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On the distance-profile of random rooted
plane graphs
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Abstract. We study the distance-profile of the random rooted planehgéap with n edges (by a plane graph we
mean a planar map with no loops nor multiple edges). Our nesaltris that the profile and radius 6f, (with
respect to the root-vertex), rescaled (By.)'/*, converge to explicit distributions related to the Brownimake. A
crucial ingredient of our proof is a bijection we have reteimtroduced between rooted outer-triangular plane gsaph
and rooted eulerian triangulations, combined with ingeath from Chassaing and Schaeffer (2004), Bousquet-Mélou
and Schaeffer (2000), and Addario-Berry and Albenque (ROA& also show that the result for plane graphs implies
similar results for random rooted loopless maps and genexgk.

Keywords: Planar maps, bijections, ISE, Brownian snake, distanoéhpr

1 Introduction

A planar mapis a connected planar graph embedded in the plane considprieddeformation. Planar
maps can be considered as metric spaces by definirdidteencebetween vertices as the minimal number
of edges of the paths joining them. The study of the metriperties of random planar maps has been
a very active subject of research for the past 10 years. Tétekéy results were obtained in the seminal
paper Chassaing and Schaeffer (2004), focusing on theaflasstedquadrangulations (a map is rooted
by marking a directed edge having the outer face on its rigtht)as shown there that typical distances in a
uniformly random rooted quadrangulation, with » vertices is of orden!/* (in contrast with the typical
distance of.!/? for random plane trees), and that the distance-profile @heation of distances of the
vertices from the root-vertex) converges in law to an exptiistribution related to théSE (theintegrated
superBrownian excursiois the occupation measure of the Brownian snake introducAttious (1993)).
This result was then generalized to other classes of randapsnin particular to random rooted maps
with n vertices and Boltzmann weights on the faces in Marckert aretrivbnt (2007); Miermont and
Weill (2008).
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In this article, we prove this type of result on the profile footed simple maps, that is, maps without
loops nor multiple edges, which are classically capiéahe graphsWe also show that it implies the same
type of result for the class of loopless maps, and for thesatégll maps. We now give a few definitions
in view of stating our main result. For a rooted planar miag- (V, E) with n edges, thelistanced(e) of
an edge: € E (with respect to the root) is the length of a shortest pati sfarting at and ending at the
root-vertex, thalistance-profileof G is then-set{d(e)}.c g (note that this is a distance-profile at edges
we consider, not at vertices). Let us now give some terminofor the type of convergence results to be
obtained. We denote hy1; the set of probability measures 8 endowed with theveak topologythat
is, the topology given by the convergence in law). Note ti&# Is a random variable taking its values
in M. Foru € My, denote byF), () the cumulative function ofi, inf(x) := inf{z : F,(x) > 0}
andsup(p) = sup{z : F,(z) < 1}, and define thavidth of ;z assup(p) — inf(). We also define
thenonnegative shifof 1, as the probability measure (with supporfiy, ) whose cumulative function is
x = Fy(x +inf(p)).

Definition 1 A sequence:(™ of random variables taking values i is said to satisfy théSE limit
propertyif the following properties hold, whepgsy, is the random variable io\; given by the ISE law:

e sup(p(™) converges in law to the width gfisg.
o 1™ converges in law to the nonnegative shifigér (for the weak topology oi;).

For ann-setx = {z1,...,z,} of nonnegative values, and far> 0, defineu,(x) as the probability
measure

1 n
[a(X) = n Zl 511:/(11”)1/4’

whered, denotes the Dirac measurematOur main result is the following:

Theorem 2 For n > 1, letn,, be the distance-profile of the uniformly random rooted plgraph withn
edges. Theps(r,) satisfies the ISE limit property.

Relation with other work and perspectives. Although we focus here on the convergence of the profile
of random maps, much stronger results have now been prowvedveral classes of maps. More precisely,
for a given clasg of maps, one can consider the uniformly random rigf sizen on maps as a random
metric space. It is then natural to study the limit of the @mdmetric spac€’,, (rescaled by:!/*) in the
Gromov Hausdorff topology. In a series of groundbreakinugps, this type of convergence was proved to
hold for triangulations anglp-angulationsin Le Gall (2007, 2013) and independently t@drangulations
in Miermont (2013). The limitis a (continuous) random mespace called thBrownian mapwhich has
almost surely spherical topology. Combining the technémpfd_e Gall (2013) with some new ingredients,
the same result was proved for simple triangulations anglsimuadrangulations in Addario-Berry and
Albenque (2013). At the moment we do not know if we can extemdpwoof for the profile of random
simple maps in order to obtain convergence to the Brownigm ma

We close this section by recalling a useful classical resit . andv two elements o\, thelinear
Wasserstein distandeetweer, andv is defined as

