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, and Addario-Berry and Albenque (2013). We also show that the result for plane graphs implies similar results for random rooted loopless maps and general maps.

Introduction

A planar map is a connected planar graph embedded in the plane considered up to deformation. Planar maps can be considered as metric spaces by defining the distance between vertices as the minimal number of edges of the paths joining them. The study of the metric properties of random planar maps has been a very active subject of research for the past 10 years. The first key results were obtained in the seminal paper [START_REF] Chassaing | Random planar lattices and integrated superBrownian excursion[END_REF], focusing on the class of rooted quadrangulations (a map is rooted by marking a directed edge having the outer face on its right). It was shown there that typical distances in a uniformly random rooted quadrangulation Q n with n vertices is of order n 1/4 (in contrast with the typical distance of n 1/2 for random plane trees), and that the distance-profile (the collection of distances of the n vertices from the root-vertex) converges in law to an explicit distribution related to the ISE (the integrated superBrownian excursion is the occupation measure of the Brownian snake introduced in [START_REF] Aldous | Tree-based models for random distribution of mass[END_REF]). This result was then generalized to other classes of random maps, in particular to random rooted maps with n vertices and Boltzmann weights on the faces in [START_REF] Marckert | Invariance principles for random bipartite planar maps[END_REF]; [START_REF] Miermont | Radius and profile of random planar maps with faces of arbitrary degrees[END_REF].

In this article, we prove this type of result on the profile for rooted simple maps, that is, maps without loops nor multiple edges, which are classically called plane graphs. We also show that it implies the same type of result for the class of loopless maps, and for the class of all maps. We now give a few definitions in view of stating our main result. For a rooted planar map G = (V, E) with n edges, the distance d(e) of an edge e ∈ E (with respect to the root) is the length of a shortest path of G starting at e and ending at the root-vertex, the distance-profile of G is the n-set {d(e)} e∈E (note that this is a distance-profile at edges we consider, not at vertices). Let us now give some terminology for the type of convergence results to be obtained. We denote by M 1 the set of probability measures on R, endowed with the weak topology (that is, the topology given by the convergence in law). Note that ISE is a random variable taking its values in M 1 . For µ ∈ M 1 , denote by F µ (x) the cumulative function of µ, inf(µ) := inf{x : F µ (x) > 0} and sup(µ) := sup{x : F µ (x) < 1}, and define the width of µ as sup(µ) -inf(µ). We also define the nonnegative shift of µ as the probability measure (with support in R + ) whose cumulative function is x → F µ (x + inf(µ)).

Definition 1 A sequence µ (n) of random variables taking values in M 1 is said to satisfy the ISE limit property if the following properties hold, where µ ISE is the random variable in M 1 given by the ISE law:

• sup(µ (n) ) converges in law to the width of µ ISE .

• µ (n) converges in law to the nonnegative shift of µ ISE (for the weak topology on M 1 ).

For an n-set x = {x 1 , . . . , x n } of nonnegative values, and for a > 0, define µ a (x) as the probability measure

µ a (x) = 1 n n i=1
δ xi/(an) 1/4 , where δ x denotes the Dirac measure at x. Our main result is the following:

Theorem 2 For n ≥ 1, let π n be the distance-profile of the uniformly random rooted plane graph with n edges. Then µ 2 (π n ) satisfies the ISE limit property.

Relation with other work and perspectives. Although we focus here on the convergence of the profile of random maps, much stronger results have now been proved for several classes of maps. More precisely, for a given class C of maps, one can consider the uniformly random map C n of size n on maps as a random metric space. It is then natural to study the limit of the random metric space C n (rescaled by n 1/4 ) in the Gromov Hausdorff topology. In a series of groundbreaking papers, this type of convergence was proved to hold for triangulations and 2p-angulations in Le [START_REF] Gall | The topological structure of scaling limits of large planar maps[END_REF][START_REF] Gall | Uniqueness and universality of the brownian map[END_REF] and independently for quadrangulations in [START_REF] Miermont | The Brownian map is the scaling limit of uniform random plane quadrangulations[END_REF]. The limit is a (continuous) random metric space called the Brownian map, which has almost surely spherical topology. Combining the techniques of Le [START_REF] Gall | Uniqueness and universality of the brownian map[END_REF] with some new ingredients, the same result was proved for simple triangulations and simple quadrangulations in Addario-Berry and Albenque (2013). At the moment we do not know if we can extend our proof for the profile of random simple maps in order to obtain convergence to the Brownian map. We close this section by recalling a useful classical result. For µ and ν two elements of M 1 , the linear Wasserstein distance between µ and ν is defined as

W 1 (µ, ν) = R |F µ (x) -F ν (x)|dx,
which endows M 1 with a metric structure. Another characterization of W 1 (µ, ν) is to be the infimum of E(|X -Y |) over all couplings (X, Y ) where the law of X is µ and the law of Y is ν. It is known that if a sequence µ (n) of elements of M 1 converges to µ for the metric W 1 , then µ (n) also converges to µ for the weak topology on M 1 . Hence the following claim:

Claim 3 Let µ (n) and ν (n) be two sequences of random variables in M 1 (i.e., each variable is a random probability measure), living in the same probability space. Assume that µ (n) satisfies the ISE limit property and that, for each fixed ǫ > 0, P (W 1 (X n , Y n ) ≥ ǫ) converges to 0 and P (|sup(µ n ) -sup(ν (n) )| ≥ ǫ) converges to 0. Then ν (n) satisfies the ISE limit property.

