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COMPARING TWO STATISTICAL ENSEMBLES OF

QUADRANGULATIONS: A CONTINUED FRACTION APPROACH

ÉRIC FUSY AND EMMANUEL GUITTER

Abstract. We use a continued fraction approach to compare two statistical ensembles
of quadrangulations with a boundary, both controlled by two parameters. In the first

ensemble, the quadrangulations are bicolored and the parameters control their numbers of
vertices of both colors. In the second ensemble, the parameters control instead the number

of vertices which are local maxima for the distance to a given vertex, and the number

of those which are not. Both ensembles may be described either by their (bivariate)
generating functions at fixed boundary length or, after some standard slice decomposition,

by their (bivariate) slice generating functions. We first show that the fixed boundary

length generating functions are in fact equal for the two ensembles. We then show that
the slice generating functions, although different for the two ensembles, simply correspond

to two different ways of encoding the same quantity as a continued fraction. This property

is used to obtain explicit expressions for the slice generating functions in a constructive
way.

1. Introduction

The study of planar maps has given rise in the recent years to a lot of remarkable enu-
meration results. A particularly fruitful approach consists in taking advantage of bijections
between maps and tree-like objects called mobiles. This technique, initiated by Schaeffer
[11, 6] (reinterpreting a bijection by Cori and Vauquelin [7]) was extended in many different
directions [3, 1] to deal with various refined map enumeration problems. Besides mobiles,
another, slightly different, view on the problem consists in decomposing the maps into so-
called slices, which are particular pieces of maps with nice combinatorial properties [5]. In
particular, the generating functions for these slices were shown to obey discrete integrable
systems of equations and in most cases, a solution of these equations could be obtained ex-
plicitly. Moreover, the slice decomposition of a map is intimately linked to its geodesic paths
and the knowledge of slice generating functions directly gives explicit answers to a num-
ber of questions regarding the statistics of distances between random points within maps
[2, 3, 4, 10].

A particularly important discovery was made in [5] where it was shown that slice gener-
ating functions happen to be simple coefficients in a suitable continued fraction expansion
of standard map generating functions, making de facto a connection between the distance
statistics within maps and some more global properties. On a computational point of view,
this discovery provided a constructive way to obtain explicit solutions for the integrable
systems at hand, by taking advantage of known results on continued fractions.

Quite recently, the slice decomposition technique was used in [10] to describe the distance
statistics of general families of bicolored maps, and, in particular, of bicolored quadrangula-
tions, with some simultaneous control on the numbers of vertices of both colors. Explicit
expressions for the corresponding bivariate slice generating functions were obtained in a con-
structive way, leading in particular to explicit formulas for the distance dependent two-point
function within bicolored quadrangulations. Remarkably, the expressions found for slice
generating functions are very similar to those obtained (via a mobile formalism) in another
problem of quadrangulations considered in [1]. There, the discrimination between vertices
no longer relies on their color but rather on their status with respect to the graph distance
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2 ÉRIC FUSY AND EMMANUEL GUITTER

from a fixed origin vertex. Vertices namely come in two types: those, called local maxima
which are further from the origin than all their neighbors, and the others. Bivariate slice
generating functions can be defined so as to keep some independent control on the numbers
of both types of vertices after the slice decomposition. Explicit expressions for these new
bivariate slice generating functions were then guessed in [1] and, as just mentioned, their
structure is very similar to that of their bicolored counterparts.

The aim of this paper is twofold: first, we establish a strong connection between the
problem of quadrangulations with a control on the vertex color, as discussed in [10], and
that of quadrangulations with a control on local maxima, as discussed in [1]. Then, we use a
continued fraction formalism to re-derive, now in a constructive way, the explicit expressions
found in [1].

The paper is organized as follows: in Sect.2, we introduce the two ensembles of quadran-
gulations that we want to compare and define their generating functions at fixed boundary
length. We then derive our first fundamental result which states that the fixed boundary
length generating functions are in fact equal for the two ensembles. Sect. 3 presents the
slice decomposition of the quadrangulations at hand and shows that the corresponding slice
generating functions may be obtained as coefficients of the same quantity, once expanded as
a continued fraction in two different ways. In Sect. 4, we recall the integrable systems which
determine the slice generating functions of both ensembles as well as the explicit solutions of
these systems obtained in [10] and [1]. Sect. 5 deals with results on continued fractions, and
shows in particular how to extract their coefficients from those obtained via a standard series
expansion. In one of the ensembles that we consider, the knowledge of this series expansion is
not sufficient to get all the slice generating functions, a process which requires the knowledge
of some additional quantity. An explicit expression for this latter quantity is conjectured in
Sect. 6, based on simplifications observed in the case of finite continued fractions, and we
then show how it allows to recover the explicit formulas for the slice generating functions
found in [1]. Sect. 7 deals with another aspect of our problem, the existence of invariants,
the so-called conserved quantities, as expected for discrete integrable systems. We show how
to derive these invariants combinatorially for both ensembles and again emphasize the deep
similarity existing between the conserved quantities for the two ensembles. We gather our
concluding remarks in Sect. 8. Some side results or technical derivations are presented in
Appendices A and B.

2. An equality between two bivariate generating functions for
quadrangulations with a boundary

The aim of this section is to compare the generating functions of planar quadrangulations
with a boundary weighted in two different ways, each of these weighting being bivariate, i.e.
involving two independent parameters. As we shall see below, these two weightings, although
fundamentally different, are intimately linked and some of the associated generating functions
turn out to be equal.

2.1. Two bivariate generating functions for quadrangulations with a boundary.
Recall that a planar quadrangulation with a boundary denotes a connected graph embedded
on the sphere which is rooted, i.e. has a marked oriented edge (the root-edge) and is such
that all its inner faces, i.e. all the faces except that lying on the right of the root-edge, have
degree 4. As for the external face, which is the face lying on the right of the root-edge, its
degree is arbitrary (but necessarily even). As customary, the origin of the root-edge will be
called the root-vertex. Let us now consider two particular different ways to assign weights
to these maps.

XFirst weighting: bicoloring the map. Since all their faces have even degree, planar quad-
rangulations with a boundary may be naturally bicolored in black and white in a unique
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Figure 1. Left: an example of rooted quadrangulation with a boundary of
length 10, where each vertex is labelled by its distance to the root-vertex.
The local maxima for this distance are indicated in gray. Right: the asso-
ciated rooted general map with a bridgeless boundary of length 5, obtained
by applying the Ambjørn-Budd rule within each inner face (i.e. connecting
the two corners within the face followed clockwise by a larger label) and,
in the external face, connecting cyclically those corners followed by a larger
label counterclockwise around the map.

way, by assigning the black color to the root-vertex and demanding that no two adjacent
vertices have the same color. We way then enumerate these quadrangulations by assigning
a weight t• to each black vertex and a weight t◦ to each white vertex. For convenience, the
root-vertex receives a weight 1 instead of t•. We shall then denote by Fn ≡ Fn(t•, t◦) the
corresponding generating function for these maps with a boundary length 2n, i.e. with an
external face of degree 2n.

XSecond weighting: distinguishing local maxima of the distance. Our second weighting con-
sists in giving a special role to the local maxima of the distance from the root-vertex. More
precisely, we may label each vertex v of the quadrangulation by its graph distance d(v) from
the root-vertex and look for the local maxima of this labeling, i.e. those vertices v having
only neighbors with label d(v) − 1 (note that in all generality, neighbors of a vertex v may
only be at distance d(v) − 1 or d(v) + 1 from the root-vertex). We decide to give a weight
t◦ to local maxima and a weight t• to the other vertices (see Fig. 1– left). As before, the
root-vertex receives a weight 1 instead of t• (note that the root-vertex can never be a local
maximum). We shall call Jn ≡ Jn(t•, t◦) the generating function for these maps with a
boundary of length 2n.

The generating functions Fn(t•, t◦) and Jn(t•, t◦) may be understood as formal power
series in t• and t◦, giving rise to convergent series for small enough t•, t◦. The first weighting
is quite natural and was described in detail in [10]. We shall recall some of the corresponding
results below. As for the second weighting, it may seem more artificial but, as explained in
[1], it arises naturally in two contexts: first, letting t◦ → 0 (i.e keeping the linear term in t◦)
is a way to suppress local maxima of the distance, selecting quadrangulations arranged into
layers between the root-vertex and a unique local maximum. These so-called Lorentzian or
causal structures display a very different statistics from that of arbitrary quadrangulations
[1]. As recalled below, the second weighting also arises naturally when enumerating general
planar maps with a control on both their numbers of vertices and faces [1].
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2.2. Equality of generating functions. Let us now prove a first fundamental equality,
namely that

(1) Jn(t•, t◦) = Fn(t•, t◦) .

To this end, let us recall the so-called Ambjørn-Budd bijection of [1] between quadrangula-
tions and general maps, slightly adapted to the case of quadrangulations with a boundary
according to the rules of [4]. Starting with our quadrangulation with a boundary and label-
ing each vertex v by its distance d(v) from the root-vertex, we associate to each inner face an
edge as follows (see Fig. 1– right): looking at the corners1 clockwise around the face, exactly
two corners are followed by a corner with larger label. We connect these two corners by an
edge lying inside the original face. As for the external face, looking again at the corner labels
clockwise around the face, i.e. counterclockwise around the rest of the map, exactly n corners,
including the root-corner (lying immediately to the right of the the root-edge) are followed
by a corner with larger label. We connect the n corners of this ensemble cyclically clockwise
around the map, each edge connecting two successive corners in the ensemble (see Fig. 1).
Finally, we mark and orient away from the root-vertex the edge connecting the root-corner
to its successor. As explained in [1] (and its extension [4]), the obtained edges form a rooted
planar map together with those vertices of the original quadrangulation which were not local
maxima for the distance from the root-vertex. Each inner face of this map surrounds exactly
one of the original local maxima, which get disconnected in the construction. More precisely,
from [1, 4], the above transformation provides a bijection between planar quadrangulations
with a boundary of length 2n and rooted planar general (i.e. with faces of arbitrary degrees)
maps with a bridgeless boundary2 of length n (i.e. with external face – lying on the right of
the root-edge – of degree n and without bridge). The vertices of the quadrangulation which
are not local maxima for the distance from the root are in one-to-one correspondence with
the vertices of the general map while the vertices of the quadrangulation which are local
maxima are in one-to-one correspondence with the inner faces of the general map.

We may thus interpret Jn(t•, t◦) as the generating function for rooted planar general maps
with a bridgeless boundary of length n, weighted by t• per non-root-vertex and t◦ per inner
face.

As for the label d(v) of a vertex v retained in this new map, it precisely corresponds to
the oriented graph distance from the root-vertex to v on the new map, using paths oriented
from the root-vertex to v which respect the following edge orientation3: all edges are oriented
both ways except for the boundary-edges (i.e. the edges incident to the external face) which
are oriented counterclockwise around the map.

Forgetting about distances and labels, we may now use a standard construction to rebuild
a quadrangulation with a boundary out of our general map. Coloring the vertices of the
map in black, we simply add a white vertex within each inner face and connect it to all the
corners within the face4. By doing so, we get a bicolored quadrangulation with a boundary
twice larger as that of the general map we started from, which we root by picking the edge
leaving the root-vertex within the corner immediately to the left of the root-edge of the
general map, and orienting it from its black to its white extremity (see Fig. 2– right). Again

1Recall that a corner is an angular sector between two successive half-edges around a given vertex. The

label of a corner is that of the incident vertex.
2Strictly speaking, the extension [4] of [1] shows that corners followed by a smaller label should be

connected cyclically within all faces, including the inner faces, so that the resulting object is a hypermap,
made of alternating black and white faces with, in our case, all black faces of degree 2 but one, of degree n,
which we choose as external face. The Ambjørn-Budd construction that we use here is recovered by squeezing

all inner black faces, of degree 2, into simple edges while the external black face of degree n becomes the
external face of the map. As for any face of a hypermap, its boundary is then necessarily without bridge.

3In the underlying hypermap structure, the labels correspond to the distance using oriented paths going
clockwise around the black faces. Squeezing the inner black faces of degree 2 results in simple edges oriented
both ways, while the boundary-edges remain oriented oneway only.

