
HAL Id: hal-01188328
https://hal.science/hal-01188328

Preprint submitted on 28 Aug 2015

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Tableau sequences, open diagrams, and Baxter families
Sophie Burrill, Julien Courtiel, Eric Fusy, Stephen Melczer, Marni Mishna

To cite this version:
Sophie Burrill, Julien Courtiel, Eric Fusy, Stephen Melczer, Marni Mishna. Tableau sequences, open
diagrams, and Baxter families. 2015. �hal-01188328�

https://hal.science/hal-01188328
https://hal.archives-ouvertes.fr


TABLEAU SEQUENCES, OPEN DIAGRAMS, AND BAXTER FAMILIES

SOPHIE BURRILL, JULIEN COURTIEL, ERIC FUSY, STEPHEN MELCZER, AND MARNI MISHNA

Abstract. Walks on Young’s lattice of integer partitions encode many objects of algebraic and combina-
torial interest. Chen et al. established connections between such walks and arc diagrams. We show that

walks that start at ∅, end at a row shape, and only visit partitions of bounded height are in bijection with a
new type of arc diagram – open diagrams. Remarkably two subclasses of open diagrams are equinumerous

with well known objects: standard Young tableaux of bounded height, and Baxter permutations. We give

an explicit combinatorial bijection in the former case.

1. Introduction

The lattice of partition diagrams, where domination is given by inclusion of Ferrers diagrams, is known
as Young’s lattice. Walks on this lattice are of significant importance since they encode many objects of
combinatorial and algebraic interest.

At a first level, a walk on Young’s lattice is a sequence of Ferrers diagrams such that at most a box is
added or deleted at each step. A class of such sequences is also known as a tableau family. There are several
combinatorial classes in explicit bijection with tableau families ending in an empty shape, in particular when
there are restrictions on the height of the tableaux which appear.

In this work we study tableau families that encode walks in Young’s lattice that start at the empty
partition and end with a partition composed of a single part: λ = (m), m ≥ 0. Additionally, they are
bounded, meaning that they only visit partitions that have at most k parts, for some fixed k. In particular,
we generalize the results of Chen et al. [12], and Bousquet-Mélou and Xin [7] to prove that two classic
combinatorial classes –Young tableaux of bounded height and Baxter permutations – are in bijection with
bounded height tableau families.

1.1. Part 1. Oscillating tableaux and Young tableaux of bounded height. The first tableau family
that we study is the set of oscillating tableaux with height bounded by k. These appear in the study of
partitions avoiding certain nesting and crossing patterns [12]. Our first main result is a bijection connecting
oscillating tableaux to the class of standard Young tableau of bounded height. Young tableaux are more com-
monly associated with oscillating tableau, and ours is a very different connection. This result demonstrates
a new facet of the ubiquity of Young tableaux.

Theorem 1. The set of oscillating tableaux of size n with height bounded by k, which start at the empty
partition and end in a row shape λ = (m), is in bijection with the set of standard Young tableaux of size n
with height bounded by 2k, with m odd columns.

The proof of Theorem 1 is an explicit bijection between the two classes. One consequence of the bijective
map is the symmetric joint distribution of two kinds of nesting patterns inside the class of involutions.

Enumerative formulas for Young tableaux of bounded height have been known for almost half a century [18,
19, 4], but new enumerative formulas can be derived from Theorem 1, notably an expression which can be
written as a diagonal of a multivariate rational function. The new generating function expressions are the
subject of Section 4.3.

1.2. Part 2. Hesitating tableaux and Baxter Permutations. In the second part, we consider the
family of hesitating tableaux. These tableau sequences appear in studies of set partitions avoiding so-called
enhanced nesting and crossing patterns. The work of [12] again serves to describe bijections between lattice
paths and arc diagrams. Using a lattice path interpretation, we make a generating function argument

Key words and phrases. Young tableaux, nonnesting partitions, matchings, Baxter permutations, bijections, oscillating
tableaux.
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to connect this combinatorial class to Baxter permutations. This connection was recognized by Xin and
Zhang [26]. Here we offer an explicit proof, using formulas of Bousquet-Mélou and Xin [7], of the following
result.