Wi(u,v) = /R|F#(a:) — F,(2)|dz,
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which endowsM; with a metric structure. Another characterizatior/df(u, v) is to be the infimum of
E(]X —Y) overall couplingg X, Y') where the law ofX is 1z and the law ot isv. It is known that if a
sequence (™ of elements of\1; converges tq: for the metriciV;, thenu (™) also converges ta for the

weak topology onM ;. Hence the following claim:

Claim 3 Letu(™ andv(™ be two sequences of random variableg\ity (i.e., each variable is a random
probability measure), living in the same probability spa8esume that(™) satisfies the ISE limit property
and that, for each fixed > 0, P(W,(X,,,Y,) > ¢) converges td and P(|sup(u") — sup(v™)| > )
converges t@. Thenv (" satisfies the ISE limit property.

2 Bijection between outer-triangular plane graphs and eulerian
triangulations, and transfer of canonical paths

In this section we recall a bijection established in Berhatdl. (2014) between outer-triangular plane
graphs and eulerian triangulations, and establish a diu@perty for canonical paths.
A rooted plane graph' is said to beouter-triangularif its outer face (that is, the root face, drawn as

the infinite face in the planar representatiorCffhas degre8. Given an outer-triangular plane gragh
a 3-orientation with bud®of G is an orientation of the inner edges@f(outer edges are left unoriented),
with additional outgoing half-edges at inner verticeslezibuds such that each inner (resp. outer) vertex
has outdegre@(resp.0), and each inner face of degrée 3 hasd incident bud$’. It is shown in Bernardi
and Fusy (2012) that each rooted outer-triangular planghgksadmits a uniqué-orientation with buds,
called thecanonical 3-orientationpsatisfying the following properties:

e Outer-accessibilitythere is a directed path from any inner vertex to a vertexefduter face.

e Minimality: There is no clockwise circuit.

e Local property at budsthe first edge following each bud in clockwise order must bigoing.
Figure 1.(a) shows such an outer-triangular plane grapbvead with its canonical 3-orientation.

(a) (c)

Fig. 1: (2) An outer-triangular plane graph endowed with its cacalrii-orientation with buds, (b) after inflation and
(c) after merging, the resulting eulerian triangulatiod@med with its canonical-orientation.

A rooted eulerian triangulations a rooted planar map (which may have multiple edges) whaeh e
face has degreg and each vertex has even degree. Hence faces can be projpettydd (in light or

() When@G is a maximal plane grapB:orientations have no bud, and correspond to the well-kn®elmyder structures, introduced
in Schnyder (1989).
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dark) such that each light (resp. dark) face is adjacent tmijark (resp. light) faces. By convention
(since there are exactly two possible colorings), the ract fis dark.

As shown in Bernardi et al. (2014), there exists a bijectietween these two families of maps. We just
recall here how to obtain a rooted eulerian triangulatiomfta rooted outer-triangular plane graph. Let
C' be an outer-triangular plane graph endowed with its cambfiorientation with buds. The bijection
illustrated in Figure 1 has two stepsflation, thenmerging First, inner edges and inner vertices will be
inflated in the following way:

e Each inner edge becomes a dark triangle as indicated below.

— A

e Each inner vertex becomes a light triangle whose edgessponel to the outgoing half-edges
(including buds). The cases with 0,1 or 2 buds are illustratdow.

After inflation, former inner faces of degrée-3 (d > 0) have now degre2d+3 (thed incident buds have
turned into edges). Considering edges coming from buds esilog parenthesis, and remaining edges as
closing parenthesis, one can form a clockwise parenthgsisra leavingd edges unmatched. Hence,
after merging the matched edges, henmatched edges form a light triangle. This ensures thét ieae

of the resulting map is a triangle; see Figure 1. Moreovergiiges created by the inflation are incident
to a dark and a light face, except for edges coming from bubigare incident to two light faces. After
merging, these edges are necessarily incident to a darle$awsell. Therefore the triangulation is properly
bicolored and is an eulerian triangulation (the outer fadgch is left unchanged, is colored dark).

Let C' be an outer-triangular rooted plane graph. For each innge €dve define itscanonical path
P(e) to be the directed path in the canoni8abrientation ofC' starting ate and following the rightmost
(with respect to the previous edge on the path) outgoing edgjereaching a vertex of the outer face
(P(e) exist because the canonickbrientation is minimal and outer-accessible). kKethe a rooted
eulerian triangulation. A-orientationof G is an orientation of some inner edges (outer edges are left
unoriented), such that each dark inner face has one diredgel, which is counterclockwise, and each
inner (resp. outer) vertex has outdegie@esp. 0). In a similar fashion as for outer-triangular plane
graphs( has a uniqué-orientation, called itsanonical 1-orientationwhich satisfie®uter-accessibility
see Figure 1(c). For each inner verigxve define itanonical pathP(v) to be the unique directed path
in the canonical -orientation starting at and following the next outgoing edge until reaching a veaex
the outer face.