4Note that it is crucial that the boundary of the map be bridgeless for the obtained object to be connected.
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Figure 2. Left: the rooted map on the right of Fig. 1, with a bridgeless
boundary of length 5. Right: The associated rooted bicolored quadrangu-
lation with a boundary of length 10 obtained by inserting a white vertex at
the center of each inner face of the map and connecting it to all the incident
vertices around the face.

0
2n

0

i

j−1

Wi

i−1
j

Bj

Figure 3. An example of directed path of length 2n = 12, made of elemen-
tary steps with height difference ±1, starting and ending at height 0 and
remaining (weakly) above height 0. The path is naturally colored in black
and white. To compute Fn, we must sum over such bicolored paths with
a weight Bi (resp. Wi) assigned to each descending step i → i − 1 starting
from a black height (resp. white height).

this construction provides a bijection between rooted planar general maps with a bridgeless
boundary of length n and planar quandrangulations with a boundary of length 2n, equipped
with their (unique) bicoloration as defined in the previous section. The vertices of the general
map are in one-to-one correspondence with the black vertices of the quadrangulation while
the inner faces of the map are in one-to-one correspondence with the white vertices of the
quadrangulation.

We may thus interpret Fn(t•, t◦) as the generating function for rooted planar general
maps with a bridgeless boundary of length n, weighted by t• per non-root-vertex and t◦ per
face. Eq. (1) follows.

3. Slice decomposition and continued fractions

3.1. Slice decomposition for maps enumerated by Fn. As explained in [10], the quad-
rangulations (with a boundary) enumerated by Fn may be decomposed into slices by some
appropriate cutting procedure.

Labeling each boundary-vertex v by d(v), the sequence of corner labels, read counter-
clockwise around the map starting from the root-corner, forms a directed path of length 2n,
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Figure 4. A schematic picture of an i-slice contributing to Bi (left) and
to Wi (right).

made of elementary steps with height difference ±1, starting and ending at height 0 and
remaining (weakly) above height 0 (see Fig. 3). Drawing, for each boundary-vertex v, its
leftmost geodesic (shortest) path to the root-vertex and cutting along these geodesics results
into a decomposition of the map into pieces, called slices. More precisely, to each descending
step i → i − 1 of the path corresponds an i-slice, defined as follows (see [10] for details): it
is a rooted map whose boundary is made of three parts (see Fig. 4): (i) its base consisting
of a single root-edge, (ii) a left boundary of length ` with 1 ≤ ` ≤ i connecting the origin of
the root-edge to another vertex, the apex and which is a geodesic path within the slice, and
(iii) a right boundary of length `− 1 connecting the endpoint of the root-edge to the apex,
and which is the unique geodesic path within the slice between these vertices. The left and
right boundaries do not meet before reaching the apex (which by convention is considered
as part of of the right boundary only). As a degenerate case when ` = 1, the left boundary
may stick to the base, in which case the slice is reduced to a single root-edge.

At this level, it is interesting to note that the distance d(v) from the root-vertex to any
vertex v in the quadrangulation is directly related to its distance ds(v), within the i-slice it
lies in, from the apex of this slice via

(2) d(v) = ds(v) + i− `

if ` is the length of the left boundary of the slice. Indeed, it is clear by construction of the
slices that either the root-vertex is the apex of the i−slice at hand or it does not belong to
the slice at all and any path from v to this root-vertex must first reach one of the boundaries
of the slice (possibly at the apex). In the first case, we have d(v) = ds(v) and i = ` so
that (2) holds. In the second case, since the slice boundaries are part of geodesic paths to
the root-vertex, d(v) is equal to ds(v) plus the distance from the apex of the slice to the
root-vertex. In other words, d(v) − ds(v) has a constant value within the i-slice, which is
obtained by taking for v the origin of the root-edge of the slice, namely d(v)− ds(v) = i− `,
and (2) follows. Note that, in an i-slice, i only acts as an upper bound on the length ` of the
left boundary. The vertices v of an i-slice may then be labelled by non-negative integers in
two natural ways: either by their distance ds(v) to the apex or by this distance plus i− `.

Let us call Bi ≡ Bi(t•, t◦) (resp. Wi ≡ Wi(t•, t◦)) the generating function for i-slices
whose root-vertex is black (resp. white), with a weight t• per black vertex and t◦ per white
vertex except for the vertices of the right boundary (including the endpoint of the root-edge
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and the apex) which receive a weight 1 5. The slice decomposition implies that [10]

(3) Fn = Z+
0,0(2n; {Bi}i≥1, {Wi}i≥1) ,

where Z+
0,0(2n; {Bi}i≥1, {Wi}i≥1 denotes the generating function of paths of length 2n, made

of elementary steps with height difference ±1, colored alternatively in black and white,
starting and ending at black height 0 and remaining (weakly) above height 0, with each
descending step from a black height i to a white height i − 1 weighted by Bi and each
descending step from a white height i to a black height i− 1 weighted by Wi (see Fig. 3).

The set of identities (3) for all n > 0 can be summarized into the continued fraction
expression

(4) F (z) ≡
∑

n≥0

Fnz
n =

1

1− z W1

1− z B2

1− z W3

1− z B4

1− · · ·
with the convention that F0 = 0 and where F (z) = F (z; t•, t◦) implicitly depends on t• and
t◦.

3.2. Slice decomposition for maps enumerated by Jn. Let us now play the same
game with maps enumerated by Jn, which are the same maps as those enumerated by Fn,
but now with the second weighting. We may again apply the same slice decomposition,
resulting in the same i-slices as before. More precisely, labeling each boundary-vertex v by
d(v) gives rise to a path of length 2n (from height 0 to height 0, remaining above height 0)
and each descending step i → i − 1 gives rise to an i-slice. To assign the second weighting
to the quadrangulation, we must label each vertex v of the i-slice by its distance d(v) (in
the quadrangulation) from the root-vertex of the quadrangulation. As explained above, if
the i-slice has a left boundary length ` (1 ≤ ` ≤ i), this amounts to label v by ds(v) + i− `
where ds(v) is its distance (within the slice) from the apex of the slice. To recover the correct
weights, we must first give weight 1 to all the vertices of the right boundary (including the
endpoint of their root-edge and the apex) in order to avoid double weightings after regluing
the slices. As for the vertices lying on the left boundary of the slice and different from the
root-vertex of the slice, they cannot, as part of a geodesic of the original quadrangulation,
be local maxima as they have a neighbor with larger label along the geodesic path. They
receive a weight t• accordingly. Considering now vertices v lying strictly within the slice,
they have all their original neighbors lying in the slice and, from (2), are local maxima for
the distance d(v) if and only if they are local maxima for the distance ds(v) within the slice.
For all these vertices, we may thus use the distance ds(v) within the slice to detect the local
maxima, and give them the weight t◦, while non-local maxima for ds(v) get the weight t•.
The last vertex to consider is the origin w of the root-edge of the slice: for this vertex to
be a local maximum of the original distance d(v), it must both be a local maximum of the
distance ds(v) within the slice and have no neighbor with larger label after regluing. Now two
situations may occur: either the boundary-vertex preceding w along the boundary (oriented
counterclockwise around the quadrangulation) has label d(w)− 1 and then the slice at hand
sticks to the boundary so that w has all its neighbors within the slice. Then w is a local
maximum for d(v) if and only if it is a local maximum for ds(v). Or the boundary-vertex
preceding w has label d(w)+1 is which case w is not a local maximum for d(v), irrespectively
of whether or not it is one for ds(v).

5The fact that these vertices receive a weight 1 is to avoid double weighting upon re-gluing the slices into
a quadrangulation. Indeed, all these vertices are already part of a left boundary, except for the root-vertex.
In the end, only the root-vertex gets a weight 1, as wanted.
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Figure 5. A schematic picture of an i-slice contributing to Qi (left) and
to Pi (right). Local maxima of the distance from the apex are indicated
in gray and non local maxima in black. The root vertex may be a local
maximum or not, and receives the weight t◦ or t• accordingly in Qi, while
it always gets the weight t• in Pi.

0
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j
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Figure 6. An example of directed path of length 2n = 12, made of elemen-
tary steps with height difference ±1, starting and ending at height 0 and
remaining (weakly) above height 0. To compute Jn, we must sum over such
paths with a weight Qi (resp. Pi) assigned to each descending step i→ i−1
following an ascent (resp. following a descent).

To summarize, we are led to consider two different generating functions for i-slices. In
the first generating function Qi ≡ Qi(t•, t◦), all the vertices of the i-slice receive a weight t◦
or t• according to whether or not they are a local maximum for the distance ds(v) from the
apex within the slice (in particular the vertices of the left boundary different from the root-
vertex of the slice get a weight t• as wanted), except for the vertices of the right boundary
(including the endpoint of their root-edge and the apex) which receive a weight 1. In the
second generating function Pi ≡ Pi(t•, t◦), we assign exactly the same weights as in Qi,
except for the root-vertex of the slice, which gets the weight t• irrespectively of whether or
not it is a local maximum for ds(v) (see Fig. 5).

Returning to the slice decomposition, it now implies, for any positive n, that

Jn = Ẑ+
0,0(2n; {Pi}i≥1, {Qi}i≥1) ,

where Ẑ+
0,0(2n; {Pi}i≥1, {Qi}i≥1 denotes the generating function of paths of length 2n, made

of elementary steps of height difference ±1, starting and ending at height 0 and remaining
above height 0, with each descending step from height i to height i − 1 weighted by Pi if
it follows a descending step i + 1 → i and by Qi if it follows an ascending step i − 1 → i
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0
2n

0

i

j−1

Y2i

i−1j−1

Y2j−1

Figure 7. An example of directed path of length 2n = 12, made of elemen-
tary steps with height difference±1 and elongated steps (of horizontal length
2) with height difference 0, starting and ending at height 0 and remaining
(weakly) above height 0. To compute Jn, we must sum over such paths
with a weight Y2i−1 (resp. Y2i) assigned to each elongated step i−1→ i−1
(resp. each descending step i→ i− 1).

(see Fig. 6). Setting J0 = 1 and using the shorthand notation J(z) = J(z; t•, t◦), this is
summarized into the new continued fraction expansion

(5)

J(z) ≡
∑

n≥0

Jnz
n

=
1

1−z(Q1−P1)− z P1

1−z(Q2−P2)−z P2

1−z(Q3−P3)−z P3

1−· · ·
which we may write as

(6) J(z) =
1

1− zY1 − z
Y2

1− zY3 − z
Y4

1− zY5 − z
Y6

1− · · ·
upon defining

(7) Y2i−1 ≡ Qi − Pi , Y2i = Pi

for i ≥ 1. To understand (5), or equivalently (6), we note that, expanding the right hand side
of this latter equation, the term of order zn builds the generating function Ž+

0,0(2n; {Yi}i≥1)
of paths of length 2n starting and ending at height 0 and remaining above height 0, made of
elementary (i.e. of horizontal length 1) steps of height difference ±1 together with “elongated
steps” of horizontal length 2 and height difference 0. Each elementary descending step from
height i to height i − 1 (i ≥ 1) receives a weight Y2i while each elongated step at height
i− 1 (i ≥ 1) receives the weight Y2i−1 (see Fig. 7). Deforming each elongated step at height
i − 1 into a sequence of elementary steps i − 1 → i → i − 1, we recover paths made only
of elementary steps of height difference ±1, and (after regrouping all paths with the same
deformation) receiving a weight Y2i−1 + Y2i = Qi for each sequence i − 1 → i → i − 1 or
equivalently for each descending step i → i − 1 following an ascent, and a weight Y2i = Pi
for those elementary steps i → i − 1 which are not part of a sequence i − 1 → i → i − 1,
i.e. follow a descent. In other words, Ž+

0,0(2n; {Yi}i≥1) = Ẑ+
0,0(2n; {Pi}i≥1, {Qi}i≥1), which

explains the identity (5).
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Figure 8. A schematic picture of the slice decomposition of a (non-trivial)
i-slice into two slices, leading to the recursion relations (8) and (9).