Theorem 2. The number of hesitating tableaux of length 2n of height strictly less than three is equal to the
number Bn+1 of Baxter permutations of length n+ 1, where

Bn =

n∑
k=1

(
n+1
k−1
)(
n+1
k

)(
n+1
k+1

)(
n+1
1

)(
n+1
2

) .

Baxter numbers have been described as the “big brother” of the well known Catalan numbers: they are the
counting series for many combinatorial classes, and these classes often contain natural subclasses which are
counted by Catalan numbers. For example, doubly alternating Baxter permutations have a Catalan number
counting sequence [21]. One consequence of Theorem 2 is a new two variable generating tree construction
for Baxter numbers.

Unlike the results in Part 1, our proof of Theorem 2 is not a combinatorial bijection. One impediment to
a bijective proof is a lack of a certain symmetry in the class of hesitating tableaux that is present in most
known Baxter classes. A bijection would certainly be of interest, and in fact we conjecture a refinement of
Theorem 2, in Conjecture 1, which could guide a combinatorial bijection.

We begin with definitions in Section 2, and some known bijections. Then we focus on the standard Young
Tableaux of bounded height in Section 4, followed by our study of Baxter objects in Section 5.

2. The combinatorial classes

We begin with precise definitions for the combinatorial classes that are used in our results.

2.1. Tableaux families. As mentioned above, a common encoding of walks on Young’s lattice is given by
sequences of Ferrers diagrams. We consider three variants. Each sequence starts from the empty shape, and
has a specified ending shape; the difference between them is the limitations they impose on when one can
add or remove a box. The length of a sequence is the number of elements, minus one. (It is the number of
steps in the corresponding walk.)

A vacillating tableau is an even length sequence of Ferrers diagrams (λ(0), . . . , λ(2n)) where consecutive
elements in the sequence are either the same or differ by one square, under the restriction that
λ(2i) ≥ λ(2i+1) and λ(2i−1) ≤ λ(2i).

A hesitating tableau is an even length sequence of Ferrers diagrams (λ(0), . . . , λ(2n)) where consecutive
differences of elements in the sequence fall under one of the following categories1 :
• λ(2i) = λ(2i+1) and λ(2i+1) < λ(2i+2) (do nothing; add a box)
• λ(2i) > λ(2i+1)and λ(2i+1) = λ(2i+2) (remove a box; do nothing)
• λ(2i) < λ(2i+1) and λ(2i+1) > λ(2i+2) (add a box; remove a box).

An oscillating tableau is simply a sequence of Ferrers diagrams such that at every stage a box is either
added or deleted. Remark that the length of the sequence is not necessarily even.

In each case, if no diagram in the sequence is of height k+ 1, we say that the tableau has its height bounded
by k. Figure 1 shows examples of the different tableaux.

2.2. Lattice walks. Each integer partition represented as a Ferrers diagram in a tableau sequence can also
be represented by a vector of its parts. If the tableau sequence is bounded by k, then a k-tuple is sufficient.

The sequence of vectors defines a lattice path. For example, each of the three tableau families above each
directly corresponds to a lattice path family in the region

Wk = {(x1, x2, . . . , xk) : xi ∈ Z, x1 ≥ x2 ≥ · · · ≥ xk ≥ 0}

starting at the origin (0, . . . , 0). We can explicitly define three classes of lattice paths by translating the
constraints on the tableau families.

1Recall λ ≤ µ means that λi ≤ µi for all i
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Figure 1. From top to bottom. A vacillating tableau of length 10, a hesitating tableau of
length 8, an oscillating tableau of length 11. In each case, the height is bounded by 2.

Figure 2. From left to right. A W2-vacillating walk, a W2-hesitating walk, a W2-oscillating
walk. The stay steps are drawn as loops. (These walks correspond to the tableaux of
Figure 1.)

Remark. Twice in this article, in order to relate previous results, we use a translation of this region and
still identify it as Wk. The translated regions are identical to the original up to a small shift of coordinates.
This change is detailed explicitly in the text (the allowed sets of steps are never changed).