To an edge of an outer-triangular rooted plane graph, we dendtg the inner vertex of the associated
rooted eulerian triangulation which is the origineoéfter inflation of the edge into a dark triangle.

Proposition 4 LetC' be an outer-triangular rooted plane graph adglbe the associated eulerian trian-
gulation. The mapping gives a bijection between the edge€ioénd the inner vertices a¥. Moreover
the canonical path of an edgeof C' has the same length as the canonical path of the vertexof G.
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Proof: The canonical 3-orientation @f gives a partial orientatiof? of G. Itis not hard to see th& a 1-
orientation, therefore gives a bijection between the edgesband the inner vertices @¥. Moreover all
the canonical paths @ are directed paths in the orientati@n(that is, they are preserved by the inflation
process), thu€ is outer-accessible. Thusis the canonical 1-orientation 6f, and the canonical path of
e becomes the canonical pathafe). This completes the proof. O

Remark 5 Beside the bijection between outer-triangular plane giphd eulerian triangulations, we
will also use the following injection between rooted outéngular plane graphs and rooted simple
triangulations. Given a rooted outer-triangular plane gfaC endowed with its canonical 3-orientation,
every inner face of degre¢ + 3 containsd buds. We consider the triangulatiéh obtained fromC'

by triangulating each inner face by completing the buds icdonplete edges and gluing these edges
in counter-clockwise order around each inner face; see g2t The 3-orientation of” gives a 3-
orientation ofT" (which implies thafl" is simple) and we contend that it is tbanonical3-orientation of

T. This follows easily from the fact that the canonical path€'are canonical paths ifi” ( because of
thelocal property at bugsand therefore no clockwise cycle exist.

Fig. 2: Generic situation in a face of degréevith its 4 incident buds, and its canonical
triangulation (dashed lines).

3 The profile of random rooted eulerian triangulations

3.1 Profile with respect to the root-vertex

Let T be a rooted eulerian triangulation with+ 1 vertices, letV be the vertex-set and let, be the
root-vertex. Recall that the faces ©fare properly bicolored with the outer face being dark. A path
from a vertexv to a vertexv’ is calledadmissibléf each traversed edge @f has a dark face on its left.
Let /(v) be the length of a shortest admissible path froto vy. Then-set{/(v)},cv\ 4, IS called the
root-vertex profileof 7.

Proposition 6 Let,, be the root-vertex profile of a uniformly random rooted eialetriangulation with
n + 1 vertices. Thems (7, ) satisfies the ISE limit property.

Proof: Itis shown in Bouttier et al. (2004) that random rooted daletriangulations with + 1 vertices
are in bijection with so-calledery well-labelled treegith n nodes, i.e., rooted plane trees witinodes,
each node having a positive label such that adjacent nodésldifer by1 in absolute value, and the root
is at a node of label. In addition the root-vertex profile of the eulerian triafagion corresponds to the
n-set of labels of the corresponding tree. Henges distributed as the-set of labels of the random very
well-labelled tree witm nodes. The article Le Gall (2006) ensuf@shat (7, ) satisfies the ISE limit

property. O

() See in particular Theorem 8.2 where the methodology is egpdi the very close model where adjacent node labels diffet b
most1 in absolute value.
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Remark 7 Alternatively one could prove Proposition 6 by recycling tombinatorial arguments from
Sections 4.4 and 4.5 in Chassaing and Schaeffer (2004). Widigd require a detour via a model of
“blossoming trees” (actually the one used in Bousquedldi and Schaeffer (2000)) in order to drop the
condition that the labels are positive.

3.2 Profile with respect to the outer face

Let T be a rooted eulerian triangulation, and 1ebe its set of inner vertices. Forc V, we denote by
d(v) the length of canonical path of The set{d(v)},cv is called theoot-face profileof T'. Then it is
easily checked from Bousquet-Mélou and Schaeffer (20@1)%(1;) is the length of a shortest admissible
path fromw to (a vertex of) the root-face. Henég) —2 < cZ(v) < {(v). Thus Proposition 6 immediately
gives (via Claim 3) the following result.

Proposition 8 Let,, be the root-face profile of a uniformly random rooted eularidgangulation withn
inner vertices. Theps(,,) satisfies the ISE limit property.