To conclude this section, let us rewrite our fundamental equality (1) in the more compact
form

J(z; t•, t◦) = F (z; t•, t◦) .

4. Getting the slice generating functions by solving recursion relations

The slice generating functions Bi, Wi, Pi and Qi satisfy systems of non linear recursive
equations which may be derived by performing a slice decomposition of the slices themselves.
Indeed, when the i-slice, of left boundary length `, is not reduced to a single edge, we may
look at the sequence of vertices encountered clockwise around the face lying on the left of
the root-edge of the slice and draw the leftmost geodesic paths from these vertices to the
apex. Using the labeling ds(v) + i− ` , the sequence of encountered labels, starting from its
root-vertex, is either i→ i+1→ i→ i−1, i→ i−1→ i→ i−1 or i→ i−1→ i−2→ i−1
(if i ≥ 2) and, upon cutting along the leftmost geodesic paths, a new slice arises for each
descending step of this sequence (see Fig. 8).

For the first weighting, this decomposition, applied to i-slices enumerated by Bi and Wi,
leads to the system

(8)
Bi = t• +Bi(Wi−1 +Bi +Wi+1)

Wi = t◦ +Wi(Bi−1 +Wi +Bi+1)

for i ≥ 1, with B0 = W0 = 0. For the second weighting, this decomposition, applied to
i-slices enumerated by Pi and Qi, leads similarly to the system

(9)
Pi = t• + Pi(Pi−1 +Qi +Qi+1)

Qi = t◦ +Qi(Pi−1 +Qi) + PiQi+1

for i ≥ 1, with P0 = Q0 = 0.
The solution of (8) was derived in [10]. Parametrizing t• and t◦ by x and γ via

(10)

t• =
x(γ − x)3(1− γx3)

(x+ x3 + γ − 6x2γ + x4γ + x γ2 + x3γ2)2

t◦ =
x(γ − x3)(1− γx)3

(x+ x3 + γ − 6x2γ + x4γ + x γ2 + x3γ2)2
,
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with |x| ≤ 1 6, it was shown that

(11)

B2i = B
(1− x2i)(1− γx2i+3)

(1− γx2i+1)(1− x2i+2)
W2i+1 = W

(1− γx2i+1)(1− x2i+4)

(1− x2i+2)(1− γx2i+3)

B2i+1 = B
(1− x2i+1/γ)(1− x2i+4)

(1− x2i+2)(1− x2i+3/γ)
W2i = W

(1− x2i)(1− x2i+3/γ)

(1− x2i+1/γ)(1− x2i+2)

for i ≥ 0, where

B =
x(γ − x)2

x+ x3 + γ − 6x2γ + x4γ + x γ2 + x3γ2

W =
x(1− γx)2

x+ x3 + γ − 6x2γ + x4γ + x γ2 + x3γ2
.

As for the solution of (9), it was guessed in [1]. Parametrizing now t• and t◦ by y and α
via

(12)

t• =
y(1− αy)3(1− αy3)

(1 + y + αy − 6αy2 + αy3 + α2y3 + α2y4)2

t◦ =
αy(1− y)3(1− α2y3)

(1 + y + αy − 6αy2 + αy3 + α2y3 + α2y4)2
,

with |y| ≤ 1, it was found that

(13) Pi = P
(1− yi)(1− αyi+3)

(1− yi+1)(1− αyi+2)
Qi = Q

(1− yi)(1− α2yi+3)

(1− αyi+1)(1− αyi+2)
,

for i ≥ 0, where

(14)

P =
y(1− αy)2

1 + y + αy − 6αy2 + αy3 + α2y3 + α2y4

Q =
αy(1− y)2

1 + y + αy − 6αy2 + αy3 + α2y3 + α2y4
.

Note that the two parametrizations (10) and (12) are actually equivalent providing we relate
y and α to x and γ via

α =
1

γ2
, y = γx .

With this correspondence, we immediately deduce that

P = B , Q = W .

This should not come as a surprise since, from (11) and (13), B, W , P and Q are the i→∞
limits of Bi, Wi, Pi and Qi, enumerating slices with no bound on their boundary lengths.
From (8) and (9), both pairs (B,W ), and (P,Q) are determined by the same closed system,
namely:

(15)
B = t• +B(B + 2W ) , W = t◦ +W (W + 2B) ,

P = t• + P (P + 2Q) , Q = t◦ +Q(Q+ 2P ) .

Let us end this section by rewriting the results for Pi and Qi in terms of Yi, as defined in
(7). First, Eq. (9) may be rewritten as

(16)
Y2i = t• + Y2i(Y2i−2 + Y2i−1 + Y2i + Y2i+1 + Y2i+2)

Y2i−1 = (t◦ − t•) + Y2i−1(Y2i−2 + Y2i−1 + Y2i)

for i ≥ 1, with Y0 = 0. From (13), we immediately deduce the solution

(17) Y2i = P
(1− yi)(1− αyi+3)

(1− yi+1)(1− αyi+2)
Y2i+1 = Y

(1− yi+1)(1− αyi+3)

(1− yi+2)(1− αyi+2)
,

6The parametrization in invariant under (x, γ)→ (1/x, 1/γ) so we may always choose |x| ≤ 1.



12 ÉRIC FUSY AND EMMANUEL GUITTER

for i ≥ 0, with

Y = Q− P .

The aim of this paper is to go beyond the guessing approach of [1] and to provide a con-
structive way to obtain this latter formula (17), and consequently (13), upon using general
results for continued fractions of the type (6). This is indeed the constructive approach used
in [10] to obtain the expressions (11) from general results for continued fractions of the type
(4).

5. Getting the slice generating functions by extracting continued fraction
coefficients: generalities

5.1. The Stieltjes type. Eq. (4) is a continued fraction of the so-called Stieltjes type. Its
coefficients B2i and W2i−1 for i ≥ 1 are known to be related to the coefficients Fn via the
relations

(18) B2i =
h

(0)
i

h
(0)
i−1

/h(1)
i−1

h
(1)
i−2

W2i−1 =
h

(1)
i−1

h
(1)
i−2

/h(0)
i−1

h
(0)
i−2

for i ≥ 1, in terms of the Hankel determinants

h
(0)
i = det(Fn+m)0≤n,m≤i h

(1)
i = det(Fn+m+1)0≤n,m≤i

for i ≥ 0, with the convention h
(0)
−1 = h

(1)
−1 = 1. These expressions were used in [10] to

obtain the expressions (11) for B2i and W2i+1 (i ≥ 0). As for the expressions of B2i+1

and W2i, it is clear from (8) that Bi and Wi play symmetric roles upon exchanging t• and
t◦. The expressions (11) for B2i+1 and W2i are simply deduced upon this transformation,
which amounts to a change γ ↔ 1/γ, B ↔ W in the formulas (see [10]). At this stage, it
is important to note that the knowledge of the generating functions Fn is not sufficient to
determine all the Bi’s and Wi’s as the associated continued fraction involves only one parity
of the index i (Bi’s with even index i and Wi’s with odd index i) and that we have to rely on
a symmetry principle to get the other parity. Otherwise stated, the derivation of all the Bi’s
and Wi’s requires in principle the knowledge of a second family of generating functions. In
the present case, these generating functions are nothing but those of rooted quadrangulations
with a boundary of length n, bicolored in such a way that their root-vertex is white instead
of black. Of course, by symmetry, those are nothing but the Fn(t◦, t•), n ≥ 1 and a simple
symmetry argument is sufficient to conclude.

5.2. The type of Eq. (6). When dealing with a continued fraction of the type of Eq. (6),
a first remark should be emphasized: the knowledge of Jn is not sufficient to determine the
coefficients Yi. Indeed, expanding in z gives rise to the first equations:

(19)

J1 = (Y1 + Y2)

J2 = (Y1 + Y2)2 + Y2(Y3 + Y4)

...

and it is easily seen that, at each step, two new Yi’s appear on the right hand side, so that
the system is clearly underdetermined.

As shown in [8, 9], a full determination of the coefficients Yi requires, in addition to the

set of Jn for n ≥ 1, the knowledge of Y1 and of a second family of quantities J̃n ≡ J̃n(t•, t◦),
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n ≥ 0, satisfying

(20) J̃(z) ≡
∑

n≥0

J̃nz
n =

1

1− zỸ1 − z
Ỹ2

1− zỸ3 − z
Ỹ4

1− zỸ5 − z
Ỹ6

1− · · ·
where we have defined (assuming Yi 6= 0 for all i ≥ 1)

(21) Ỹ2i−1 ≡
1

Y2i−1
, Ỹ2i ≡

Y2i

Y2i−1Y2i+1

for i ≥ 1. Expanding in z now gives rise to the first equations:

(22)

J̃1 =
(Y2 + Y3)

Y1Y3

J̃2 =
(Y2 + Y3)2

(Y1Y3)2
+
Y2(Y4 + Y5)

Y1Y 2
3 Y5

...

Knowing Y1, the first equation of (19) yields Y2, then the first equation of (22) yields Y3,
the second equation of (19) yields Y4, and so on. The Yi’s are now fully determined and a
compact formula may be written as follows: define

(23) jn ≡





1 if n = 0

Y1 Jn−1 if n ≥ 1

J̃−n if n ≤ −1

and the Hankel-type determinants

(24) H
(0)
i = det(jn+m−i−1)1≤n,m≤i H

(1)
i = det(jn+m−i)1≤n,m≤i .

Then we have, for i ≥ 1, the following formulas, reminiscent of (18),

(25) Y2i =
H

(0)
i−1

H
(0)
i

/H
(1)
i

H
(1)
i+1

Y2i−1 =
H

(1)
i

H
(1)
i−1

/H
(0)
i

H
(0)
i−1

with the convention H
(0)
0 = H

(1)
0 = 0. A proof of these formulas can be found in [8, 9].

We present a slightly simpler proof in the Appendix A below. To summarize, when dealing
with a continued fraction of the type of Eq. (6), we may extract the coefficients Yi if, in

addition to J(z), we also know Y1 and J̃(z). As we shall see in Sect. 7 below, getting a
simple expression for Y1 combinatorially may be achieved upon using a so-called conserved
quantity. As for J̃(z), we have not been able to obtain it via combinatorial arguments
(as opposed to the previous section, we cannot rely here on any symmetry principle to get

J̃n(t•, t◦) from Jn(t•, t◦)). Without the knowledge of J̃(z), Eq. (6) yields a much weaker

system than the recursion equations (16). In fact, any arbitrary choice of J̃n will lead,
through (25), to a set of Yi’s satisfying Eq. (6), while the actual Yi’s, solution of Eqs. (16),

correspond to a unique value of the J̃n’s, to be determined.
As we shall now explain, we may however conjecture a simple expression for J̃(z), based

on an explicit solution of the problem in the case of finite continued fractions. With this
conjectured form of J̃(z), we may then verify that the obtained Yi’s precisely match their
actual expressions (17) guessed in [1].
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5.3. The case of finite continued fraction. In this section, let us briefly digress from our
combinatorial problem and discuss the case of a finite continued fraction. More precisely, let

J(z) ≡ 1

1− zY1 − z
Y2

1− zY3 − z
Y4

. . .

1− zY2α−3 − z
Y2α−2

1− z Y2α−1

where Y1, Y2, · · · , Y2α−1 denote independent indeterminates. We also define

J̃(z) ≡ 1

1− zỸ1 − z
Ỹ2

1− zỸ3 − z
Ỹ4

. . .

1− zỸ2α−3 − z
Ỹ2α−2

1− z Ỹ2α−1

with Ỹ2i−1 =
1

Y2i−1
for 1 ≤ i ≤ α and Ỹ2i =

Y2i

Y2i−1Y2i+1
for 1 ≤ i < α .