2 Bijection between outer-triangular plane graphs and eulerian triangulations, and transfer of canonical paths

In this section we recall a bijection established in [START_REF] Bernardi | A bijection for plane graphs and its applications[END_REF] between outer-triangular plane graphs and eulerian triangulations, and establish a crucial property for canonical paths.

A rooted plane graph C is said to be outer-triangular if its outer face (that is, the root face, drawn as the infinite face in the planar representation of C) has degree 3. Given an outer-triangular plane graph G, a 3-orientation with buds of G is an orientation of the inner edges of G (outer edges are left unoriented), with additional outgoing half-edges at inner vertices, called buds, such that each inner (resp. outer) vertex has outdegree 3 (resp. 0), and each inner face of degree d+3 has d incident buds (i) . It is shown in [START_REF] Bernardi | Unified bijections for maps with prescribed degrees and girth[END_REF] that each rooted outer-triangular plane graph G admits a unique 3-orientation with buds, called the canonical 3-orientation, satisfying the following properties:

• Outer-accessibility: there is a directed path from any inner vertex to a vertex of the outer face.

• Minimality: There is no clockwise circuit.

• Local property at buds: the first edge following each bud in clockwise order must be outgoing. Figure 1.(a) shows such an outer-triangular plane graph endowed with its canonical 3-orientation. A rooted eulerian triangulation is a rooted planar map (which may have multiple edges) where each face has degree 3 and each vertex has even degree. Hence faces can be properly bicolored (in light or (i) When G is a maximal plane graph, 3-orientations have no bud, and correspond to the well-known Schnyder structures, introduced in Schnyder (1989).

dark) such that each light (resp. dark) face is adjacent only to dark (resp. light) faces. By convention (since there are exactly two possible colorings), the root face is dark.

As shown in [START_REF] Bernardi | A bijection for plane graphs and its applications[END_REF], there exists a bijection between these two families of maps. We just recall here how to obtain a rooted eulerian triangulation from a rooted outer-triangular plane graph. Let C be an outer-triangular plane graph endowed with its canonical 3-orientation with buds. The bijection illustrated in Figure 1 has two steps: inflation, then merging. First, inner edges and inner vertices will be inflated in the following way:

• Each inner edge becomes a dark triangle as indicated below.

e σ(e)

• Each inner vertex becomes a light triangle whose edges correspond to the outgoing half-edges (including buds). The cases with 0,1 or 2 buds are illustrated below.

After inflation, former inner faces of degree d+3 (d ≥ 0) have now degree 2d+3 (the d incident buds have turned into edges). Considering edges coming from buds as opening parenthesis, and remaining edges as closing parenthesis, one can form a clockwise parenthesis system leaving 3 edges unmatched. Hence, after merging the matched edges, the 3 unmatched edges form a light triangle. This ensures that each face of the resulting map is a triangle; see Figure 1. Moreover, the edges created by the inflation are incident to a dark and a light face, except for edges coming from buds, which are incident to two light faces. After merging, these edges are necessarily incident to a dark face as well. Therefore the triangulation is properly bicolored and is an eulerian triangulation (the outer face, which is left unchanged, is colored dark).

Let C be an outer-triangular rooted plane graph. For each inner edge e, we define its canonical path P (e) to be the directed path in the canonical 3-orientation of C starting at e and following the rightmost (with respect to the previous edge on the path) outgoing edge until reaching a vertex of the outer face (P (e) exist because the canonical 3-orientation is minimal and outer-accessible). Let G be a rooted eulerian triangulation. A 1-orientation of G is an orientation of some inner edges (outer edges are left unoriented), such that each dark inner face has one directed edge, which is counterclockwise, and each inner (resp. outer) vertex has outdegree 1 (resp. 0). In a similar fashion as for outer-triangular plane graphs, G has a unique 1-orientation, called its canonical 1-orientation, which satisfies outer-accessibility; see Figure 1(c). For each inner vertex v, we define its canonical path P (v) to be the unique directed path in the canonical 1-orientation starting at v and following the next outgoing edge until reaching a vertex of the outer face.

To an edge e of an outer-triangular rooted plane graph, we denote σ(e) the inner vertex of the associated rooted eulerian triangulation which is the origin of e after inflation of the edge e into a dark triangle.

Proposition 4 Let C be an outer-triangular rooted plane graph and G be the associated eulerian triangulation. The mapping σ gives a bijection between the edges of C and the inner vertices of G. Moreover the canonical path of an edge e of C has the same length as the canonical path of the vertex σ(e) of G.