4 The profile of random rooted plane graphs

4.1 Profile of random rooted outer-triangular plane graphs

Let G be a rooted outer-triangular plane graph, andélgbe its set of inner edges. Fere E; we denote
by d(e) the length of the canonical path ef and byd(e) the length of a shortest path startingeaand
ending at (a vertex of) the root-face. The $dte)}.cr, is called thecanonical path profileof , and
the set{d(e)}.cr, is called thedistance-profile at inner edges G. By Proposition 4 the canonical path
profile of G coincides with the root-face profile of the rooted eulerigatgulation associated witd by
the bijection of Section 2. Thus Proposition 8 gives:

Proposition 9 Let, be the canonical path profile of a uniformly random rootedesttiangular plane
graph withn + 3 edges. Thep. (7, ) satisfies the ISE limit property.

We will now prove that with high probability the canonicatpgrofile is close from the distance-profile
using the following (non-random) result from Addario-Beand Albenque (2013).

Lemma 10 (Addario-Berry and Albenque (2013)) There exists positive constarits, ko such that the
following holds. Let: be a rooted simple triangulation, letbe an inner edge dF, let P be the canonical
path ofe (for the canonicaB-orientation ofG), and let@ be another path from the origin efto the root-

face. If the lengthl of P is greater than the lengtll’ of @, then there exists a cyclé contained in

P U Q of length a moskd’/(d — d')) such that each of the two parts @fresulting from cutting along
C contains a (consecutive) subpath@bf length at leasks(d — d').

This implies the following (non-random) statement for explane graphs, where thameteDiam (G)
of a graph( is the maximal distance between pairs of vertices.

Lemma 11 The statement of Lemma 10 also holds if one replaces “sinmj@edgulation” by “outer
triangular plane graph”. Consequently, for any > 0, if G is a rooted outer-triangular plane grapf,
ande is an inner edge such thdte) < d(e) — A, thenG has a cycle” of length at mosk; d(e)/A such
that the two part€=,, G, resulting from cutting along’ each have diameter at leasfA.
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Proof: Let G be a rooted outer triangular plane graph. We consider itsnmaili3-orientation with buds.
As explained in Remark 5, there is a canonical way to completebuds ofG into complete edges so
as to triangulate each inner face@fand obtain a simple triangulatiai endowed with its minimal 3-
orientation. Moreover, for any inner edgeof G canonical path of is the same irG and inG. This
proves the first statement. The second statement is a sirmpkequence obtained by considering the
canonical pathP of an edge: of G and a geodesic path. In this cas&r has a cycl&” of length at most
kid(e)/(d(e) — d(e))) < kid(e)/A such that the two pari§,, G,. resulting from cutting along” each
have a subpath af) of length at leastk,(d(e) — d(e)) > k2. Since a subpath of a geodesic path is
geodesic, we conclude that each(®f, G- has a diameter at least A. O

Definition 12 A sequenceX,, of real random variables is said to have thaiform exponential decay
propertyif there exist constants, b > 0 such that for alln, P(X,, > z) = aexp(—bz)).

Lemma 13 Let H,, be the uniformly random rooted outer-triangular plane gnapith n + 3 edges. Then
Diam(H,,)/n'/* satisfies the uniform exponential decay property.

Proof: The property is inherited from eulerian triangulationsed®sely, letr,, denote the root-vertex
profile of the uniformly random rooted eulerian. The caltiolas done in Section 6.2 of Chassaing and
Schaeffer (2004) for well-labeled trees (which corresptindooted quadrangulations) can be adapted
verbatim to very well-labelled trees (which correspondaoted eulerian triangulations) in order to show
thatsup(uz(m,)) has the uniform exponential decay property. Hence;, itlenotes the root-face profile
of the uniformly random rooted eulerian triangulation wiitlvertices, themup(ug( /)) has the uniform
exponential decay property. This is in turn transferregg(tively) tosup(uz (7, )), wheren,, is the canon-
ical path profile ofH,,. Then, sincel(e) < d(e), the property is also satisfied byp(;@( 7)), where
7" = {d(e) }eer, is the distance-profile at inner edgesif. SinceDiam(H,,) < 2 - max.cg, (d(e)),

we conclude thabiam(H,,)/n'/* satisfies the uniform exponential decay property. ]

Forn > 0 we denote byM,, the set of rooted plane graphs withedges, and,, the subset of outer-
triangular maps. It was shown in Bernardi et al. (2014) that

(2n)!

O L L
Gl nl(n + 2)!

= 0(8"n~%/2), 1)

Observe that there is an injective magrom M, to /\/ln+2 as shown in the figure below.

@f:x@

Thus |M,| < |Chiz| = O(8"n~>/2). MoreoverDiam(G) = Diam(¢(G)). Thus (observing that

\‘CA;+2|I > \C|i+LI is bounded away from 0) Lemma 13 |mpI|es the foIIowmg.

Corollary 14 LetG,, be the uniformly random plane graphs withedges. Theiam(G,,)/n'/* sat-
isfies the uniform exponential decay property. Therefoeeettexists constants b > 0 such that for all
n > 0andz > 0 the number of elements bt of diameter at leastn'/4 is at mosu8"n~>/2 exp(—bx)).
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Lemma 15 Lete > 0 and letG,, be the random rooted outer-triangular plane graph witkedges. Let
&« be the event tha®,, has an edge for whichd(e) < d(e) — en'/*. Thenlim,, o, P(E,.) = 0.