Let ei be the elementary basis vector with a 1 at position i and 0 elsewhere. The steps in our lattice
model are all elementary vectors, with possibly one exception: the zero vector, also called stay step. The
length of the walk increases with a stay step, but the position does not change.

A Wk-vacillating walk is a walk of even length in Wk using (i) two consecutive stay steps; (ii) a stay step
followed by an ei step; (iii) a −ei step followed by a stay step; (iv) a −ei step followed by an ej step.

A Wk-hesitating walk has even length and steps occur in the following pairs: (i) a stay step followed by
an ei step; (ii) a −ei step followed by a stay step; (iii) an ei step follow by −ej step.

A Wk-oscillating walk starts at the origin and takes steps of type ei or −ei, for 1 ≤ i ≤ k. It does not
permit stay steps.

Some examples are depicted in Figure 2.

2.3. Open arc diagrams. Arc diagrams are a useful way to provide a graphical representation of a com-
binatorial class. They are particularly useful to detect certain patterns. Matchings and set partitions are
examples of classes that have natural representations using arc diagrams. In the arc diagram representation
of a set partition of {1, 2, . . . , n}, a row of dots is labelled from 1 to n. A partition block {a1, a2, . . . , aj},
ordered a1 < a2 < . . . < aj , is represented by the set of arcs {(a1, a2), (a2, a3), . . . , (aj−1, aj)} which are
always drawn above the row of dots. We adopt the convention that a part of size one, say {i}, contributes
a loop, that is a trivial arc (i, i). In this work, we do not draw the loops, although some authors do. The
set partition π = {{1, 3, 7}, {2, 8}, {4}, {5, 6}} is depicted as an arc diagram in Figure 3. Matchings are
represented similarly, with each pair contributing an arc.

A set of k distinct arcs (i1, j1), . . . , (ik, jk) forms a k-crossing if i1 < i2 < · · · < ik < j1 < j2 < · · · < jk.
They form an enhanced k-crossing if i1 < i2 < · · · < ik ≤ j1 < j2 < · · · < jk. (By convention, an isolated
dot of the partition forms an enhanced 1-crossing.) They form a k-nesting if i1 < i2 < · · · < ik < jk < · · · <
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1 2 3 4 5 6 7 8

Figure 3. The set partition π = {1, 3, 7}, {2, 8}, {4}, {5, 6}

j2 < j1. They form an enhanced k-nesting if i1 < i2 < · · · < ik ≤ jk < · · · < j2 < j1 (As previously, ik = jk
means that ik is an isolated element in the set partition.). Figure 4 illustrates a 3-nesting, an enhanced
3-nesting, and a 3-crossing.

Figure 4. Patterns in arc diagrams. From left to right: a 3-crossing, an enhanced 3-
crossing, a 3-nesting, an enhanced 3-nesting.

Recently, Burrill, Elizalde, Mishna and Yen [10] generalized arc diagrams by permitting open arcs: in
these diagrams each arc has a left endpoint but not necessarily a right endpoint. The open arcs can be
viewed as arcs “under construction”. An open partition (resp. an open matching) is a set partition (resp. a
matching) diagram with open arcs. In open matchings, the left endpoint of an open arc is never the right
endpoint of another arc. Figure 5 shows examples of such diagrams.

1 2 3 4 5 6 7 8 9 1 2 3 4 5 6 7 8 9 10

Figure 5. An open partition and an open matching.

We are also interested in crossing and nesting patterns in open diagrams. Here we simplify the notation
of [10]. A k-crossing in an open diagram is either a set of k mutually crossing arcs (as before), or the union
of k − 1 mutually crossing arcs and an open arc whose left endpoint is to the right of the last left endpoint
and to the left of the first right endpoint of the k− 1 crossing arcs. A k-nesting in an open diagram is either
a set of k mutually nesting arcs, or a set of k− 1 mutually nesting arcs, and an open arc whose left endpoint
is to the left of the k − 1 nesting arcs. We generalize enhanced k-crossings and enhanced k-nestings in an
open diagram similarly. Examples are given in Figure 6. If we want to point out that a crossing (or nesting)
has no open arc, we say that it is a plain k-crossing (or k-nesting).

? ?
? ?