Proof:

The canonical 3-orientation of C gives a partial orientation Ω of G. It is not hard to see that Ω a 1orientation, therefore σ gives a bijection between the edges of C and the inner vertices of G. Moreover all the canonical paths of C are directed paths in the orientation Ω (that is, they are preserved by the inflation process), thus Ω is outer-accessible. Thus Ω is the canonical 1-orientation of G, and the canonical path of e becomes the canonical path of σ(e). This completes the proof. ✷

Remark 5 Beside the bijection between outer-triangular plane graphs and eulerian triangulations, we will also use the following injection between rooted outer-triangular plane graphs and rooted simple triangulations. Given a rooted outer-triangular plane graph C endowed with its canonical 3-orientation, every inner face of degree d + 3 contains d buds. We consider the triangulation T obtained from C by triangulating each inner face by completing the buds into complete edges and gluing these edges in counter-clockwise order around each inner face; see Figure 2. The 3-orientation of C gives a 3orientation of T (which implies that T is simple) and we contend that it is the canonical 3-orientation of T . This follows easily from the fact that the canonical paths of C are canonical paths in T ( because of the local property at buds) and therefore no clockwise cycle exist.

Fig. 2: Generic situation in a face of degree 7 with its 4 incident buds, and its canonical triangulation (dashed lines).

3 The profile of random rooted eulerian triangulations

Profile with respect to the root-vertex

Let T be a rooted eulerian triangulation with n + 1 vertices, let V be the vertex-set and let v 0 be the root-vertex. Recall that the faces of T are properly bicolored with the outer face being dark. A path P from a vertex v to a vertex v ′ is called admissible if each traversed edge of P has a dark face on its left. Let ℓ(v) be the length of a shortest admissible path from v to v 0 . The n-set {ℓ(v)} v∈V \v0 is called the root-vertex profile of T .

Proposition 6 Let π n be the root-vertex profile of a uniformly random rooted eulerian triangulation with n + 1 vertices. Then µ 2 (π n ) satisfies the ISE limit property.

Proof: It is shown in [START_REF] Bouttier | Planar maps as labeled mobiles[END_REF] that random rooted eulerian triangulations with n + 1 vertices are in bijection with so-called very well-labelled trees with n nodes, i.e., rooted plane trees with n nodes, each node having a positive label such that adjacent node labels differ by 1 in absolute value, and the root is at a node of label 1. In addition the root-vertex profile of the eulerian triangulation corresponds to the n-set of labels of the corresponding tree. Hence π n is distributed as the n-set of labels of the random very well-labelled tree with n nodes. The article Le Gall ( 2006) ensures (ii) that µ 2 (π n ) satisfies the ISE limit property. ✷

(ii) See in particular Theorem 8.2 where the methodology is applied to the very close model where adjacent node labels differ by at most 1 in absolute value.

Remark 7 Alternatively one could prove Proposition 6 by recycling the combinatorial arguments from Sections 4.4 and 4.5 in [START_REF] Chassaing | Random planar lattices and integrated superBrownian excursion[END_REF]. This would require a detour via a model of "blossoming trees" (actually the one used in [START_REF] Bousquet-Mélou | Enumeration of planar constellations[END_REF]) in order to drop the condition that the labels are positive.

Profile with respect to the outer face

Let T be a rooted eulerian triangulation, and let V be its set of inner vertices. Proposition 8 Let π n be the root-face profile of a uniformly random rooted eulerian triangulation with n inner vertices. Then µ 2 (π n ) satisfies the ISE limit property.

4 The profile of random rooted plane graphs

Profile of random rooted outer-triangular plane graphs

Let G be a rooted outer-triangular plane graph, and let E i be its set of inner edges. Proposition 9 Let π n be the canonical path profile of a uniformly random rooted outer-triangular plane graph with n + 3 edges. Then µ 2 (π n ) satisfies the ISE limit property.

We will now prove that with high probability the canonical path profile is close from the distance-profile using the following (non-random) result from Addario-Berry and Albenque (2013).

Lemma 10 (Addario-Berry and Albenque (2013))

There exists positive constants k 1 , k 2 such that the following holds. Let G be a rooted simple triangulation, let e be an inner edge of G, let P be the canonical path of e (for the canonical 3-orientation of G), and let Q be another path from the origin of e to the rootface. If the length d of P is greater than the length d ′ of Q, then there exists a cycle C contained in

P ∪ Q of length a most k 1 d ′ /(d -d ′ )) such that each of the two parts of G resulting from cutting along C contains a (consecutive) subpath of Q of length at least k 2 (d -d ′ ).
This implies the following (non-random) statement for rooted plane graphs, where the diameter Diam(G) of a graph G is the maximal distance between pairs of vertices.

Lemma 11

The statement of Lemma 10 also holds if one replaces "simple triangulation" by "outer triangular plane graph". Consequently, for any ∆ > 0, if G is a rooted outer-triangular plane graph G, and e is an inner edge such that d(e) ≤ d(e) -∆, then G has a cycle C of length at most k 1 d(e)/∆ such that the two parts G ℓ , G r resulting from cutting along C each have diameter at least k 2 ∆.

Proof: Let G be a rooted outer triangular plane graph. We consider its minimal 3-orientation with buds. As explained in Remark 5, there is a canonical way to complete the buds of G into complete edges so as to triangulate each inner face of G and obtain a simple triangulation Ĝ endowed with its minimal 3orientation. Moreover, for any inner edge e of G canonical path of e is the same in G and in Ĝ. This proves the first statement. The second statement is a simple consequence obtained by considering the canonical path P of an edge e of G and a geodesic path Q. Lemma 13 Let H n be the uniformly random rooted outer-triangular plane graph with n + 3 edges. Then Diam(H n )/n 1/4 satisfies the uniform exponential decay property.