The rational function J(z) is easily seen to be the ratio of a polynomial of degree α− 1 in z
by a polynomial of degree α in z, hence characterized by (α−1+1)+(α+1)−1−1 = 2α−1
coefficients (the last two −1’s correspond to removing a global factor in both the numerator
and the denominator, and ensuring that J(0) = 1), depending on the 2α− 1 indeterminates
Y1, Y2, · · · , Y2α−1. In this case, the knowledge of the function J(z) alone therefore entirely
determines all the coefficients of the continued fraction. This property may be reconciled with
the apparently contrary statement of the previous section by noting that, in the present case
of a finite continued fraction, both Y1 and J̃(z) (defined via (20) and (21)) can be deduced
from J(z). More precisely, we have the following relations, derived in Appendix A below:

(26) J̃(z) = −Y1

z
J

(
1

z

)
, Y1 = − 1

lim
z→∞

z J(z)
.

Note that J̃(z) is also a rational function of z and that the expression for Y1 simply rephrases

the desired property that J̃(z) = 1 +O(z). Knowing J(z), Y1 and J̃(z), we can then deduce
the coefficients jn for all integer n via their definition (23) and get Y2, Y3, · · · , Y2α−1 from
Eqs. (24) and (25) (which are also valid in the case of a finite continued fraction – see
Appendix A). The relations (26) are proved in the Appendix A below.

6. Recovering (13) from the continued fraction formalism

6.1. A conjectured expression for Y1 and J̃(z). Returning now to our enumeration
problem of i-slices with the second weighting, let us conjecture that, although our continued
fraction is now infinite, the relations (26) still hold for the particular choice of Yi we are
interested in, namely the solution of (16). More precisely, J(z), originally defined as a

power series in z, is convergent for small enough real z (namely 0 ≤ z < 1/(
√
Q +

√
P )2,

see explicit expressions below – here we assume that t• and t◦ are small enough positive
reals so that P and Q are positive reals) but may be analytically continued to large enough

real z (z > 1/(
√
Q −

√
P )2). This allows us to define J(1/z) for small real z (namely

0 ≤ z < (
√
Q −

√
P )2) and our conjecture is that, in this range, J̃(z) is obtained via the

relation J̃(z) = −(Y1/z)J(1/z) with a value of Y1 adjusted so that J̃(0) = 1. Assuming this
property, let us now see if we can then recover the desired expression (13), or equivalently
(17).
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0
2n

0

QP

0
2n

0

P
Q

0
2n

0

PY = Q−P

Figure 9. A sketch of the three interpretations of the generating function Z+
0,0(2n;P,Q).

Let us start by recalling the expression of F (z), hence J(z). From [10], we know that

(27) Fn =
B

t•
(1−B −W ) Z+

0,0(2n;B,W )− B

t•
Z+

0,0(2n+ 2;B,W )

where Z+
0,0(2n;B,W ) denotes the generating function of paths of length 2n, made of ele-

mentary steps with height difference ±1, colored alternatively in black and white, starting
and ending at black height 0 and remaining (weakly) above height 0, with each descending
step from a black height to a white height weighted by B and each descending step from a
white height to a black height weighted by W . A derivation of this expression via slices is
recalled in Sect. 7 below.

Equivalently, since Jn = Fn, P = B and Q = W , we have

(28)

Jn = A0 Z
+
0,0(2n;P,Q) +A1 Z

+
0,0(2n+ 2;P,Q) ,

A0 =
P

t•
(1− P −Q) , A1 = −P

t•
.

Let us introduce

Z(z;P,Q) ≡
∑

n≥0

Z+
0,0(2n;P,Q)zn ,

which, by definition, is a solution of

(29) Z(z;P,Q) =
1

1− z Q

1− z P Z(z;P,Q)

.

Note that this (quadratic) equation in Z is equivalent to the equation

Z(z;P,Q) =
1

1− z (Q− P )− z P Z(z;P,Q)
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so that Z+
0,0(2n;P,Q) is also the generating function of paths of length 2n, made of elementary

steps with height difference ±1, with each descending step weighted by Q if it follows an
ascending step and by P otherwise. Alternatively, Z+

0,0(2n;P,Q) enumerates paths of length
2n, made of elementary steps of horizontal length 1 and height difference ±1, and elongated
steps of horizontal length 2 and height difference 0, each elongated step receiving the weight
Y = (Q−P ) and each elementary descending step the weight P (see Fig. 9). As a continued
fraction, we thus have

(30) Z(z;P,Q) =
1

1− z Y − z P

1− z Y − z P

1− z Y − z P

1− · · ·

, Y = Q− P.

In terms of Z, we may write

J(z) = A0 Z(z;P,Q) +A1
Z(z;P,Q)− 1

z

and, in components

(31) Jn = A0 [zn]Z(z;P,Q) +A1 [zn+1]Z(z;P,Q)

for n ≥ 0. At this stage, it is important to note that Eq. (29) yields two branches for Z for
real z, namely

Z−(z;P,Q) =
1− Y z −

√
(1− Y z)2 − 4P z

2P z
,

Z+(z;P,Q) =
1− Y z +

√
(1− Y z)2 − 4P z

2P z
, Y = Q− P

for |z| ≤ 1/(
√
Q +

√
P )2. To recover the coefficients Jn, we must expand J(z), hence

Z(z;P,Q) at small z, which requires to choose

Z(z;P,Q) = Z−(z;P,Q).

From Z−(z;P,Q) = 1+Qz+O(z2) we get J(z) = 1+O(z) (since from (15), A0 +A1Q = 1),
as wanted. Using (26), we find that

J̃(z) = −Y1

(
A0 Z̄(z;P,Q) +A1 (z Z̄(z;P,Q)− 1)

)

where Z̄(z;P,Q) ≡ 1

z
Z

(
1

z
;P,Q

)
.

Again, we have two possible branches for real z:

Z̄−(z;P,Q) =
z − Y −

√
(z − Y )2 − 4P z

2P z
,

Z̄+(z;P,Q) =
z − Y +

√
(z − Y )2 − 4P z

2P z
, Y = Q− P

and, to get the J̃n’s, we must, depending on whether P > Q or Q > P , choose the first or
second branch respectively to get rid of the 1/z term when z → 0. Both situations yield

actually the same expression for J̃n. Assuming for instance P > Q, we get

J̃n = −Y1A0 [zn]Z̄−(z;P,Q)− Y1A1 [zn](zZ̄−(z;P,Q)− 1) .

The value of Y1 is obtained by ensuring that J̃0 = 1. Using Z̄−(z;P,Q) = −1/Y +O(z), we
deduce

(32) Y1

(
A0

Y
+A1

)
= 1 , hence Y1 =

Y

A0 +A1 Y
=

(Q− P )(1− P − 2Q)

1− 2Q
.

This value matches that obtained directly via conserved quantities in Sect. 7.
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Using the identity

Z̄−(z;P,Q) =
1

P −QZ−
(

z

(P −Q)2
;P,Q

)
,

we eventually arrive at

(33)

J̃n = − Y1

(P −Q)2n+1

(
A0 [zn]Z−(z;P,Q) +A1 (P −Q)2[zn](zZ−(z;P,Q)− 1)

)

=
Y1

(Q− P )2n+1

(
A0 Z

+
0,0(2n;P,Q) +A1(Q− P )2 Z+

0,0(2n− 2;P,Q)
)

for n > 0. For Q > P , we must use instead Z̄+(z;P,Q) but again in this case, Z̄+(z;P,Q) =

−1/Y + O(z) and Z̄+(z;P,Q) = 1
P−QZ−

(
z

(P−Q)2 ;P,Q
)

so that the expressions (32) and

(33) remain unchanged. The first line of (33) may be rewritten as

(34)
J̃n =

Y1

Y

(
A0 [zn]Z−

( z

Y 2
;P,Q

)
+A1 [zn]

(
zZ−

( z

Y 2
;P,Q

)
− 1
))

=
Y1

Y

(
A0 [zn]Z̃(z;P,Q) +A1 [zn−1]Z̃(z;P,Q)

)

for n ≥ 1, with

Z̃(z;P,Q) ≡ Z−
( z

Y 2
;P,Q

)
=

1

1− z Ỹ − z P̃

1− z Ỹ − z P̃

1− z Ỹ − z P̃

1− · · ·
where Ỹ =

1

Y
and P̃ =

P

Y 2
.

Upon defining

kn ≡





1 if n = 0

Y Zn−1 if n ≥ 1

Z̃−n if n ≤ −1

where Zn ≡ [zn]Z(z;P,Q) = Z+
0,0(2n;P,Q) and Z̃n ≡ [zn]Z̃(z;P,Q) = Z+

0,0(2n;P,Q)/Y 2n

(n ≥ 0), we may summarize (31), (32) and (34) into

jn = A0
Y1

Y
kn +A1

Y1

Y
kn+1 for all integer n.

6.2. Computation of H
(0)
i and H

(1)
i . The above expression for jn for all integer n opens

the way to compute H
(0)
i and H

(1)
i via (24). Indeed, as shown in Appendix B, the coefficients

kn satisfy a set of linear relations of the form

(35)

i−1∑

m=0

kn−i+m(−1)m
x

(i−1)
i−1−m

x
(i−1)
i−1

= 0 , 2 ≤ n ≤ i

while, for n = 1 and n = i+ 1, we have

(36)

i−1∑

m=0

k1−i+m(−1)m
x

(i−1)
i−1−m

x
(i−1)
i−1

=
P i−1

Y 2(i−1)

i−1∑

m=0

k1+m(−1)m
x

(i−1)
i−1−m

x
(i−1)
i−1

= (−1)i−1P
i−1

Y i−2
.
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From these relations, replacing the first column (jn−i)1≤n≤i of H
(0)
i by the linear combination(

i−1∑
m=0

jn−i+m(−1)mx
(i−1)
i−1−m/x

(i−1)
i−1

)

1≤n≤i
of this first column with the i− 1 last ones allows

us to write

H
(0)
i =

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

A0
Y1

Y

P i−1

Y 2(i−1)
j−i+2 · · · · · · j0

0 j−i+3 · · · · · · j1

...
... . .

.
. .
. ...

0 j0 . .
.

. .
.

ji−2

(−1)i−1A1
Y1

Y

P i−1

Y i−2
j1 · · · · · · ji−1

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

= A0Y1
P i−1

Y 2i−1
H

(1)
i−1 +A1Y1

P i−1

Y i−1
H

(0)
i−1 .

Alternatively, the coefficients kn satisfy another set of linear relations of the form (see Ap-
pendix B)

(37)

i−1∑

m=0

kn−m(−1)mx′(i−1)
m = 0 , 2 ≤ n ≤ i

while, for n = 1 and n = i+ 1, we have

(38)

i−1∑

m=0

k1−m(−1)mx′(i−1)
m = (−1)i−1P

i−1

Y i−2

i−1∑

m=0

ki+1−m(−1)mx′(i−1)
m = Y P i−1(Y + P ) .

From these relations, replacing the last column (jn)1≤n≤i of H
(1)
i by the linear combina-

tion

(
i−1∑
m=0

jn−m(−1)mx
′(i−1)
m

)

1≤n≤i
of this last column with the i− 1 first ones, and using

x
′(i−1)
0 = 1 (see Appendix B), allows us to write

H
(1)
i =

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

j−i+2 · · · · · · j0 (−1)i−1A0
Y1

Y

P i−1

Y i−2

j−i+3 · · · · · · j1 0

...
... . .

.
. .
. ...

j0 . .
.
. .
.
ji−2 0

j1 · · · · · · ji−1 A1
Y1

Y
Y P i−1(Y +P )

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

=A0Y1
P i−1

Y i−1
H

(1)
i−1+A1Y1P

i−1(Y+P )H
(0)
i−1 .

To summarize, H
(0)
i and H

(1)
i are fully determined by the system

H
(0)
i = A0Y1

P i−1

Y 2i−1
H

(1)
i−1 +A1Y1

P i−1

Y i−1
H

(0)
i−1

H
(1)
i = A0Y1

P i−1

Y i−1
H

(1)
i−1 +A1Y1P

i−1(Y + P )H
(0)
i−1
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Figure 10. A schematic picture of Eq. (41), identifying L
(0)
i as the gener-

ating function of hard pieces on a linear graph with i− 1 vertices.

for i ≥ 1 with H
(0)
0 = H

(1)
0 = 1. Upon setting

(39) L
(0)
i ≡

(
Y

P

) i(i−1)
2

H
(0)
i , L

(1)
i ≡

1

Y i−1

(
Y

P

) i(i−1)
2

H
(1)
i ,

these equations read

(40)
L

(0)
i = A0

Y1

Y 2
L

(1)
i−1 +A1Y1 L

(0)
i−1

L
(1)
i = A0

Y1

Y
L

(1)
i−1 +A1Y1(Y + P )L

(0)
i−1 .