Figure 6. Patterns in open diagrams. From left to right: a 3-crossing, an enhanced 3-
crossing, a 3-nesting, and an enhanced 3-nesting.

3. Bijections

3.1. Description of Chen, Deng, Du, Stanley, Yan’s bijection. The work of Chen, Deng, Du, Stanley
and Yan [12] describes bijections between arc diagram families and tableau families. In this section we
summarize a selection of their results, and adapt it to our needs. Their main bijection maps a set partition π
to a sequence of Young tableaux2, the shapes of which form a vacillating tableau, denoted by φ(π). We do

2A Young tableau is defined here as the filling of a Ferrers diagram with positive integers, such that the entries in each row
and in each column are strictly decreasing (usually the entries are increasing; the reason for this change is explained later). The

set of entries does not need to form an interval of the form {1, . . . , n}.
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)

Figure 7. Top. The set partition π = {1, 5}, {2, 4, 6}, {3}. Middle. The corresponding
Young tableau sequence. Bottom. The vacillating tableau given by φ(π).

not describe the generalization of their construction to hesitating tableaux and oscillating tableaux (still due
to Chen et al.), but it exists and it will be used for the proof of Propositions 6 and 7.

We describe here their bijection φ but with a slight difference: we read the arc diagrams from left to
right, instead from right to left as it was done originally. In concrete terms, it means that the image of a
partition π under φ, as we write it, is the mirror image of the actual φ(π). Our approach is justified by the
fact that natural properties emerge when the reading direction is swapped. This can be particularly seen
through Proposition 3, where the size of the crossings and nestings around the ith dot is linked to the height
and the width of the ith Ferrers diagram.

Let π be a set partition of size n. We are going to build from π a sequence of Young tableaux where
the entries are decreasing in each row and each column – the fact that we use decreasing order instead of
increasing order is a direct consequence of the change of the reading direction. The first entry is the empty
Young tableau. We increment a counter i by one from 1 to n. A given step in the algorithm proceeds as
follows. If i is the right-hand endpoint of an arc in π, then delete i from the previous tableau (it turns
out that i must be in a corner). Otherwise, replicate the previous tableau. Then, after this move, if i is a
left-hand endpoint of an arc (i, j) in π, insert j by the Robinson-Schensted-Knuth (RSK) insertion algorithm
for the decreasing order into the previous tableau. If i is not a left-hand endpoint, replicate the previous
tableau.

The output of this process is a sequence of Young Tableaux starting from and ending at the empty Young
tableau. The sequence of shapes is given by a vacillating tableau and is denoted φ(π).

Example. Consider the partition π from Figure 7. The number 1 is the left-hand endpoint of the arc (1, 5),
but not the right-hand endpoint of any arc, so the first three Young tableaux are ∅,∅, 5 . Similarly, 2 is the
left-hand endpoint of (2, 4) but not a right-hand endpoint, so the two following Young Tableaux are 5 , 5 4 .
The number 3 is an isolated point, so the tableau 5 4 is repeated twice. The number 4 being the right-hand
endpoint of (2, 4) and the left-hand endpoint of (4, 6), we delete 4, then we add 6: we obtain 5 , 6

5
. The rest

of the sequence is given in Figure 7.

Given a vacillating tableau (∅, λ1, . . . , λ2n−1,∅), there exists a unique way to fill the entries of the Ferrers
diagrams into Young tableaux so that it corresponds to an image of a set partition. This has been proved
in [12], and implies that φ is a bijection.

In an arc diagram, we say that the segment [i, i+1] is below a k-crossing if the arc diagram contains k arcs
(i1, j1), . . . , (ik, jk) such that i1 < i2 < · · · < ik ≤ i and i + 1 ≤ j1 < j2 < · · · < jk. Similarly, the segment
[i, i + 1] is below a k-nesting if there exist k arcs (i1, j1), . . . , (ik, jk) such that i1 < i2 < · · · < ik ≤ i and
i+ 1 ≤ jk < · · · < j2 < j1. For instance, in Figure 7, the segment [3, 4] is below a 2-nesting but not below a
2-crossing, while the segment [4, 5] is below a 2-crossing but not below a 2-nesting. With this definition we
can formulate and prove a stronger version of [12, Theorem 3.2] (this property can also easily be seen in the
growth diagram formulation of the bijection – see [23]).
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Proposition 3. Let π be a partition of size n and φ(π) = (λ0, . . . , λ2n). For every i ∈ {1, . . . , n}, the
segment [i, i + 1] of π is below a k-crossing (resp. k-nesting) if and only if λ2i in φ(π) has at least k rows
(resp. k columns).