Proof: We first show the statement for the evépt. 4 = &, N {Diam(G,) < Anl/*}, whereA is an

arbitrary fixed positive constant. Lét, be the set of rooted outer-triangular plane graphs wittdges
of diameter at mostin!/4 having an edge for whichd(e) < d(e) — en'/%. By (1), it suffices to show
that|U,,| = o(8"n~°/2). By Lemma 11 (applied t&A = en'/*), any map inU,, has a cycle of length
¢ < kid(e)/en™/* < k1 A/e separating two maps of diameter at lekastn'/. We now fix a positive
integerc, and denot& ¢ the set of pairgG, C) whereG is a rooted outer-triangular plane graph with
edges and’ is a cycle ofG of lengthc such that the two parts @ obtained by cutting along’ each

have diameter at leagben'/%. It suffices to prove thai,¢| = o(8"n=>/?). Letw;,, be the number
of maps inM; of diameter at least,en'/*. By Corollary 14 there are constantsh’ > 0 such that
w; < a8% /2 exp(—b'(n/i)}/*). Decomposing pairés, C) € V¢ into two maps gives

V] < E 21 - Wi nWj,n
1+j=n+c

where the facton accounts for choosing the position of the root edgé/ofLet S be the above sum
restricted to{i > n/(log(n)®)} N {j > n/(log(n)®)} andS’ the sum of the other terms. Sineg,, <
a8ii’5/2,

S < (n+c)-2n-a?8"¢(n/log(n)®) = = o(8"n"/2).

And sincew; ,, < a8’ exp(—b'(n/i)1/4),

§' < 2n/(log(n)®) - 2n - a8 exp(~Y/ (log(n))?) = o(8"n "),

Hence|V,¢| = o(8"n~5/2) and this completes the proof that for ady> 0, lim,, o P(En.c.a) = 0.
Thus for allA > 0,
lim P(&,) < lim (P(Epc.a) + P(Diam(G,,) > An'/*)) < sup P(Diam(G,,) > An'/*)).

n— oo n— oo
And since by Lemma 13im 4, , sup,, P(Diam(G,,) > An'/*)) = 0, we getlim,, oo P(E,,c) = 0. O

Remark 16 A result similar to Lemma 15 is given in Addario-Berry and édlque (2013) for random
rooted simple triangulations. However, we could not dedue@ma 15 from that result and instead had
to start from Lemma 10 above.

We can now prove the main result of this section.

Proposition 17 Letr,, be the distance-profile atinner edges of a uniformly randooted outer-triangular
plane graph withn + 3 edges. Thep. (7, ) satisfies the ISE limit property.

Proof: Let G,, be the uniform random rooted outer-triangular plane grajh winner edges, and l&t;
be the set of inner edges. We considerhgetsd = {d,}.cr, andd = {d(e)}cer,. Whené, . does
not hold, therV; (uo(d), pa(d)) < €/2'/4, and|sup(ua(d)) — sup(pa(d))| < €/2'/%. Hence, the result
follows from Proposition 9 and Lemma 15, using Claim 3. O
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4.2 Profile of random rooted plane graphs

We now transfer our result for outer-triangular plane gsafghgeneral plane graphs. For this we exploit
an easy decomposition (already described in Bernardi é2@1.4)) of rooted plane graphs in terms of
rooted outer-triangular plane graphs. Ut be the family of rooted plane graphs, anddédte the family

of rooted outer-triangular plane graphs. hdte the rooted plane graph with two edges meeting at a point,
which is the root-vertex, and 1& = C U {p}. For an element db, theright-edgeis the edge following

the root-edge in counterclockwise order around the rooe-fdt is shown in Bernardi et al. (2014) that
each graph € M is uniquely obtained from a sequenge. . ., v, of elements o> where the following
operations are performed:

(i) for i € [1..k—1], merge the right-edge &f with the root-edge of; ., (identifying the root-vertices),
(ii) delete the right-edge ofy.
In the decompositiony; (if it exists, i.e., ifi < k) is called theith component. This decomposition also

ensures that the generating functigi§z) of M andC(z) of C (according to the number of edges) are
related by

M) = Y+ O )t = 2

> D) where D(z) := 2z + C(2)/=.

Let G,, be the random rooted plane graph witledges, and foi, j > 1, let Sff’j) be the event that, in the
decompositionyl, ook Of Gy, theith componenty; exists (i.e.; < k) and has: — j + 1 edges. And
let ") be the probability that "’ occurs.