Using the first line to express L
(1)
i in terms of L

(0)
i and re-injecting the result in the second

line yields an equation for L
(0)
i only, namely

L
(0)
i+1 = Y1

(
A0

Y
+A1

)
L

(0)
i +A0A1

Y 2
1

Y 2
P L

(0)
i−1

for i ≥ 1 with L
(0)
0 = 1 and L

(0)
1 = H

(0)
1 = Y1

(
A0

Y +A1

)
. Using (32) and setting

w ≡ A0A1
Y 2

1

Y 2
P ,

we recover the well-known equation

(41) L
(0)
i+1 = L

(0)
i + wL

(0)
i−1

for i ≥ 1 with L
(0)
0 = L

(0)
1 = 1, which allows us to interpret L

(0)
i as the generating function

of hard pieces on a linear graph with i− 1 vertices (see Fig. 10), with a weight w per piece.
The solution of this equation is known to be (see for instance [5] Eq. (6.11))

(42) L
(0)
i =

1

(1 + y)i
1− yi+1

1− y where w = − 1

y + y−1 + 2
.

If we instead eliminate L
(0)
i from the system (40), we obtain for L

(1)
i the very same equation

L
(1)
i+1 = L

(1)
i + wL

(1)
i−1

for i ≥ 1, now with the initial conditions L
(1)
0 = Y and L

(1)
1 = H

(1)
1 = j1 = Y1 (this value

can also be read from (40) as it yields L
(1)
1 = Y1(A0 + A1(Y + P )) = Y1(A0 + A1Q) = Y1).
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We immediately deduce

L
(1)
i = Y L

(0)
i + (Y1 − Y )L

(0)
i−1

with the convention L
(0)
−1 = 0. Using (42), we obtain

(43)

L
(1)
i =

1

(1 + y)i
1

1− y
(
Y (1− yi+1) + (Y1 − Y )(1− yi)(1 + y)

)

=
1

(1 + y)i
Y1(1 + d y)

(
1− α yi+2

1− y

)

where d ≡ Y1 − Y
Y1

and α ≡ 1

y2

d+ y

1 + dy
.

6.3. Comparison with formulas (13). Combining (39) and the explicit values (42) and
(43), we obtain from (25) the desired expressions (17). It simply remains to show that our
definitions for y and α of Sect. 6.2, given by (42) and (43) just above, match their definitions
of Sect. 4 given by (12), or equivalently (14) and (15). If so, (17) is equivalent to (13) and
we are done.

Using for y and α their definitions of Sect. 4 (through (14) and (15)), we obtain for
Y = Q−P and Y1 (whose value in terms of P and Q is given by (32)) the parametrizations

Y =
(α− 1)y(1− αy2)

1 + y + αy − 6αy2 + αy3 + α2y3 + α2y4

Y1 =
(α− 1)y(1− αy3)

(1 + y)(1 + y + αy − 6αy2 + αy3 + α2y3 + α2y4)
.

so that

d = −y(1− αy)

1− αy3
and

1

y2

d+ y

1 + dy
= α

as wanted to match the definition (43) of α of Sect. 6.2.
As for y, we use the expressions (28) of A0 and A1 to get the parametrizations

A0 =
(1− αy2)2

(1− αy)(1− αy3)

A1 = −1 + y + αy − 6αy2 + αy3 + α2y3 + α2y4

(1− αy)(1− αy3)
.

so that

w = A0A1
Y 2

1

Y 2
P = − 1

y + y−1 + 2

as wanted to match the definition (42) of y of Sect. 6.2.
A more constructive approach consists in starting instead from the definitions of y and

α of Sect. 6.2 (through (42) and (43)) and recovering the parametrization (14) of Sect. 4.
From (28) (and t• = P (1− P − 2Q)), A0 can be expressed in terms of P and Q, as well as
Y (= Q− P ) and Y1 via (32). This leads to

w ≡ A0A1
Y 2

1

Y 2
P = −P (1−Q− P )

(1− 2Q)2
= − 1

y + y−1 + 2

hence we deduce the (so-called characteristic) equation

(1− 2Q)2 − (2 + y + y−1)P (1− P −Q) = 0 .

This in turn leads to

d ≡ Y1 − Y
Y1

= − P

1− P − 2Q
, α ≡ 1

y2

d+ y

1 + dy
= − P − y(1− P − 2Q)

y2(1− P − 2Q− yP )
.
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Using this latter equation to express Q in terms of P , y and α, namely

Q = −P (1 + y)(1− αy2)

2y(1− αy)
+

1

2
,

and plugging this value in the characteristic equation above, we find that P is determined
by

−y(1− αy)2 + P (1 + y + αy − 6αy2 + αy3 + α2y3 + α2y4) = 0 ,

from which (14) follows.

7. Conserved quantities

The explicit formulas (11) (resp. (13) or equivalently (17)) are typical expressions for
the solutions of discrete integrable systems. A deeper characterization of the integrability
of the system (8) (resp. (9) or (16)) is the existence of a number of discrete conserved
quantities, i.e. quantities whose expression depends explicitly on some positive integer (called
d below) but whose value turns out to be independent of this integer. In the case of bicolored
quadrangulations, it has already been recognized that these conserved quantities may be
obtained by looking for a direct combinatorial derivation of Fn in the slice formalism. Let us
first recall this construction and then see how it extends to the case of our second weighting
governed by local maxima.

7.1. Conserved quantities for the first weighting. The slice decomposition described
in [5, 10] applies more generally to pointed rooted quadrangulations with boundaries, that is,
quadrangulations with a boundary, having a root-edge on the boundary oriented with the
boundary-face on its right, and having a pointed vertex (which might not be incident to the
boundary-face); the label d(v) of each vertex v is now the distance from v to the pointed
vertex v0. ForQ such a map, the canonical bicoloration ofQ is the vertex bicoloration in black
and white where the root-vertex (origin of the root) is black and any two adjacent vertices
have different colors. As before, a local maximum (or “local max” for short) for the distance
is a vertex v such that d(v) = d(v′) + 1 for every neighbor v′ of v. For n ≥ 1 and d ≥ 0, let

B(d)
n be the family of admissible pointed rooted quadrangulations with a boundary of length

2n, where the root-vertex is at distance at most d from v0, and is one (possibly not unique)

of the boundary-vertices that reach the smallest distance from v0. Let F
(d)
n be the generating

function of B(d)
n where each black vertex (resp. white vertex) receives weight t• (resp. t◦)

except for the pointed vertex that receives weight 1. And let Z+
d,d(2n; {Bi}i≥1, {Wi}i≥1) be

the generating functions of paths of length 2n starting and ending at height d and staying
at height at least d all along, made of elementary steps with height difference ±1, with each
descending step from height i to height i − 1 weighted by Bi if i ≡ d mod 2 and weighted
by Wi if i ≡ d+ 1 mod 2.

Note that B(0)
n is nothing but the set of rooted quadrangulations with a boundary of

length 2n so that F
(0)
n = Fn. Then, as explained in [5, 10], the slice decomposition described

in Sect. 3.1 for maps in B(0)
n applies more generally for maps in B(d)

n and yields

F (d)
n = Z+

d,d(2n; {Bi}i≥1, {Wi}i≥1).

Now let B̂(d)
n be the subfamily of B(d)

n where the pointed vertex is different from the root-

vertex, and let F̂
(d)
n be the generating function for the subfamily B̂(d)

n where the weights are

specified as in F
(d)
n . For Q ∈ B̂(d)

n , with v0 the pointed vertex and ~v the root-vertex, let e be
the first edge of the leftmost geodesic path from ~v to v0. This edge cannot be a boundary-
edge as otherwise, ~v would not reach the smallest distance from v0 among boundary-vertices.
We may cut along e (starting from ~v) so as to duplicate e into two edges e1, e2 (with e2 before
e1 in ccw order around the new map) and duplicate ~v into two vertices v1, v2 (see Fig.11).

Let Q̂ be the pointed rooted quadrangulation with a boundary of length 2n + 4 that is
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Figure 11. Left: a pointed rooted quadrangulation Q with a boundary.

Right: the pointed rooted quadrangulation Q̂ obtained by cutting along the
first edge of the leftmost geodesic path from the root-vertex to the pointed
vertex.

obtained by erasing e2, taking v1 as the new root-vertex, and keeping v0 as the pointed
vertex. Denoting by d = (d1, . . . , d2n+4) the distances from v0 of the successive boundary-

vertices (starting from v1) in ccw order around Q̂, we have the conditions that di+1 = di± 1
for i ∈ {1, · · · , 2n+ 3}, d1 equals the distance of ~v from v0 in Q so that d1 ≤ d, di ≥ d1 for
all i ∈ {1, · · · , 2n + 1}, d2n+1 > d1 (indeed, by the effect of cutting along the first edge of
the leftmost geodesic path, the distance of v2 from v0 is strictly larger than the distance of

v1 from v0), and d2n+4 = d1 − 1. The bipartiteness of Q̂ implies that d2n+1 ≡ d1 mod 2, so
that the last entries of d must be (d1 + 2, d1 + 1, d1, d1−1). Hence, if for k ≥ 1 we denote by

Z+,k↘
d,d (2n; {Bi}i≥1, {Wi}i≥1) the generating function defined as Z+

d,d(2n; {Bi}i≥1, {Wi}i≥1),
but with the restriction that the k last steps of the path are descending, then the slice

decomposition applied to Q̂ gives

F̂ (d)
n =

1

t•
Z+,2↘
d,d (2n+ 2; {Bi}i≥1, {Wi}i≥1) ·Bd,

where the factor 1
t•

accounts for the (black) root-vertex being duplicated and the factor Bd
accounts for the last descent d1, d1−1. Hence for each n ≥ 1 we have the conserved quantity

(44) Fn = Z+
d,d(2n; {Bi}i≥1, {Wi}i≥1)− 1

t•
Z+,2↘
d,d (2n+ 2; {Bi}i≥1, {Wi}i≥1) ·Bd.

The first two conserved quantities, n ∈ {1, 2}, are (with i = d + 1): for all i ≥ 1 (with
B0 = 0)

F1 = Wi −
1

t•
Bi+1WiBi−1,

F2 = W 2
i +Bi+1Wi −

1

t•
(Wi +Bi+1 +Wi+2)Bi+1WiBi−1.

Shifting in (44) all path heights by −d and replacing Bi and Wi by Bi+d and Wi+d so as to
compensate this shift, we get, upon sending d→∞ the identity

(45) Fn = Z+
0,0(2n;B,W )− 1

t•
Z+,2↘

0,0 (2n+ 2;B,W ) ·B

(with some obvious notations) which, using the identities Z+,2↘
0,0 (2n+ 2;B,W ) = Z+

0,0(2n+

2;B,W )− Z+
0,0(2n;B,W ) ·W and B = t• +B(B + 2W ), is easily transformed into (27).

7.2. Conserved quantities for the second weighting. We may now play a similar
game for the quantities Jn to obtain conserved quantities involving the generating func-

tions {Pi, Qi}i≥1. Let J
(d)
n be the generating function of B(d)

n where each local max (resp.
non local max) receives weight t• (resp. t◦) except for the pointed vertex that receives weight
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Figure 12. Left: a pointed rooted map M with a bridgeless boundary.

Middle: the pointed rooted map M̂ obtained by cutting along the first edge
of the leftmost geodesic path from the root-vertex to the pointed vertex.

Right: the associated quadrangulation Q̂ with a boundary (see text).

1. And let Ẑ+
d,d(2n; {Pi}i≥1, {Qi}i≥1) be the generating function of paths of length 2n start-

ing and ending at height d and staying at height at least d all along, made of elementary
steps with height difference ±1, with each descending step from height i to height i − 1
weighted by Pi if just after a descent and weighted by Qi if just after an ascent.