Example. We continue our example and verify that λ(6) = has 2 columns but not 2 rows, and
accordingly [3, 4] is below a 2-nesting, but not a 2-crossing.

Proof. Let (T0, . . . , T2n) be the sequence of Young tableaux corresponding to the partition π. We use some
ingredients from the proof of Theorem 3.2 of [12, p. 1562]3:

(1) A pair (i, j) is an arc in the representation of π if and only if j is an entry in T2i, T2i+1, . . . , T2(j−1);
(2) Let σi = w1w2 . . . wr denote the permutation of the entries of Ti such that w1, w2, . . . , wr have been

inserted in (T0, . . . , T2n) in this order;
(3) The permutation σi has an increasing subsequence of length k if and only if the partition λi has at

least k rows.

The following statements are then equivalent:

· The segment [i, i+ 1] is below a k-crossing.
· There exist k arcs (i1, j1), . . . , (ik, jk) in π such that

i1 < i2 < · · · < ik ≤ i and i+ 1 ≤ j1 < j2 < · · · < jk.

· There exist k numbers j1 < j2 < · · · < jk that are entries of T2i such that j1, j2, . . . , jk have been
inserted in this order in (T0, . . . , T2n).
· There exist k numbers j1 < j2 < · · · < jk such that j1j2 . . . jk is a subsequence of σ2i.
· The diagram λ2i has at least k rows.

The proof for k-crossings is similar. �

Considering all intervals [i, i+ 1] for 1 ≤ i ≤ n, we recover the statement of Theorem 3.2 from [12].

Corollary 4. A set partition π has no (k + 1)-crossing (resp. no (k + 1)-nesting) if and only if no Ferrers
diagram in the sequence φ(π) has k + 1 rows (resp. columns).

Remark. The crossing level of a set partition π, denoted cr(π), is the maximal k such that π has a k-
crossing. Similarly, the nesting level of a set partition π, denoted ne(π), is the maximal k such that π has a
k-nesting. Chen et al. conclude from the previous corollary that the joint distribution of cr and ne over all
the set partition diagrams of fixed size is symmetric. That is,∑

π set partition diagram
of size n

xcr(π)yne(π) =
∑

π set partition diagram
of size n

ycr(π)xne(π).

Let τ denote transposition, the operation that transposes every Ferrers diagram inside a vacillating tableau.
Then φ−1◦τ ◦φ swaps the crossing level and the nesting level of a set partition. Moreover, note that φ−1◦τ ◦φ
preserves the opener/closer sequence, i.e., if the number i is an isolated point (resp. a left endpoint, a right
endpoint, a left and right endpoint at the same time) in a partition π, then i is an isolated point (resp. a
left endpoint, a right endpoint, a left and right endpoint at the same time) in φ−1 ◦ τ ◦ φ(π).

3.2. Bijections with open partitions. Next we describe a generalization of the bijection of Chen et al.
to the class of tableaux ending at a row shape. We thereby link to the classes of Section 2.

Proposition 5. A bijection can be constructed between any two of the following classes:

(1) the set of open partition diagrams of length n with no (k + 1)-crossing, with m open arcs;
(2) the set of open partition diagrams of length n with no (k + 1)-nesting, with m open arcs;
(3) the set of vacillating tableaux of length 2n, with maximum height bounded by k, ending in a row of

length m;
(4) the set of Wk-vacillating walks of length 2n ending at (m, 0, . . . , 0).

3Recall that one bijection is the mirror image of the other. So the indices differ between [12] and here.
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Proof. Bijection (1) ⇔ (3). Since we would like to use the aforementioned bijection φ, the idea here
simply consists in closing every open arc in a very natural way – we thereby recover classic closed diagrams.