Proof:

The property is inherited from eulerian triangulations. Precisely, let π n denote the root-vertex profile of the uniformly random rooted eulerian. The calculations done in Section 6.2 of [START_REF] Chassaing | Random planar lattices and integrated superBrownian excursion[END_REF] for well-labeled trees (which correspond to rooted quadrangulations) can be adapted verbatim to very well-labelled trees (which correspond to rooted eulerian triangulations) in order to show that sup(µ 2 (π n )) has the uniform exponential decay property. Hence, if π ′ n denotes the root-face profile of the uniformly random rooted eulerian triangulation with n vertices, then sup(µ 2 (π ′ n )) has the uniform exponential decay property. This is in turn transferred (bijectively) to sup(µ 2 (π ′′ n )), where π ′′ n is the canonical path profile of H n . Then, since d(e) ≤ d(e), the property is also satisfied by sup(µ 2 (π ′′′ n )), where π ′′′ n = {d(e)} e∈Ei is the distance-profile at inner edges of H n . Since Diam(H n ) ≤ 2 • max e∈Ei (d(e)), we conclude that Diam(H n )/n 1/4 satisfies the uniform exponential decay property. ✷

For n ≥ 0 we denote by M n the set of rooted plane graphs with n edges, and C n the subset of outertriangular maps. It was shown in [START_REF] Bernardi | A bijection for plane graphs and its applications[END_REF] that

|C n | = 3 • 2 n-1 (2n)! n!(n + 2)! = O(8 n n -5/2 ). (1) 
Observe that there is an injective map φ from M n to M Corollary 14 Let G n be the uniformly random plane graphs with n edges. Then Diam(G n )/n 1/4 satisfies the uniform exponential decay property. Therefore there exists constants a, b > 0 such that for all n ≥ 0 and x > 0 the number of elements in M of diameter at least xn 1/4 is at most a8 n n -5/2 exp(-bx)).

Lemma 15 Let ǫ > 0 and let G n be the random rooted outer-triangular plane graph with n edges. Let E n,ǫ be the event that G n has an edge e for which d(e) ≤ d(e) -ǫn 1/4 . Then lim n→∞ P (E n,ǫ ) = 0.

Proof: We first show the statement for the event E n,ǫ,A = E n,ǫ ∩ {Diam(G n ) ≤ An 1/4 }, where A is an arbitrary fixed positive constant. Let U n be the set of rooted outer-triangular plane graphs with n edges of diameter at most An 1/4 having an edge e for which d(e) ≤ d(e) -ǫn 1/4 . By (1), it suffices to show that |U n | = o(8 n n -5/2 ). By Lemma 11 (applied to ∆ = ǫn 1/4 ), any map in U n has a cycle of length c ≤ k 1 d(e)/ǫn 1/4 ≤ k 1 A/ǫ separating two maps of diameter at least k 2 ǫn 1/4 . We now fix a positive integer c, and denote V c n the set of pairs (G, C) where G is a rooted outer-triangular plane graph with n edges and C is a cycle of G of length c such that the two parts of G obtained by cutting along C each have diameter at least k 2 ǫn 1/4 . It suffices to prove that |V c n | = o(8 n n -5/2 ). Let w i,n be the number of maps in M i of diameter at least k 2 ǫn 1/4 . By Corollary 14 there are constants a, b ′ > 0 such that

w i,n ≤ a8 i i -5/2 exp(-b ′ (n/i) 1/4 ). Decomposing pairs (G, C) ∈ V c
n into two maps gives

|V c n | ≤ i+j=n+c 2n • w i,n w j,n
where the factor 2n accounts for choosing the position of the root edge of G. Let S be the above sum restricted to {i > n/(log(n) 8 )} ∩ {j > n/(log(n) 8 )} and S ′ the sum of the other terms. Since w i,n ≤

a8 i i -5/2 , S ≤ (n + c) • 2n • a 2 8 n+c (n/ log(n) 8 ) -5 = o(8 n n -5/2 ).
And since w i,n ≤ a8 i exp(-b ′ (n/i) 1/4 ),

S ′ ≤ 2n/(log(n) 8 ) • 2n • a 2 8 n+c exp(-b ′ (log(n)) 2 ) = o(8 n n -5/2 ).
Hence |V c n | = o(8 n n -5/2 ) and this completes the proof that for any A > 0, lim n→∞ P (E n,ǫ,A ) = 0. Thus for all A > 0,

lim n→∞ P (E n,ǫ ) ≤ lim n→∞ (P (E n,ǫ,A ) + P (Diam(G n ) > An 1/4 )) ≤ sup n P (Diam(G n ) > An 1/4 )).
And since by Lemma 13, lim A→∞ sup n P (Diam(G n ) > An 1/4 )) = 0, we get lim n→∞ P (E n,ǫ ) = 0. ✷ Remark 16 A result similar to Lemma 15 is given in [START_REF] Addario-Berry | The scaling limit of random simple triangulations and random simple quadrangulations[END_REF] for random rooted simple triangulations. However, we could not deduce Lemma 15 from that result and instead had to start from Lemma 10 above.