Again, the slice decomposition described in Sect. 3.2 for maps in B(0)
n applies more gen-

erally for maps in B(d)
n and yields

J (d)
n = Ẑ+

d,d(2n; {Pi}i≥1, {Qi}i≥1).

LetM(d)
n be the family of rooted pointed general maps with a bridgeless boundary of length

n, where the root-vertex is at distance at most d from the pointed vertex v0, and is at least
as close from v0 as any other boundary-vertex (here boundary-edges are directed ccw around
the map while inner edges are bi-directed; the distance-label d(v) is the length of a shortest
directed path starting from v0 and ending at v). The Ambjørn-Budd bijection described in

Sect. 2.2 between M(0)
n and B(0)

n extends verbatim (using the same local rules, and having
the same pointed vertex and the same root-vertex in corresponding maps, see [1, 4]) to a

bijection between B(d)
n and M(d)

n , so that J
(d)
n is also the generating function of maps in

M(d)
n with a weight t• for each non-pointed vertex and a weight t◦ for each inner face.

Let M̂(d)
n be the subfamily of M(d)

n where the pointed vertex is different from the root-

vertex, and let Ĵ
(d)
n be the generating function of the subfamily B̂(d)

n where the weights are as

in J
(d)
n . Then the Ambjørn-Budd bijection ensures that Ĵ

(d)
n is also the generating function

of M̂(d)
n with a weight t• for each non-pointed vertex and a weight t◦ for each inner face. For

a map M ∈ M̂(d)
n , let e be the first edge on the leftmost geodesic path from the root-vertex ~v

to the pointed vertex v0 (note that all the edges on this path are inner edges). Again we can
cut along e (starting from ~v) so as to duplicate e into two edges e1, e2 (with e2 before e1 in
ccw order around the map) and duplicate ~v into two vertices v1, v2, and take v1 as the new

root-vertex (see Fig. 12). The map M̂ thus obtained (as opposed to the quadrangulated case
we do not delete e2) is a general map with a bridgeless boundary of length n+2. If we denote
by δ1, . . . , δn+2 the distances from the pointed vertex v0 of the successive boundary-vertices

(starting with v1) in ccw order around M̂ , then δ1 equals the distance of ~v from v0 in M so
that δ1 ≤ d, δi ≥ δ1 for i ∈ {1, · · · , n+ 1}, δi+1 ≤ δi + 1 for i ∈ {1, · · · , n+ 1}, δn+1 > δ1 (by
the effect of cutting along the first edge of the leftmost geodesic path) and δn+2 = δ1− 1. In

particular if we reroot the map at the vertex between e1 and e2, we get a map M ′ ∈M(d−1)
n+2 .

We may then take the image Q′ ∈ B(d−1)
n+2 of M ′ by the Ambjørn-Budd bijection, and denote

by Q̂ the quadrangulation with boundary obtained from Q′ by shifting the root position
by one in ccw order around Q′; note also that the number of local max (resp. non-local
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max) of Q̂ equals the number of inner faces (resp. the number of vertices) of M ′, which
is also the number of inner faces (resp, the number of vertices plus 1) of M . Let again
d = (d1, . . . , d2n+4) be the distances from the pointed vertex v0 of the successive boundary-

vertices (starting with v1) in ccw order around Q̂. By the local rules of the Ambjørn-Budd
bijection, d is obtained from the sequence δ1, . . . , δn+2 where for each i ∈ {1, · · · , n+ 1}, we
insert between δi and δi+1 the subsequence (of length δi − δi+1 + 1) δi + 1, δi, . . . , δi+1 + 1.
It is then easy to check that d satisfies the following conditions: d1 = δ1, di+1 = di ± 1 and
di ≥ δ1 for i ∈ {1, · · · , 2n+3}, d2n+4 = δ1−1, and d ends with δ1 +2, δ1 +1, δ1, δ1−1 (since

δn+1 > δ1). Hence, if for k ≥ 1 we denote by Ẑ+,k↘
d,d (2n; {Pi}i≥1, {Qi}i≥1) the generating

function defined as Ẑ+
d,d(2n; {Pi}i≥1, {Qi}i≥1), but with the restriction that the k last steps

of the path are descending, then the slice decomposition applied to Q̂ gives

Ĵ (d)
n =

1

t•
Ẑ+,2↘
d,d (2n+ 2; {Pi}i≥1, {Qi}i≥1) · Pd,

where the factor 1
t•

accounts for the root-vertex of M being duplicated, and the factor Pd
accounts for the last descent δ1, δ1−1. Hence for each n ≥ 1 we have the conserved quantity

(46) Jn = Ẑ+
d,d(2n; {Pi}i≥1, {Qi}i≥1)− 1

t•
Ẑ+,2↘
d,d (2n+ 2; {Pi}i≥1, {Qi}i≥1) · Pd.

Remarkably this has exactly the same form as the bicolored conserved quantities (44), up to
changing {Pi, Qi}i≥1 for {Bi,Wi}i≥1 and taking the “hat” variants of the path generating
functions. The first two invariants, n ∈ {1, 2}, are (with i = d − 1): for all i ≥ 1 (with
P0 = 0)

J1 = Qi −
1

t•
Qi+1PiPi−1,

J2 = Q2
i +Qi+1Pi −

1

t•
((Qi +Qi+1)Qi+1 +Qi+2Pi+1)PiPi−1.

As before, upon sending d→∞ in (46), we get the expression

Jn = Ẑ+
0,0(2n;P,Q)− 1

t•
Ẑ+,2↘

0,0 (2n+ 2;P,Q) · P

(with straightforward notations). Upon using P = B, Q = W and comparing with (45), this

provides another (computational) proof of the identity Jn = Fn by noting that Ẑ+
0,0(2n;P,Q) =

Z+
0,0(2n;P,Q) and Ẑ+,2↘

0,0 (2n + 2;P,Q) = Z+,2↘
0,0 (2n + 2;P,Q)7. Finally, from (9), we get

Y1 = (Q1−P1) = t◦−t•+(Q1−P1)Q1, hence Y1 = (t◦−t•)/(1−Q1). Using the first conserved
quantity above, we deduce Q1 = J1 = Q−QP 2/t• so that Y1 = t•(t◦− t•)/(t•− t•Q+QP 2)
which upon expressing t• and t◦ in terms of P and Q via (15), reproduces the expression
(32) for Y1.

8. Conclusion

In this paper, we presented a comparative study of two statistical ensembles of quad-
rangulations. We first showed how the corresponding slice generating functions (Bi,Wi for
the first ensemble and Pi, Qi for the second) appear as coefficients of the same quantity
F (z) = J(z), expanded as a continued fraction in two different ways. The slice generating
functions may then be written as bi-ratios of Hankel-type determinants and explicit formulas

7 The identity Ẑ+
0,0(2n;P,Q) = Z+

0,0(2n;P,Q) is easily proved by noting that the equation Ẑ = 1/(1 −
z(Q− P )− zP Ẑ which determines the generating function Ẑ ≡

∑
n≥0 Ẑ

+
0,0(2n;P,Q)zn is identical to that,

Z = 1/(1 − zQ/(1 − zP Z)) which determines the generating function Z ≡
∑

n≥0 Z
+
0,0(2n;P,Q)zn, hence

Ẑ = Z. The identity Ẑ+,2↘
0,0 (2n+2;P,Q) = Z+,2↘

0,0 (2n+2;P,Q) follows by noting that Ẑ+,2↘
0,0 (2n+2;P,Q) =

Ẑ+
0,0(2n+2;P,Q)−Ẑ+

0,0(2n;P,Q)·Q and similarly Z+,2↘
0,0 (2n+2;P,Q) = Z+

0,0(2n+2;P,Q)−Z+
0,0(2n;P,Q)·Q.
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Figure 13. A example of heap of 7 pieces sitting on top of the graph
G of Fig. 14 with base {1, 8} (we indicated in light blue the “shadow” of
those pieces which can move freely and hit the vertices of the graph). The
diameter of the pieces is adjusted so that pieces sitting on top of vertices
which are adjacent in G cannot pass through each other.

may be obtained, at the price of some conjectured expression for some intermediate quantity
in the second ensemble.

To conclude, we would like to emphasize that our two ensembles may be viewed, in some
sense, as the two extremal elements of a very general family of statistical ensembles as
follows: by definition, the second ensemble gives a particular weight to those vertices which
are local maxima for the distance to the root-vertex. Similarly, the first ensemble may be
viewed as the ensemble which gives a particular weight to those vertices which are local
maxima for the distance to the root-vertex modulo 2. Indeed, this distance modulo 2 is 0 for
black vertices (recall that the root-vertex is black) and 1 for white vertices so that all white
vertices are local maxima. In this respect, note also that performing the passage from the
quadrangulation to the general map in the bijection of Fig. 2 may be viewed as applying the
Ambjørn-Budd rules, taking as labeling the distance modulo 2.

Denoting by d(v) the distance from a vertex v to the root-vertex in a rooted quadrangu-
lation with a boundary, we may more generally consider statistical ensembles which give a
particular weight to those vertices which are local maxima for some labeling `(d(v)), with
d 7→ `(d) some given function. Without loss of generality, we may set `(0) = 0 and, if we
wish to apply the Ambjørn-Budd rules to transform our quadrangulation into a general map,
we need that |`(d) − `(d − 1)| = 1 (it also seems natural to impose that `(d) remains non
negative so that the root-vertex cannot be a local maximum). It is likely that slice generating
functions in this ensembles may appear as coefficient of F (z) = J(z), once expanded as a
continued fraction with some appropriate structure, being a mixture of the Stieljes-type and
of our new encountered type. At this stage, it is interesting to notice that, in their study
of finite continued fractions [8, 9], Di Francesco and Kedem introduced precisely a whole
family of such“mixed” fractions as well as some passage rules on their coefficients to go from
one to the other without changing the actual value of the fraction. It is very tempting to
speculate that their study may be extended to infinite continued fractions to describe our
more general ensembles.
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Figure 14. The semi-infinite graph G and the finite graph G(α).

Appendix A. A proof of the formulas (25) and (26)

As in [8, 9], our proof of formulas (25) and (26) is based on the theory of heaps of pieces.
The reader is invited to consult [12] for the basics of this theory.

Let us simply recall what we mean by a heap of pieces on a graph G, supposedly connected,
planar, and drawn in a horizontal plane for simplicity. Imagine to complete the graph by a
set of vertical half-lines, with a half-line starting from each vertex of the graph. Informally
speaking, a heap is a collection of pieces threaded along these half-lines. Each piece therefore
sits on top of a given vertex and may move freely along the corresponding vertical half-line
as long as it does not meet another piece. More precisely, the pieces are supposed to be
designed so that two pieces may not pass each other if they sit on top of the same vertex or
if they sit on top of adjacent vertices.

Given a subset B of the set of vertices of G, a heap of pieces is said to be of base B if,
moving its pieces as far as possible to the bottom of the half-lines, the set of those vertices
hit by a piece forms a subset of B (see Fig. 13).

A fundamental remark is that, from the relation (6), J(z) may be viewed as the generating
function for heaps of pieces on the semi-infinite graph G of Fig. 14, with a weight zYi per
piece sitting at position i along the graph, and whose base is {1, 2}. Similarly, we may

interpret J̃(z) as the generating function for the very same heaps, but now with a weight

zỸi per piece sitting at position i. Let us finally introduce the quantity

K(z) ≡ 1 + z Y1 J(z) =
1

1− z Y1

1− z Y2

1− zY3 − z
Y4

1− zY5 − z
Y6

1− · · ·
which is the generating function for heaps of pieces on the graph G again with a weight zYi
per piece sitting at position i along the graph, but now with base {1}.

From the definition (23) of the jn’s, we have

K(z) =
∑

n≥0

jnz
n , J̃(z) =

∑

n≥0

j−nz
n

so that all the jn’s have a direct interpretation as enumerating heap configurations made of
|n| pieces.
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Let us now consider the analogs J (α)(z), K(α)(z) and J̃ (α)(z) of J(z), K(z) and J̃(z)
respectively, viewed as heaps generating functions, now defined on the finite graph G(α) of
Fig. 14. In other words, we set

J (α)(z) ≡ 1

1− zY1 − z
Y2

1− zY3 − z
Y4

. . .