Let us be more precise. Let π be an open partition diagram of length n with m open arcs and no (k+ 1)-
crossing. We build a new partition diagram π of length n+m without open arcs by closing the m open arcs of
π in decreasing order. That is, if i1 < i2 < · · · < im denote the positions of the m open arcs of π, the partition
π is the closure, obtained by replacing the m open arcs with the arcs (i1, n+m), (i2, n+m−1), . . . , (im, n+1),
as shown in Figure 8. Note that the open arcs are closed in such a way that no new crossing is created.

π = π =
1 12 23 34 45 56 67 78 89 9 10 11 12

Figure 8. Left. An open partition diagram, π, with 3 open arcs. Right. The corresponding
closed partition diagram π ending with a 3-nesting, obtained by closing the 3 open arcs of
π in reverse order.

The m last elements of π form the end of an m-nesting. Consequently, each crossing of π has at most one
element inside {n+ 1, . . . , n+m}; so the preimage of any `-crossing of π is also an `-crossing. As π has no
(k + 1)-crossing, the diagram π has no (k + 1)-crossing.

Let φ(π) = (λ0, . . . , λ2(n+m)) be the image of π under φ. By Corollary 4, the height of this vacillating
tableau is bounded by k. Moreover, the segment [n, n + 1] in π is below an m-nesting but not below a
2-crossing. By Proposition 3, it means that λ2n is a column with at least m rows. Since φ(π) ends with
an empty diagram and one can delete at most one cell every two steps, λ2n has exactly m rows. Thus,
(λ0, . . . , λ2n) is a vacillating tableau of length 2n, with maximum height bounded by k, ending in a column
of length m.

The transformation is bijective: a vacillating tableau (λ0, . . . , λ2n) from the set (3) can be concatenated
with ((m− 2), (m− 2), . . . , (1),∅,∅), where (j) denotes the partition of i only composed of a single part of
size j. If we change its preimage under φ by opening the arcs ending in {n+ 1, . . . , n+m} into m open arcs,
we recover the initial open diagram π.

Bijection (2) ⇔ (3). The previous bijection is adapted with an additional application of the transpo-
sition operator τ .

Bijection (3) ⇔ (4). This is a straightforward consequence of the encoding. As the vacillating tableaux
end at a row of length m, the endpoints of the walks must be the point (m, 0, . . . , 0) �

The open diagram case inherits many properties from the closed diagram case. For example, the statistics
of crossing level and nesting level are equidistributed. Also, the problem of finding a direct bijection between
open partitions with no k-crossing and open partitions with no k-nesting without going through the vacillating
tableaux seems to be as difficult as the closed case.

However, the nesting level and the crossing level do not have symmetric joint distribution for open
partitions. This constitutes a difference with the (closed) partition diagrams.

Furthermore, the other generalizations of Chen et al. – specifically the ones that concern the hesitating
and oscillating tableaux – can also be extended to tableaux ending at a row shape, and open partitions. The
proofs are similar.

Proposition 6. The following classes are in bijection:

(1) the set of open matching diagrams of length n with no (k + 1)-crossing, with m open arcs;
(2) the set of open matching diagrams of length n with no (k + 1)-nesting, with m open arcs;
(3) the set of oscillating tableaux of length n, with height bounded by k, ending in a row of length m;
(4) the set of Wk-oscillating walks of length n ending at (m, 0, . . . , 0).

Proposition 7. The following classes are in bijection:

(1) the set of open partition diagrams of length n with no enhanced (k + 1)-crossing, with m open arcs;
(2) the set of open partition diagrams of length n with no enhanced (k + 1)-nesting, with m open arcs;
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(3) the set of hesitating tableaux of length 2n, with height bounded by k, ending in a row of length m;
(4) the set of Wk-hesitating walks of length 2n ending at (m, 0, . . . , 0).

4. Young tableaux, involutions and open matchings

4.1. Bijections. We can now prove our first main result, namely Theorem 1. Our strategy is to use Propo-
sition 6, and prove the following result, from which Theorem 1 is a straightforward consequence.