We can now prove the main result of this section.

Proposition 17 Let π n be the distance-profile at inner edges of a uniformly random rooted outer-triangular plane graph with n + 3 edges. Then µ 2 (π n ) satisfies the ISE limit property.

Proof: Let G n be the uniform random rooted outer-triangular plane graph with n inner edges, and let E i be the set of inner edges. We consider the n-sets d = {d e } e∈Ei and d = { d(e)} e∈Ei . When E n,ǫ does not hold, then W 1 (µ 2 (d), µ 2 ( d)) ≤ ǫ/2 1/4 , and |sup(µ 2 (d)) -sup(µ 2 ( d))| ≤ ǫ/2 1/4 . Hence, the result follows from Proposition 9 and Lemma 15, using Claim 3. ✷

Profile of random rooted plane graphs

We now transfer our result for outer-triangular plane graphs to general plane graphs. For this we exploit an easy decomposition (already described in [START_REF] Bernardi | A bijection for plane graphs and its applications[END_REF]) of rooted plane graphs in terms of rooted outer-triangular plane graphs. Let M be the family of rooted plane graphs, and let C be the family of rooted outer-triangular plane graphs. Let p be the rooted plane graph with two edges meeting at a point, which is the root-vertex, and let D = C ∪ {p}. For an element of D, the right-edge is the edge following the root-edge in counterclockwise order around the root-face. It is shown in [START_REF] Bernardi | A bijection for plane graphs and its applications[END_REF] that each graph γ ∈ M is uniquely obtained from a sequence γ 1 , . . . , γ k of elements of D where the following operations are performed:

(i) for i ∈ [1..k-1],
merge the right-edge of γ i with the root-edge of γ i+1 (identifying the root-vertices), (ii) delete the right-edge of γ k .

In the decomposition, γ i (if it exists, i.e., if i ≤ k) is called the ith component. This decomposition also ensures that the generating functions M (z) of M and C(z) of C (according to the number of edges) are related by

M (z) = k≥1 (z + C(z)/z) k = D(z) 1 -D(z)
, where D(z)

:= z + C(z)/z.
Let G n be the random rooted plane graph with n edges, and for i, j ≥ 1, let E (i,j) n be the event that, in the decomposition γ 1 , . . . , γ k of G n , the ith component γ i exists (i.e., i ≤ k) and has n -j + 1 edges. And let π (i,j) n be the probability that E (i,j) n occurs.

Lemma 18 For any i, j ≥ 0, there exists a non-negative constant π (i,j) such that π (i,j) n converges to π (i,j) . In addition i,j π (i,j) = 1.

Proof: Let m n be the number of rooted plane graphs with n edges, m (i,j) n the number of rooted plane graphs with n edges for which E (i,j) n occurs (note that π (i,j) n = m (i,j) n /m n ), and d n be the number of elements of D with n edges. From the explicit expression

C(z) = n≥1 3 • 2 n-1 (2n)! n!(n + 2)! z n+2 = z 2 (-1 + 12z + √ 1 -8z) (1 + √ 1 -8z) 2
it is easy to find that D(z) and M (z) have the following singular expansion at z = 1/8 (with the notation Z = √ 1 -8z):

D(z) = 5 32 - 9 32 Z 2 + 1 4 Z 3 + O(Z 4 ), M (z) = 5 27 - 32 81 Z 2 + 256 729 Z 3 + O(Z 4 ),
which we rewrite, with d := 5/32 and e = 1/4, as

D(z) = d + eZ 3 -9Z 2 /32 + O(Z 4 ), M (z) = d 1 -d + e (1 -d) 2 Z 3 -32Z 2 /81 + O(Z 4 ). Now, let M (i,j) (z) = n m (i,j) n z n . It is easy to see that M (i,j) (z) = a (i,j) z j D(z), where a (i,j) = [z j ] D(z) i-1 1 -D(z)
accounts for the choice of the components γ s for s = i. Hence M (i,j) (z) has a singular expansion of the form M (i,j) (z) = d (i,j) + e (i,j) Z 3/2 + g (i,j) Z 2 + O(Z 4 ), with e (i,j) = a (i,j) • e • 8 -j . By classical transfer lemmas of singularity analysis in [START_REF] Flajolet | Analytic combinatorics[END_REF],

m n ∼ 1 √ π e (1 -d) 2 8 n n -5/2 , m (i,j) n ∼ 1 √ π a (i,j) • e • 8 -j • 8 n n -5/2 .
Hence π

(i,j) n = m (i,j) n
/m n converges to the constant π (i,j) given by

π (i,j) := (1 -d) 2 8 -j [z j ] D(z) i-1 1 -D(z) .
We have for each

i ≥ 1, j π (i,j) = (1 -d) 2 • F (1/8), where F (z) = D(z) i-1 /(1 -D(z)). Since F (1/8) = D(1/8) i-1 /(1 -D(1/8)) = d i-1 /(1 -d),
we conclude that i,j π (i,j) = 1. ✷ Lemma 19 For i, j ≥ 0 fixed, let π n be the profile of the random rooted plane graph G (i,j) n

with n edges conditioned on E (i,j) n . Then µ 2 (π n ) satisfies the ISE limit property.