1− zY2α−3 − z
Y2α−2

1− z Y2α−1

J̃ (α)(z) ≡ 1

1− zỸ1 − z
Ỹ2

1− zỸ3 − z
Ỹ4

. . .

1− zỸ2α−3 − z
Ỹ2α−2

1− z Ỹ2α−1

K(α)(z) ≡ 1 + z Y1 J
(α)(z) =

1

1− z Y1

1− z Y2

1− zY3 − z
Y4

. . .

1− zY2α−3 − z
Y2α−2

1− z Y2α−1

.

We finally define the analogs j
(α)
n of jn via

K(α)(z) =
∑

n≥0

j(α)
n zn , J̃ (α)(z) =

∑

n≥0

j
(α)
−nz

n

so that j
(α)
n (n ≥ 0) enumerates heap configurations of n pieces on G(α) with weights Yi and

base {1}, and j
(α)
−n (n ≥ 0) enumerates heap configurations of n pieces on G(α) with weights

Ỹi and base {1, 2}.
It is now a standard result of the theory of heaps of pieces [12] that8

(47)

K(α)(z) =
X(α)(0,−zY2,−zY3, · · · ,−zY2α−1)

X(α)(−zY1,−zY2,−zY3, · · · ,−zY2α−1)

J̃ (α)(z) =
X(α)(0, 0,−zỸ3, · · · ,−zỸ2α−1)

X(α)(−zỸ1,−zỸ2,−zỸ3, · · · ,−zỸ2α−1)

8 A sketch of the proof is as follows: given B, consider pairs (H,HP ) made of a heap configuration H of
base B together with a configuration HP of hard pieces, drawn on top of the heap. For such a pair, let E be

the set of pieces that can be moved up freely to infinity, and when pushed downward either are blocked by
a piece (that has to be in H) or hit a vertex of the base B. Consider the following transformation: if E is
not empty, pick the piece p ∈ E of smallest index and change its status (from H to HP if p ∈ H, from HP
to H if p ∈ HP ); if E is empty do nothing. This transformation is easily seen to be an involution (which

leaves E invariant), and, if we assign a weight z per piece in the heap and −z per piece in the configuration
of hard pieces, the weight is multiplied by −1 for each configuration which changes under the involution.

The generating function for the pairs, which is the product of the generating function for heaps with a
weight z per piece times that of configuration of hard pieces with a weight −z per piece, therefore reduces
to those pairs for which E is empty. It is easily seen that this situation corresponds to an empty heap and a
configuration of hard pieces made of pieces which do not belong to B. The corresponding generating function

is nothing but that of configurations of hard pieces with a weight −z per piece not in B and 0 per piece in B.



28 ÉRIC FUSY AND EMMANUEL GUITTER

2α−1

2

4

2α−2

1

3

Figure 15. The maximally occupied configuration of hard pieces on the
graph G(α), made of α pieces (here represented by gray circles) sitting on
all the sites with an odd index.

where X(α)(y1, y2, y3, · · · , y2α−1) denotes the generating function of hard pieces on the graph
G(α), each piece sitting at position i receiving the weight yi. Recall that, by definition, in a
configuration of hard pieces, each vertex of the graph is occupied by at most one piece, with
no two adjacent vertices occupied simultaneously. Note that the positions of the 0’s in the
numerators correspond to the location of the vertices of the corresponding base of the heaps
({1} and {1, 2} respectively). Clearly, on the graph G(α), we can put at most α hard pieces.
Moreover, this maximal situation is achieved by a single configuration with all sites with
odd index occupied (see Fig. (15)). The quantity X(α)(−zY1,−zY2,−zY3, · · · ,−zY2α−1) is
therefore a polynomial of degree α in z that we write

X(α)(−zY1,−zY2,−zY3, · · · ,−zY2α−1) =

α∑

m=0

(−z)mX(α)
m (Y1, Y2, Y3, · · · , Y2α−1)

where X
(α)
m (y1, y2, y3, · · · , y2α−1) denotes the generating function of exactly m hard pieces

on the graph G(α), each piece sitting at position i receiving the weight yi. Clearly, both
X(α)(0,−zY2,−zY3, · · · ,−zY2α−1) and X(α)(0, 0,−zỸ3, · · · ,−zỸ2α−1) are polynomials of
degree α− 1 in z.

Let us now come to our fundamental identities. We have

(48)
X(α)
m = X(α)

α X̃
(α)
α−m

X(α)
m (0) = X(α)

α

(
X̃

(α)
α−m − X̃(α)

α−m(0, 0)
)

with the short-hand notations

X(α)
m ≡ X(α)

m (Y1, Y2, Y3, · · · , Y2α−1)

X(α)
m (0) ≡ X(α)

m (0, Y2, Y3, · · · , Y2α−1)

X̃(α)
m ≡ X(α)

m (Ỹ1, Ỹ2, Ỹ3, · · · , Ỹ2α−1)

X̃(α)
m (0, 0) ≡ X(α)

m (0, 0, Ỹ3, · · · , Ỹ2α−1) .

To explain these identities, let us analyze the structure of a configuration C of hard pieces
on G(α). In C, a number k of pieces occupy even sites 2j1, 2j2, · · · , 2jk with 1 ≤ j1 < j2 <
· · · < jk ≤ α − 1 and j`+1 − j` > 1 for ` = 1, · · · , k − 1. The set of available odd sites is
Odd = {1, 3, 5, · · · , 2α−1}\{2j1−1, 2j1 +1, 2j2−1, 2j2 +1, · · · , 2jk−1, 2jk+1} and satisfies
|Odd| = α−2k. A number k′ of pieces occupy a subset {2j′1−1, 2j′2−1, · · · , 2j′k′ −1} of this
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Figure 16. Left: an example of configuration C of hard pieces (represented

in gray) on G(α). Right: the associated configuration C̃ of hard pieces
(represented in light blue), obtained by keeping the particles sitting on even
vertices and, in the ensemble of odd vertices which are not adjacent to the
occupied even vertices, exchanging the occupied and un-occupied sites.

set. In X
(α)
m (corresponding to a situation where k+k′ = m), any occupied site i receives the

weight Yi, so the weight of the configuration C is Y2j1Y2j2 · · ·Y2jk × Y2j′1−1Y2j′2−1 · · ·Y2j′
k′−1.

Let us now consider instead the configuration C̃ where, again, the sites 2j1, 2j2, · · · , 2jk are
occupied but now the complementary of {2j′1 − 1, 2j′2 − 1, · · · , 2j′k′ − 1} in Odd (namely

Odd \ {2j′1 − 1, 2j′2 − 1, · · · , 2j′k′ − 1}) is covered by pieces. Clearly, going in from C to C̃

provides a bijection between configurations C with k + k′ = m pieces and configurations C̃
with k + (α− 2k)− k′ = α−m pieces. In X̃α−m, the configuration C̃ receives the weight

Ỹ2j1 Ỹ2j2 · · · Ỹ2jk ×

∏
i∈Odd

Ỹi

Ỹ2j′1−1Ỹ2j′2−1 · · · Ỹ2j′
k′−1

=
Y2j1Y2j2 · · ·Y2jk

Y2j1−1Y2j1+1Y2j2−1Y2j2+1 · · ·Y2jk−1Y2jk+1

×
Y2j′1−1Y2j′2−1 · · ·Y2j′

k′−1∏
i∈Odd

Yi

=
Y2j1Y2j2 · · ·Y2jk × Y2j′1−1Y2j′2−1 · · ·Y2j′

k′−1

Y1Y3Y5 · · ·Y2α−1

=
Y2j1Y2j2 · · ·Y2jk × Y2j′1−1Y2j′2−1 · · ·Y2j′

k′−1

X
(α)
α

since X
(α)
α = Y1Y3Y5 · · ·Y2α−1. From the bijection C 7→ C̃, we therefore deduce immediately

the first equality in (48). To get the second equality, we note that X
(α)
m (0) enumerates

configurations C with m pieces such that the site 1 is not occupied by a piece. Two situations
may then occur: either site 2 is occupied or not. In the first case, the bijection C 7→ C̃ will
generate a configuration C̃ where site 2 is occupied (and site 1 does not belong to Odd) while
in the second case, it will generate a configuration where site 2 is empty and site 1 (which
belongs to Odd) is necessarily occupied (since it was empty in C and the empty and occupied
sites get exchanged in the bijection for those odd sites belonging to Odd). To summarize,

in the configuration C̃, either site 1 or site 2 must be occupied. The restriction of X̃
(α)
α−m to

these configurations yields X̃
(α)
α−m − X̃(α)

α−m(0, 0), hence the second equality.
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From (48), we deduce

X(α)

(
−Y1

z
,−Y2

z
,−Y3

z
, · · · ,−Y2α−1

z

)
=

(
−1

z

)α
X(α)
α ·X(α)(−zỸ1,−zỸ2,−zỸ3, · · · ,−zỸ2α−1)

X(α)

(
0,−Y2

z
,−Y3

z
, · · · ,−Y2α−1

z

)
=

(
−1

z

)α
X(α)
α ·

(
X(α)(−zỸ1,−zỸ2,−zỸ3, · · · ,−zỸ2α−1)

−X(α)(0, 0,−zỸ3, · · · ,−zỸ2α−1)
)

and therefore, taking the ratio of the two lines and using (47),

1 +
Y1

z
J (α)

(
1

z

)
= K(α)

(
1

z

)
= 1− J̃ (α)(z) .

The finite continued fraction case of Sect. 5.3 corresponds precisely to a situation where
J(z) = J (α)(z) and J̃(z) = J̃ (α)(z). The above formula explains the first identity in (26)

while the second identity is guaranteed by the relation J̃ (α)(z) → 1 when z → 0. This
concludes the proof of (26).

We now prove (25) by computing explicitly the determinants H
(0)
i and H

(1)
i in terms of

the Yi’s. More precisely, let us show that, for i ≥ 1,

(49)

H
(0)
i ≡

∣∣∣∣∣∣∣∣∣∣

j−(i−1) · · · · · · j0
... . .

.
. .
.

j1
... . .

.
. .
. ...

j0 j1 · · · ji−1

∣∣∣∣∣∣∣∣∣∣

=

(
Y2

Y3

)i−1(
Y4

Y5

)i−2

· · ·
(
Y2i−4

Y2i−3

)2(
Y2i−2

Y2i−1

)

H
(1)
i ≡

∣∣∣∣∣∣∣∣∣∣

j−(i−2) · · · · · · j1
... . .

.
. .
.

j2
... . .

.
. .
. ...

j1 j2 · · · ji

∣∣∣∣∣∣∣∣∣∣

= Y1 Y3 Y5 · · ·Y2i−1H
(0)
i .

Once these formulas are proved, the relations (25) indeed follow immediately.

A first crucial point is the existence of a linear relation between the j
(α)
n ’s, namely

(50)

α∑

m=0

(−1)mX(α)
m j

(α)
n−m = 0 for all integers n .

Indeed, writing the first identity in (47) as K(α)(z)X(α)(−zY1,−zY2,−zY3, · · · ,−zY2α−1) =
X(α)(0,−zY2,−zY3, · · · ,−zY2α−1) and extracting the term of order zn, we immediately see
that (50) holds for any positive integer n ≥ α since X(α)(0,−zY2,−zY3, · · · ,−zY2α−1) is

a polynomial of degree α − 1. Similarly, writing the second identity in (47) as J̃ (α)(z) ×
X(α)(−zỸ1,−zỸ2, · · · ,−zỸ2α−1) = X(α)(0, 0,−zỸ3, · · · ,−zỸ2α−1), a polynomial of degree
α− 1, we find that

α∑

m=0

(−1)mX̃(α)
m j

(α)
−(n′−m) = 0 =

(−1)α

X
(α)
α

α∑

m′=0

(−1)m
′
X

(α)
m′ j

(α)
(α−n′)−m′

for n′ ≥ α. Here we have set m′ = α − m and used X̃
(α)
α−m′ = X

(α)
m′ /X

(α)
α . Setting n =

α− n′ ≤ 0, we deduce that (50) also holds for any non-positive integer. It remains to show



COMPARING ENSEMBLES OF QUADRANGULATIONS VIA CONTINUED FRACTIONS 31

that it is valid in the range 1 ≤ n ≤ α− 1. For n in this range, we have

α∑

m=0

(−1)mX(α)
m j

(α)
n−m =

n∑

m=0

(−1)mX(α)
m j

(α)
n−m +

α∑

m=n+1

(−1)mX(α)
m j

(α)
n−m

= (−1)nXα
n (0) + (−1)α

α−n−1∑

p=0

(−1)pX
(α)
α−p j

(α)
p−(α−n)

= (−1)nXα
n (0) + (−1)αX(α)

α

α−n−1∑

p=0

(−1)pX̃(α)
p j

(α)
−((α−n)−p) .