Lemma 18 For anyi,j > 0, there exists a non-negative constarit/) such thatw,(f’j) converges to

w9, In addition", ; w(7) = 1.

Proof: Let m, be the number of rooted plane graphs_w’nﬂedges_,mgf’j) the number of rooted plane
graphs withn edges for whiche"” occurs (note that(™ = mﬁf’g)/mn), andd,, be the number of

elements oD with n edges. From the explicit expression
C(z) = Z 3- 2”71(271)!271+2 _ 22(=14 122 + /1 - 82)
= nl(n + 2)! (1+ 1 —82)2

it is easy to find thaD(z) and M (z) have the following singular expansionat 1/8 (with the notation
Z =+/1-282):
_5 9,0, 1. 4 _ 5 32, 25 4 4
D(z) = Py 32Z +4Z +0(Z%), M(z)= 57 81Z +729Z +0(Z%),
which we rewrite, withd := 5/32 ande = 1/4, as

d e
. 3 2 4 _—
D(z) = d+e2° =97°[32+ O(Z"), M(z) = 7=+ 7 —gp

73 —3277%/81 + O(Z%).

Now, let M) (z) = 3 mi7) 2. Itis easy to see that/ () (z) = a("1)27D(z), wherea™/) =
. D(Z)i—l

[Zj]liD() accounts for the choice of the componentdor s # i. HenceM (") (z) has a singular
— z
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expansion of the form/ (+7) (z) = d(#9) 4 () 73/2 4 ¢(03) 72 1 O(Z4), with e(49) = () . ¢ . 877,
By classical transfer lemmas of singularity analysis irjét# and Sedgewick (2009),

- i%g"n*W?’ mld) o i) . g . grn=5/2,
™

V(1 —d)
Hencer"” = m{ /m,, converges to the constant) given by

D(z)i!

70 = (1 - d)28_j[zj]1—7D(Z).

We have for each > 1, 3, «(7) = (1 —d)? - F(1/8), whereF(z) = D(z)""'/(1 — D(z)). Since
F(1/8) = D(1/8)"~'/(1 - D(1/8)) = d"~* /(1 — d), we conclude tha}, ; w7 = 1. O

Lemma 19 For 4, j > 0 fixed, letr,, be the profile of the random rooted plane gra@&’j) with n edges
conditioned org(™?. Thenus(,,) satisfies the ISE limit property.

Proof: Let F be the set of edges (ﬂg’j) and letE; be the set of inner edges of. Letd = {d.}.cr be
then-set of distances of the edges@)f’j) from the root-vertex, and let’ = {d. }.cr, be the(n—j—2)-
set of distances of inner edgesqffrom the root-vertex ofy; (which is also the root-vertex g )).
It is easy to see that there exists a constant 0 (depending only ori andj) such that, for any rooted
plane graph witlh edges and satisfyir@(f’j),

Diam(~;)

Wl(#Q(d)vNQ(d/)) <A. T

Since~; is a uniformly random rooted outer-triangular plane grapthw — j + 1 edges, Lemma 13
ensures thabiam(y;)/n'/* satisfies the uniform exponential decay property hence

P(Wi(p2(d), pa(d')) = A/v/n) = O(exp(=Q(n'/*))).

Similarly
P(Jsup(pz(d)) — sup(ua(d))| > A/v/n) = Oexp(—Q(n'/*))).

Sincepus(d’) satisfies the ISE limit property according to Proposition@ conclude from Claim 3 that
p2(d) also satisfies the ISE limit property. O

Proof of Theorem 2Letn > 0. Letk be the smallest value such tha}, ., ., 7)) > 1 — 5, and

let £, , be the event thaf,gi"j) holds for some < k£ andj < k. By Lemma 19, conditioned o8, ,,
the random rooted plane graph withedges satisfies the ISE limit property. Note thatpas> oo the
probability that&,, ,, holds converges to, := Zigk,jgk 7(7) (because for large enough two events

£ and (7" do not intersect), hence for large enough, the probability tha, ,, holds is at least
1 — n. Takingn arbitrarily small, we conclude that,, satisfies the ISE limit property. O

We define theadiusr(G) of a planar magg- as the largest possible distance of a verte& dfom the
root-vertex.
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Proposition 20 Let R,, be the radius of the random rooted plane gra@ghwith » edges. The®,, /(2n)/*
converges in law to the width gfisg, and the convergence also holds for the moments.

Proof: The convergence in law follows immediately from Theorem Be Tonvergence of the moments
then follows from the uniform exponential decay property?gf/ (2n)'/ which is given by Corollary 14.
ad

5 The profile of two other map families

In this section we prove that Theorem 2 and Proposition 2Qyirsimilar results for the class of rooted
loopless maps, and the class of general rooted maps. Thedkefptoved in Gao and Wormald (1999);
Banderier et al. (2001)) is that a rooted loopless maps hasstlsurely a “giant” simple component
of linear size (concentrated aroud/3), and a rooted map has has almost surely a “giant” loopless
component of linear size (concentrated arokn@d3). Some details are omitted by lack of space.