Proof: Let E be the set of edges of G (i,j) n

and let E i be the set of inner edges of γ i . Let d = {d e } e∈E be the n-set of distances of the edges of G (i,j) n from the root-vertex, and let d ′ = {d e } e∈Ei be the (n-j -2)set of distances of inner edges of γ i from the root-vertex of γ i (which is also the root-vertex of

G (i,j) n ).
It is easy to see that there exists a constant A > 0 (depending only on i and j) such that, for any rooted plane graph with n edges and satisfying

E (i,j) n , W 1 (µ 2 (d), µ 2 (d ′ )) ≤ A • Diam(γ i ) n .
Since γ i is a uniformly random rooted outer-triangular plane graph with n -j + 1 edges, Lemma 13 ensures that Diam(γ i )/n 1/4 satisfies the uniform exponential decay property hence

P (W 1 (µ 2 (d), µ 2 (d ′ )) ≥ A/ √ n) = O(exp(-Ω(n 1/4 )))
.

Similarly P (|sup(µ 2 (d)) -sup(µ 2 (d ′ ))| ≥ A/ √ n) = O(exp(-Ω(n 1/4 ))).
Since µ 2 (d ′ ) satisfies the ISE limit property according to Proposition 17, we conclude from Claim 3 that µ 2 (d) also satisfies the ISE limit property. ✷

Proof of Theorem 2. Let η > 0. Let k be the smallest value such that i≤k,j≤k π (i,j) > 1 -η, and let E n,η be the event that E (i,j) n holds for some i ≤ k and j ≤ k. By Lemma 19, conditioned on E n,η , the random rooted plane graph with n edges satisfies the ISE limit property. Note that, as n → ∞ the probability that E n,η holds converges to c η := i≤k,j≤k π (i,j) (because for n large enough two events

E (i,j) n and E (i ′ ,j ′ ) n
do not intersect), hence for n large enough, the probability that E n,η holds is at least 1 -η. Taking η arbitrarily small, we conclude that G n satisfies the ISE limit property.

We define the radius r(G) of a planar map G as the largest possible distance of a vertex of G from the root-vertex.

Proposition 20 Let R n be the radius of the random rooted plane graph G n with n edges. Then R n /(2n) 1/4 converges in law to the width of µ ISE , and the convergence also holds for the moments.

Proof:

The convergence in law follows immediately from Theorem 2. The convergence of the moments then follows from the uniform exponential decay property of R n /(2n) 1/4 which is given by Corollary 14. ✷

The profile of two other map families

In this section we prove that Theorem 2 and Proposition 20 imply similar results for the class of rooted loopless maps, and the class of general rooted maps. The key tool (proved in [START_REF] Gao | The size of the largest components in random planar maps[END_REF]; [START_REF] Banderier | Random maps, coalescing saddles, singularity analysis, and Airy phenomena[END_REF]) is that a rooted loopless maps has almost surely a "giant" simple component of linear size (concentrated around 2n/3), and a rooted map has has almost surely a "giant" loopless component of linear size (concentrated around 2n/3). Some details are omitted by lack of space.

Profile of random rooted loopless maps

It is well known that a rooted loopless map M decomposes as a rooted simple map where each edge e is either left alone or one patches an arbitrary loopless map M e at e (so that e and the root-edge of M e have the same extremities). One can recursively apply the same procedure to each of the substituted loopless maps M e , which in the end yields a tree-decomposition of M where the nodes correspond either to multiple edges of M or to rooted simple maps, and each edge of the tree corresponds to an edge of a simple component being part of a multiple edge of M .

We denote G n the uniformly random rooted loopless map with n edges. Note that upon conditioning on the size of the simple maps appearing in the tree-decomposition of G n , these simple maps are uniformly random (for their prescribed size) and independent.

Lemma 21 There exists constants α, β such that for all ǫ > 0, and all n ≥ 0, P (Diam(G n ) ≥ n 1/4+ǫ ) ≤ α exp(-n βǫ ).

Proof: By Corollary 14 there exist a, b > 0 such that the probability that each simple components of G n has diameter greater than n 1/4+ǫ is at most a exp(-bn ǫ ). Thus the probability that one of these components has diameter greater n 1/4+ǫ is at most na exp(-bn ǫ ) < a ′ exp(-n b ′ ǫ ) for some a ′ , b ′ > 0. Now, let τ be the tree of the tree-decomposition of G n . Using the arguments of Lemma 4.8 in [START_REF] Chapuy | On the diameter of random planar graphs[END_REF], one easily proves that there exist a ′′ , b ′′ > 0 such that for all ǫ > 0, P (Diam(τ ) > n ǫ ) < a ′′ exp(-n b ′′ ǫ ). Since Diam(G n ) ≤ 2 • D • Diam(τ ), we easily conclude. ✷

