almost surely a “giant”
loopless component whose size is concentrated around2n/3). We therefore obtain.

Theorem 26 LetGn be the uniformly random rooted map withn edges, letπn be its distance-profile and
Rn be its radius. Thenµ8/9(πn) satisfies the ISE limit property. MoreoverRn/(8n/9)

1/4 converges in
law to the width ofµISE, and the convergence also holds for the moments.

Remark 27 Theorem 26 can alternatively be recovered from the results in Chassaing and Schaeffer
(2004) for the profile and radius of rooted random quadrangulations, combined with the recent bijec-
tion in Ambjørn and Budd (2013) (which preserves the profile).

Remark 28 We have shown in this section that the ISE limit property for random rooted simple maps
implies the ISE limit property for random rooted maps (via random rooted loopless maps). In contrast,
we do not know how to prove that the ISE limit property for random rooted maps implies the ISE limit
property for random rooted simple maps.

6 Conclusion
Regarding thetypical distanceto the root, letdn denote the distance to the root-vertex of a random edge
in a random rooted simple (resp. loopless, general) map withn edges. The results we have obtained
imply the following: the random variabledn/(an)1/4 (with a = 2 for simple maps,a = 4/3 for loopless
maps, anda = 8/9 for general maps) converges to the random variable that gives the expectation of the
nonnegative shift ofµISE (which is known to be distributed assup(µISE)), whose cumulative function is

ϕ(r) =
4√
π

∫ ∞

0

dξ ξ2 e−ξ2
(
1− 6

1− cosh(r̃
√
ξ) cos(r̃

√
ξ)

(cosh(r̃
√
ξ)− cos(r̃

√
ξ))2

)
, with r̃ = 23/4r.

Regarding the conjectural convergence of the random rootedplane graph withn edges to the Brownian
map, the bijection of Bernardi et al. (2014) on which the present work relies can be composed with a
bijection (of the “Ambjørn-Budd type”) given in Bouttier etal. (2013) between rooted eulerian triangula-
tions and rooted bipartite maps, in a way that preserves the profile. This gives thus a bijective coupling
of rooted (outer-triangular) plane graphs with rooted bipartite maps; and it is tempting to conjecture that
the Gromov-Hausdorff distance between the metric spaces (rescaled byn1/4) of coupled maps converges
to 0 in probability. This (and the fact that a random rooted planegraph has almost surely a “giant” outer-
triangular component, as shown in Lemma 18) would solve the problem, since the random rooted bipartite
map withn edges has been recently shown in Abraham (2013) to converge to the Brownian map.
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Another perspective is to study the distances in classes of randomnon-embedded planar graphs. Apart
from the case of triangulations treated in Addario-Berry and Albenque (2013) much less is known for
these models. On the distance profile, the most precise result known at the moment, shown by Chapuy
et al. (2010), is that the diameter isn1/4+o(1) in probability.
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