5.1 Profile of random rooted loopless maps

It is well known that a rooted loopless mag decomposes as a rooted simple map where each edge
e is either left alone or one patches an arbitrary loopless Mapat e (so thate and the root-edge of
M. have the same extremities). One can recursively apply tine gsiocedure to each of the substituted
loopless mapd/., which in the end yields tiee-decompositionf M where the nodes correspond either
to multiple edges of\f or to rooted simple maps, and each edge of the tree corresporach edge of a
simple component being part of a multiple edgé\bHf

We denoté&r,, the uniformly random rooted loopless map witledges. Note that upon conditioning on
the size of the simple maps appearing in the tree-deconositG,,, these simple maps are uniformly
random (for their prescribed size) and independent.

Lemma 21 There exists constants 3 such that for alk > 0, and alln > 0, P(Diam(G,,) > n'/4*¢) <
aexp(—nPe).

Proof: By Corollary 14 there exist,b > 0 such that the probability that each simple components of
G, has diameter greater tharl/*t< is at mosta exp(—bn<). Thus the probability that one of these
components has diameter greatéf**< is at mostua exp(—bn¢) < a’ exp(—n?’€) for somea’, v’ > 0.
Now, let r be the tree of the tree-decomposition@f. Using the arguments of Lemma 4.8 in Chapuy
et al. (2010), one easily proves that there exiSt” > 0 such that for alk > 0, P(Diam(7) > n®) <

a” exp(—n?"¢). SinceDiam(G,,) < 2- D - Diam(r), we easily conclude. m

Given a rooted loopless ma@,, with n edges, we now define some events €gy. We defines,,
as the event that the largest simple comporgnf G,, has its number of edges in the inter{ah /3 —
n3/%,2n/34n3/4], and the loopless components attached at each of the edBearefall of size (number
of edges) at most®/*; from now on we callooplessB-componentsf G,, these components. Assuming
that&,, holds we define’ as the event that the diameter of all looplé&somponents is at most’/32,
and the diameter B is at mostn'/* log(n)?. Let E be the set of edges @¢f,, and E the set of edges
of B. We define thaoot-edgeof B as the edge oB3 bearing the loopless B-component containing the
root-edge of,,; call root-vertex ofB the origin of this edge endowed with an arbitrary orientatibor
each edge € Ep denote bydg(e) the length of a shortest path B starting frome and ending at
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the root-vertex ofB. For each edge € E, letep be the edge oB bearing the loopless B-component
containinge, definedp(e) := dp(ep). For eachi > 1 denote byF (i) the set of edges ab' such that
dp(e) < i, and denote by (i) the set of edges aB such thatip(e) < i. We defineg!”” as the event

|E(i)| € [‘ﬁj' |Ep(i)| — n3/4, %|EB(Z')|/3 +n3/4] Vi > 1. Lastly, we defineg; as the event that all
of &, &), & hold.

ny “nr “n

Lemma 22 The probability o is 1 — O(exp(—Q(log(n)?))).

Proof: Using the asymptotic estimates in Gao and Wormald (199%MdBaer et al. (2001) (see also
Lemma 3.7 in Chapuy et al. (2010)), it can be proved #@,) > 1 — a exp(—n?)) for somea, § > 0.
Now if &, occurs, Corrolary 14 and Lemma 21 easily prove t&f’) > 1 — o’ exp(—n®")) for some
a',é' > 0. Lastly if £, occurs,

dp(e) < d(e) < dg(e) +2n"/*? foralle € E.

Moreover, asymptotic estimates in Gao and Wormald (1998yd@rier et al. (2001) that, conditioned on
g’n.l
P(IEG)| € [21Ep(i)|/3 — n'/*T,2|Ep(i)| /3 + n'/*T]) = 1 = O(exp(—n~""))

for somed” > 0. HenceP(E,) > 1 — a” exp(—n®") for somea”, 8" > 0. O

Lemma 23 For M an arbitrary rooted loopless map with edges satisfying;:, let

1 1
HM == Zéd(e)/(‘ln/@l/“’ HB = Z 6ds(€)/(2\EB|)1/4‘
" ek B cE
e € B

ThenW: (par, p) = O(n~/32), and|sup(par) — sup(ug)| = O(n~1/%).