Given a rooted loopless map G n with n edges, we now define some events for G n . We define E n as the event that the largest simple component B of G n has its number of edges in the interval [2n/3n 3/4 , 2n/3+n 3/4 ], and the loopless components attached at each of the edges of B are all of size (number of edges) at most n 3/4 ; from now on we call loopless B-components of G n these components. Assuming that E n holds we define E ′ n as the event that the diameter of all loopless B-components is at most n 7/32 , and the diameter of B is at most n 1/4 log(n) 2 . Let E be the set of edges of G n and E B the set of edges of B. We define the root-edge of B as the edge of B bearing the loopless B-component containing the root-edge of G n ; call root-vertex of B the origin of this edge endowed with an arbitrary orientation. For each edge e ∈ E B denote by d B (e) the length of a shortest path in B starting from e and ending at the root-vertex of B. For each edge e ∈ E, let e B be the edge of B bearing the loopless B-component containing e, define d B (e) := d B (e B ). For each i ≥ 1 denote by E(i) the set of edges of E such that d B (e) ≤ i, and denote by E B (i) the set of edges of B such that d B (e) ≤ i. We define E ′′′ n as the event

|E(i)| ∈ [ |EB| |E| |E B (i)| -n 3/4 , |EB | |E| |E B (i)|/3 + n 3/4 ] ∀i ≥ 1. Lastly, we define E * n as the event that all of E n , E ′ n , E ′′′ n hold. Lemma 22 The probability of E * n is 1 -O(exp(-Ω(log(n) 2 ))).
Proof: Using the asymptotic estimates in [START_REF] Gao | The size of the largest components in random planar maps[END_REF] 

(E ′ n ) > 1 -a ′ exp(-n δ ′ )) for some a ′ , δ ′ > 0. Lastly if E n occurs, d B (e) ≤ d(e) ≤ d B (e) + 2n 7/32 for all e ∈ E.
Moreover, asymptotic estimates in [START_REF] Gao | The size of the largest components in random planar maps[END_REF]; [START_REF] Banderier | Random maps, coalescing saddles, singularity analysis, and Airy phenomena[END_REF] 

that, conditioned on E n , P (|E(i)| ∈ [2|E B (i)|/3 -n 1/2+δ , 2|E B (i)|/3 + n 1/2+δ ]) = 1 -O(exp(-n -δ ′′ ))
for some δ ′′ > 0. Hence P (E n ) > 1 -a ′′ exp(-n δ ′′ ) for some a ′′ , δ ′′ > 0. ✷ Lemma 23 For M an arbitrary rooted loopless map with n edges satisfying E * n , let 

µ M := 1 n e∈E δ d(e)/(4n/3) 1/4 , µ B := 1 |E B | e∈EB δ dB(e)/(2|EB |) 1/4 . Then W 1 (µ M , µ B ) = O(n -1/32
(x) -F µB (x)| ≤ n 3/4 /n = n -1/4 . Since F µM (x) = F µB (x) = 1 for x ≥ (3/4) 1/4 log(n) 2 we conclude that W 1 ( µ M , µ B ) ≤ (3/4) 1/4 log(n) 2 n -1/4 . Moreover, since |d(e) - d B (e)| ≤ 2n 7/32 , we have W 1 (µ M , µ M ) ≤ 2n 7/32 /(4n/3) 1/4 ≤ 2n -1/32 . Finally, since |E B | -1/4 = (4n/3) -1/4 • (1 + O(n -1/4 )), we have W 1 (µ B , µ B ) = O(n -1/4 ). To conclude, we have W 1 (µ M , µ B ) ≤ W 1 (µ M , µ M )+W 1 ( µ M , µ B )+W 1 ( µ B , µ B ) = O(n -1/32 ). By similar arguments one proves |sup(µ M )- sup(µ B )| = O(n -1/32 ). ✷
This lemma, Theorem 2, and Claim 3 then imply:

Theorem 24 Let π n be the distance-profile of the random rooted loopless map with n edges. Then µ 4/3 (π n ) satisfies the ISE limit property.

One can also easily prove the analogue of Proposition 20 for random rooted loopless maps:

Proposition 25 Let R n be the radius of the random rooted loopless map G n with n edges. Then R n /(4n/3) 1/4 converges in law to the width of µ ISE , and the convergence also holds for the moments.

Proof: The convergence in law to the width of ISE directly follows from Theorem 24. It remains to show that the latter convergence also holds for the moments. First note that P

(¬ E * n ) = O(exp(-Ω(log(n) 2 ))), which is o(n -k
)) for all k ≥ 1. Hence for computing the moments of r(G n ) we can condition on E * n . Moreover conditioning on E * n we have r(G n ) ≤ Diam(B) + 2n 7/32 , hence r(G n )/n 1/4 has the uniform exponential decay property, hence the convergence of the moments holds. ✷

Profile of random rooted maps

Very similarly as for loopless maps, a rooted map decomposes (along loops) as a tree of components that are loopless maps. All the arguments used in Section 5.1 can be recycled here (starting with the result proved in [START_REF] Banderier | Random maps, coalescing saddles, singularity analysis, and Airy phenomena[END_REF] that the random rooted map with n edges has almost surely a "giant" loopless component whose size is concentrated around 2n/3). We therefore obtain.

Theorem 26 Let G n be the uniformly random rooted map with n edges, let π n be its distance-profile and R n be its radius. Then µ 8/9 (π n ) satisfies the ISE limit property. Moreover R n /(8n/9) 1/4 converges in law to the width of µ ISE , and the convergence also holds for the moments.