Now since 1 ≤ α− n ≤ α− 1, we also have

α−n∑

p=0

(−1)pX̃(α)
p j

(α)
−((α−n)−p) = (−1)α−nX̃

(α)
α−n(0, 0)

so that we eventually get

α∑

m=0

(−1)mX(α)
m j

(α)
n−m = (−1)nXα

n (0) + (−1)αX(α)
α

(
(−1)α−nX̃

(α)
α−n(0, 0)− (−1)α−nX̃

(α)
α−n

)

= (−1)n
(
Xα
n (0)−X(α)

α (X̃
(α)
α−n − X̃(α)

α−n(0, 0))
)

= 0 .

The linear relation (50) therefore holds for all integers n, as stated.

Let us now come to the computation of H
(0)
i and H

(1)
i . Since jn, n ≥ 1, enumerates heaps

of n pieces on the graph G with base {1}, the pieces cannot reach sites with index more than
1 for n = 1 and 2n− 2 for n ≥ 2. In other words, jn enumerate heaps which “live” on G(n),
therefore on G(i−1) for all n ≤ i − 1. As for jn, n ≤ −1, it enumerates heaps of |n| pieces
on the graph G with base {1, 2} so that the pieces cannot reach sites with index more than
2|n|, therefore “live” on G(|n|+1), therefore on G(i−1) for all |n| ≤ i − 2. In other words, we
have

jn = j(i−1)
n for n = 0, 1, 2, · · · , i− 1

j−n = j
(i−1)
−n for n = 0, 1, 2, · · · , i− 2

In the determinant H
(0)
i , the only term which does not “live” on G(i−1) is j−(i−1) and it is

easily seen that

j−(i−1) = j
(i−1)
−(i−1) + Ỹ2Ỹ4 · · · Ỹ2i−2

with an additional term corresponding to the unique heap that hits position 2i − 2. Using

the linear relation (50) for α = i− 1, we may thus rewrite H
(0)
i as

H
(0)
i =

∣∣∣∣∣∣∣∣∣

Ỹ2Ỹ4 · · · Ỹ2i−2 j−(i−2) · · · j0
0 j−(i−3) . .

.
j1

... . .
.

. .
. ...

0 j1 · · · ji−1

∣∣∣∣∣∣∣∣∣
= Ỹ2Ỹ4 · · · Ỹ2i−2H

(1)
i−1 .

Similarly, in the determinant H
(1)
i , the only term which does not “live” on G(i−1) is ji and

it is easily seen that

ji = j
(i−1)
i + Y1(Y2Y4 · · ·Y2i−2)
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with again an additional term corresponding to the unique heap that hits position 2i − 2.

We may thus rewrite H
(1)
i as

H
(1)
i ≡

∣∣∣∣∣∣∣∣∣

j−(i−2) · · · j0 0
... . .

.
. .
. ...

j0 . .
.

. .
.

0
j1 · · · ji−1 Y1(Y2Y4 · · ·Y2i−2)

∣∣∣∣∣∣∣∣∣
= Y1(Y2Y4 · · ·Y2i−2)H

(0)
i−1 .

Combining the two above formulas and replacing the Ỹi’s by their value in terms of the Yi’s,
we deduce the recursion relation

H
(0)
i =

(
Y2

Y3

Y4

Y5
· · · Y2i−4

Y2i−3

)2
Y2i−2

Y2i−1
H

(0)
i−2

for i ≥ 3 with initial conditions H
(0)
1 = 1 and H

(0)
2 = j−1j1−j2

0 = (Ỹ1 + Ỹ2)Y1−1 = (Y2/Y3).
The first line of eq (49) follows immediately. As for the second line, it follows from

H
(1)
i

H
(0)
i

= Y1(Y2Y4 · · ·Y2i−2)
H

(0)
i−1

H
(0)
i

= Y1(Y2Y4 · · ·Y2i−2)

(
Y3

Y2

Y5

Y4
· · · Y2i−1

Y2i−2

)
= Y1Y3Y5 · · ·Y2i−1 .

The above derivation of Eq. (25) extends verbatim to the case of the finite continued fraction

of Sect. 5.3 by limiting to i ≤ α− 1 the range of allowed values for the index i in H
(0)
i and

H
(1)
i . This range is precisely what is needed to compute Y1, Y2, · · · , Y2α−1.

Appendix B. A proof of the formulas (35)–(38)

The quantities Z(z;P,Q), Z̃(z;P,Q) are specializations of J(z) and J̃(z) (viewed as de-
fined from the Yi’s through their continued fraction expansions) to the case where

Y2i−1 = Y , Y2i = P , Ỹ2i−1 =
1

Y
= Ỹ , Ỹ2i = P

Y 2 = P̃

for all i ≥ 1. Consequently, Zn, Z̃n and kn are the corresponding specializations of Jn,
J̃n and jn. The analysis of Appendix A applies to arbitrary Yi’s. In particular, kn has a
direct interpretation in term of heaps of pieces on the graph G for all n. For n > 0, kn
enumerates heaps of n pieces of base {1}, with weights Y and P for pieces on odd or even
sites respectively. For n < 0, kn enumerates heaps of |n| pieces of base {1, 2}, with weights

Ỹ and P̃ for pieces on odd or even sites respectively. Let us thus introduce the quantities

k
(α)
n (analogs of j

(α)
n ) corresponding to a restriction of the heaps to the graph G(α). From

(50), we deduce immediately
α∑

m=0

(−1)mx(α)
m k

(α)
n−m = 0 for all integers n .

where x
(α)
m = X

(α)
m (Y, P, Y, P, · · · , Y ) is the generating function of configurations of exactly

m hard pieces on the graph G(α). Setting α = i− 1, this equation reads equivalently

i−1∑

m=0

k
(i−1)
n−i+m(−1)m

x
(i−1)
i−1−m

x
(i−1)
i−1

= 0 for all integers n .

Now, from their heap interpretation, it is clear that kn = k
(i−1)
n for n = 0, 1, · · · , i − 1

as well as for n = −1,−2, · · · ,−(i − 2). For 2 ≤ n ≤ i, all the k
(i−1)
p ’s appearing in the

above formula may thus be replaced by kp’s and (35) follows. For n = 1, the only term

which gets out of the graph G(i−1) is for m = 0, since k
(i−1)
−(i−1) = k−(i−1) − P̃ i−1 (the two

indeed differ by the contribution of the heap made of one piece on each even site from 2 to
2(i − 1)). This explains the right hand side P̃ i−1 = P i−1/Y 2(i−1) in the first line of (36).
For n = i + 1, the only term which gets out of the graph G(i−1) is for m = i − 1, since
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Figure 17. The graph G′(α).

k
(i−1)
i = ki−Y P i−1 (the two indeed differ by the contribution of the heap made of one piece

on site 1 and one piece on each even site from 2 to 2(i − 1)). This explains the right hand

side (−1)i−1Y P i−1(x
(i−1)
0 /x

(i−1)
i−1 ) = (−1)i−1P i−1/Y i−2 in the second line of (36).

Eqs. (37) and (38) can be proved in the same way but their proof now relies on a restriction
of the heaps to the graph G′(α) of Fig. 17. Let us first analyze the heap generating functions

on this graph: denoting, for n > 0, the generating function j
′(α)
n of heaps of n pieces on

G′(α), of base {1} and with weight Yi per piece sitting on site i. It is easily seen that j
′(α)
n

also corresponds to enumerating heaps of n pieces on the graph G(α) provided we assign,
instead of Y2α−1, a weight Y ′2α−1 ≡ Y2α−1 + Y2α to pieces sitting at position 2α − 1. The

same remark holds for configurations of m hard pieces on G′(α) which are enumerated by

X
(α)
m (Y1, Y2, · · · , Y2α−2, Y

′
2α−1). In order to use directly our previous results (obtained for

G(α)), we are thus lead to define j
′(α)
n for n < 0 as enumerating heaps of n pieces with base

{1, 2} on the graph G(α), with weights Ỹi built via the same expression (21) as before with

Y2α−1 replaced by Y ′2α−1. Getting back to G′(α), j
′(α)
n for n < 0 therefore enumerates heaps

of n pieces with base {1, 2} on this graph, with weights Ỹi as in (21) for pieces on sites
1, 2, 3, · · · , 2α− 3 and the special weights Y2α−2/(Y2α−3(Y2α−1 + Y2α)) for pieces on the site
2α− 2, 1/(Y2α−1 + Y2α) for pieces on the site 2α− 1 and 0 for pieces on the site 2α. With
this definition, we have the analog of (50), namely

α∑

m=0

(−1)mX ′(α)
m j

′(α)
n−m = 0 for all integers n .

where X
′(α)
m enumerates configurations of m hard pieces on G′(α).

Let us now specialize this result upon introducing, for n > 0, the generating function k
′(α)
n

of heaps of n pieces on G′(α), of base {1} and with weights Y and P for pieces on odd or even

sites respectively. From the above discussion, for n < 0, k
′(α)
−n must be defined as enumerating

heaps of n pieces on G′(α) with weight Ỹ for pieces on odd sites 1, 3, 5, · · · , 2α − 3, P̃ for
pieces on even sites 2, 4, · · · , 2α− 4 and the special weights P/(Y (Y + P )) for pieces on the
site 2α − 2, 1/(Y + P ) for pieces on the site 2α − 1 and 0 for pieces on the site 2α. With

these definitions (and k
′(α)
0 ≡ 1), we have

α∑

m=0

(−1)mx′(α)
m k

′(α)
n−m = 0 for all integers n
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where x
′(α)
m enumerates configurations of m hard pieces on G′(α) with weight Y (resp. P )

per piece sitting on an odd (resp. even) site (in particular x
′(α)
0 = 1). Setting α = i− 1, the

above equation becomes

i−1∑

m=0

(−1)mx′(i−1)
m k

′(i−1)
n−m = 0 for all integers n.

Again, from their heap interpretation, it is clear that kn = k
′(i−1)
n for n = 0, 1, · · · , i as well

as for n = −1,−2, · · · ,−(i − 3). For 2 ≤ n ≤ i, all the k
′(i−1)
p ’s appearing in the above

formula may thus be replaced by kp’s and (37) follows. For n = 1, the only term for which

this substitution fails is for m = i−1, since k
′(i−1)
−(i−2) = k−(i−2)−P̃ i−3(P̃−P/(Y (Y +P ))) (the

two indeed differ by the contribution of the last piece, at position 2(i − 2), in the the heap
made of one piece on each even site from 2 to 2(i − 2)). This explains the right hand side

(−1)i−1P̃ i−3(P̃ − P/(Y (Y + P )))x
′(i−1)
i−1 = (−1)i−1P i−1/Y i−2 in the first line of (38) (note

that x
′(i−1)
i−1 = Y i−2(Y +P )). For n = i+ 1, the only term for which this substitution fails is

for m = 0, since k
′(i−1)
i+1 = ki+1 − Y P i−1(Y + P ) (the two indeed differ by the contribution

of the two heaps made of one piece on site 1, one piece on each even site from 2 to 2(i− 1)
and a last piece at position 2i − 1 or 2i). This explains the right hand side Y P i−1(Y + P )
in the second line of (38).
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