Proof: Let

~ 1 - 1
fag = Z Odp(e)/(any3)1/1, 1B = [ Z Odp(e)/(4n/3)1/45
eckE ecEp
and letF,, (x) andF;, (z) be the respective cumulative functionsof; andziz. The property given
by £ ensures thatFy,, (z) — Fa,(z)] < n¥/*/n = n=1/4 SinceFy,, (z) = Fi,(z) = 1 for
x > (3/4)"/*1og(n)? we conclude thatV; (1ias, fig) < (3/4)'/*log(n)?n~"/%. Moreover, sincéd(e) —
dp(e)] < 2n7/32, we haveW (uar, fing) < 2n7/32/(4n/3)1/* < 2n=1/32, Finally, since|Ep|~'/* =
(4n/3)~ Y4 (14+0(n=4)), we haveV, (ug, fig) = O(n~'/*). To conclude, we havi/; (yuar, i) <
Wi (puar, fine )+ Wi (fiag, fig)+ Wi (fi, ps) = O(n™1/32). By similar arguments one provesip (1) —
sup(ug)| = O(n=1/%2). 0
This lemma, Theorem 2, and Claim 3 then imply:

Theorem 24 Let 7,, be the distance-profile of the random rooted loopless map witdges. Then
pay3(my) satisfies the ISE limit property.

One can also easily prove the analogue of Proposition 2@&fatom rooted loopless maps:

Proposition 25 Let R,, be the radius of the random rooted loopless réapwith n edges. Therk,, /(4n/3)!/4
converges in law to the width gfsg, and the convergence also holds for the moments.
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Proof: The convergence in law to the width of ISE directly followsrt Theorem 24. It remains to show
that the latter convergence also holds for the momentst ifite thatP (- £;) = O(exp(—Q(log(n)?))),
which iso(n~*)) for all £ > 1. Hence for computing the moments fG:,,) we can condition o’ .
Moreover conditioning o we haver(G,,) < Diam(B) + 2n7/32, hencer(G,,)/n'/* has the uniform
exponential decay property, hence the convergence of timeemis holds. O

5.2 Profile of random rooted maps

Very similarly as for loopless maps, a rooted map decomp@desg loops) as a tree of components that
are loopless maps. All the arguments used in Section 5.1 eardycled here (starting with the result
proved in Banderier et al. (2001) that the random rooted mieip svedges has almost surely a “giant”
loopless component whose size is concentrated ardupig). We therefore obtain.

Theorem 26 LetG,, be the uniformly random rooted map witredges, letr,, be its distance-profile and
R, be its radius. Themsg o (r,) satisfies the ISE limit property. Moreovér, /(8n/9)/* converges in
law to the width ofusg, and the convergence also holds for the moments.

Remark 27 Theorem 26 can alternatively be recovered from the result€hassaing and Schaeffer
(2004) for the profile and radius of rooted random quadramgioins, combined with the recent bijec-
tion in Ambjgrn and Budd (2013) (which preserves the profile)

Remark 28 We have shown in this section that the ISE limit property fordom rooted simple maps
implies the ISE limit property for random rooted maps (vimdam rooted loopless maps). In contrast,
we do not know how to prove that the ISE limit property for ramdrooted maps implies the ISE limit
property for random rooted simple maps.

6 Conclusion

Regarding theypical distanceo the root, letd,, denote the distance to the root-vertex of a random edge
in a random rooted simple (resp. loopless, general) map wighlges. The results we have obtained
imply the following: the random variablé, /(an)'/* (with a = 2 for simple mapsq = 4/3 for loopless
maps, andr = 8/9 for general maps) converges to the random variable thas gheexpectation of the
nonnegative shift ofi;sg (Which is known to be distributed asp(uisg)), whose cumulative function is

. _ 4 OO 2 - (1 1 — cosh(7+/€) cos(7v/€)
ot = g [ ase e o S (o8 — cos(FVE)?

),mm%:f“ﬂ

Regarding the conjectural convergence of the random rquéea: graph witlh edges to the Brownian
map, the bijection of Bernardi et al. (2014) on which the présvork relies can be composed with a
bijection (of the “Ambjgrn-Budd type”) given in Bouttier at. (2013) between rooted eulerian triangula-
tions and rooted bipartite maps, in a way that preservesribfdep This gives thus a bijective coupling
of rooted (outer-triangular) plane graphs with rooted Hipamaps; and it is tempting to conjecture that
the Gromov-Hausdorff distance between the metric spaessdted by:!/*) of coupled maps converges
to 0 in probability. This (and the fact that a random rooted plgraph has almost surely a “giant” outer-
triangular component, as shown in Lemma 18) would solve tbblpm, since the random rooted bipartite
map withn edges has been recently shown in Abraham (2013) to conwvetbe Brownian map.
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Another perspective is to study the distances in classemnofomnon-embedded planar graph&part
from the case of triangulations treated in Addario-Berrg &tbenque (2013) much less is known for
these models. On the distance profile, the most preciset tesavn at the moment, shown by Chapuy
et al. (2010), is that the diameteris/**+°(1) in probability.
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