Remark 27 Theorem 26 can alternatively be recovered from the results in [START_REF] Chassaing | Random planar lattices and integrated superBrownian excursion[END_REF] for the profile and radius of rooted random quadrangulations, combined with the recent bijection in [START_REF] Ambjørn | Trees and spatial topology change in causal dynamical triangulations[END_REF] (which preserves the profile).

Remark 28

We have shown in this section that the ISE limit property for random rooted simple maps implies the ISE limit property for random rooted maps (via random rooted loopless maps). In contrast, we do not know how to prove that the ISE limit property for random rooted maps implies the ISE limit property for random rooted simple maps.

Conclusion

Regarding the typical distance to the root, let d n denote the distance to the root-vertex of a random edge in a random rooted simple (resp. loopless, general) map with n edges. The results we have obtained imply the following: the random variable d n /(an) 1/4 (with a = 2 for simple maps, a = 4/3 for loopless maps, and a = 8/9 for general maps) converges to the random variable that gives the expectation of the nonnegative shift of µ ISE (which is known to be distributed as sup(µ ISE )), whose cumulative function is

ϕ(r) = 4 √ π ∞ 0 dξ ξ 2 e -ξ 2 1 -6 1 -cosh(r √ ξ) cos(r √ ξ) (cosh(r √ ξ) -cos(r √ ξ)) 2
, with r = 2 3/4 r.

Regarding the conjectural convergence of the random rooted plane graph with n edges to the Brownian map, the bijection of [START_REF] Bernardi | A bijection for plane graphs and its applications[END_REF] on which the present work relies can be composed with a bijection (of the "Ambjørn-Budd type") given in [START_REF] Bouttier | On the two-point function of general planar maps and hypermaps[END_REF] between rooted eulerian triangulations and rooted bipartite maps, in a way that preserves the profile. This gives thus a bijective coupling of rooted (outer-triangular) plane graphs with rooted bipartite maps; and it is tempting to conjecture that the Gromov-Hausdorff distance between the metric spaces (rescaled by n 1/4 ) of coupled maps converges to 0 in probability. This (and the fact that a random rooted plane graph has almost surely a "giant" outertriangular component, as shown in Lemma 18) would solve the problem, since the random rooted bipartite map with n edges has been recently shown in [START_REF] Abraham | Rescaled bipartite planar maps converge to the brownian map[END_REF] to converge to the Brownian map.

Fig. 1 :

 1 Fig. 1: (a) An outer-triangular plane graph endowed with its canonical 3-orientation with buds, (b) after inflation and (c) after merging, the resulting eulerian triangulation endowed with its canonical 1-orientation.

  For v ∈ V , we denote by d(v) the length of canonical path of v. The set { d(v)} v∈V is called the root-face profile of T . Then it is easily checked from Bousquet-Mélou and Schaeffer (2000) that d(v) is the length of a shortest admissible path from v to (a vertex of) the root-face. Hence ℓ(v) -2 ≤ d(v) ≤ ℓ(v). Thus Proposition 6 immediately gives (via Claim 3) the following result.

  For e ∈ E i we denote by d(e) the length of the canonical path of e, and by d(e) the length of a shortest path starting at e and ending at (a vertex of) the root-face. The set { d(e)} e∈Ei is called the canonical path profile of G, and the set {d(e)} e∈Ei is called the distance-profile at inner edges of G. By Proposition 4 the canonical path profile of G coincides with the root-face profile of the rooted eulerian triangulation associated with G by the bijection of Section 2. Thus Proposition 8 gives:

  In this case G has a cycle C of length at most k 1 d(e)/( d(e) -d(e))) ≤ k 1 d(e)/∆ such that the two parts G ℓ , G r resulting from cutting along C each have a subpath of Q of length at least k 2 ( d(e) -d(e)) ≥ k 2 ∆. Since a subpath of a geodesic path is geodesic, we conclude that each of G ℓ , G r has a diameter at least k 2 ∆. ✷ Definition 12 A sequence X n of real random variables is said to have the uniform exponential decay property if there exist constants a, b > 0 such that for all n, P (X n ≥ x) = a exp(-b x)).

  n+2 as shown in the figure below.φ Thus |M n | ≤ |C n+2 | = O(8 n n -5/2 ). Moreover Diam(G) = Diam(φ(G)). Thus (observing that |Mn| |Cn+2| ≥ |Cn||Cn+2| is bounded away from 0) Lemma 13 implies the following.

  ;[START_REF] Banderier | Random maps, coalescing saddles, singularity analysis, and Airy phenomena[END_REF] (see also Lemma 3.7 in[START_REF] Chapuy | On the diameter of random planar graphs[END_REF]), it can be proved that P (E n ) > 1 -a exp(-n δ )) for some a, δ > 0. Now if E n occurs, Corrolary 14 and Lemma 21 easily prove that P
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Another perspective is to study the distances in classes of random non-embedded planar graphs. Apart from the case of triangulations treated in Addario-Berry and Albenque (2013) much less is known for these models. On the distance profile, the most precise result known at the moment, shown by [START_REF] Chapuy | On the diameter of random planar graphs[END_REF], is that the diameter is n 1/4+o(1) in probability.