Proposition 8. The set of standard Young tableaux of size n with height bounded by 2k and m odd columns
are in bijection with the set of open matching diagrams of length n, with m open arcs and with no (k + 1)-
crossing.

As far as we can tell, this theorem was first conjectured by Burrill [9]4. Our proof uses the Robinson-
Schensted-Knuth (RSK) correspondence, and the bijection of Chen et al..

A different proof was communicated to us by Christian Krattenthaler [24]. It relies on the RSK correspon-
dence like our proof, but also on jeu de taquin (an operation on Young tableaux invented by Schützenberger [25]).
We note that the two bijections differ: our bijection has the advantage of preserving – just like the Chen
et al. construction – the “opener/closer” sequence (in a formulation using diagrams on both sides of the
bijection; cf Lemma 11 for more details), a strong property which does not clearly appear in Krattenthaler’s
alternative. His proof passes through growth diagrams [23].

The following lemma presents a classic property of the RSK correspondence.

Lemma 9. (Robinson-Schensted-Knuth correspondence) The set of standard Young tableaux of size n with
height bounded by k and m odd columns is in bijection with involutions of size n with m fixed points and no
decreasing subsequence of length k + 1.

1 3 5

2 4 8

6 9 10

7 1 2 3 4 5 6 7 8 9 10

Figure 9. Left. A standard Young tableau Y of size 10. Right. The arc diagram represen-
tation of the involution (1 7)(3 9)(4 6)(5 10). This involution is the image of (Y, Y ) under
the RSK correspondence.

As a first step, Lemma 9 yields combinatorial objects that are close to open matchings. Indeed, involutions
have a very natural arc diagram representation: cycles (i j) are represented by an arc, and fixed points are
isolated dots. An example is shown in Figure 9. We can map involutions into the set of open matchings by
simply changing every isolated point into an open arc. Under this map, there is a simple correspondence
between decreasing sequences in an involution and nestings in the open diagram.

Lemma 10. Let k ∈ Z≥1. An involution has no decreasing subsequence of length 2k+ 1 if and only if there
is no enhanced k-nesting in its arc diagram representation.

Proof. Let α be an involution. If its arc diagram has an enhanced k-nesting then α contains k cycles
(i1 j1), . . . , (ik jk) that satisfy i1 < i2 < · · · < ik ≤ jk < · · · < j1, which clearly induces a decreasing
subsequence of length 2k − 1.

Conversely, assume that there exist 2k−1 numbers i1 < i2 < · · · < i2k−1 such that α(i2k−1) < · · · < α(i1).
If α(ik) − ik ≥ 0, then i1 < · · · < ik ≤ α(ik) < · · · < α(i1): this means that (i1, α(i1)), . . . , (ik, α(ik)) form
an enhanced k-nesting. Otherwise, α(ik)− ik ≤ 0. Thus α(i2k−1) < · · · < α(ik) ≤ ik < · · · < i2k−1: the arcs
(α(i2k−1), i2k−1), . . . , (α(ik), ik) form an enhanced k-nesting. �

By the two preceding lemmas, the proof of Proposition 8 is reduced to the proof that involution diagrams
of length n with m fixed points and no enhanced (k+1)-nesting are in bijection with open matching diagrams
of length n with m open arcs and no (k + 1)-crossing. This is established by the following lemma.

4More precisely, this conjecture used open matchings with no (k + 1)-nesting.
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Figure 10. Image of the involution of Figure 9 under ψ.

Lemma 11. There is a bijection ψ between involution diagrams and open matching diagrams, such that for
α an involution diagram and β = ψ(α), the diagrams α and β have same length, the number of fixed points
in α is the number of open arcs in β, and for any ` ≥ 1 there is an enhanced `-nesting in α if and only if
there is an `-crossing in β. In addition the opener/closer sequence of α (seeing fixed points as openers) is
the same as the opener/closer sequence of β.

Proof of Proposition 8. We describe ψ, a bijective map between involutions and open matchings. It is formed
as a composition of other maps. We have already defined φ, the bijection from set partition diagrams to
vacillating tableaux from Section 3.1, and τ , the transpose action which can be applied to any tableau
sequence. We add ι, the operation that changes every isolated dot in an involution diagram into an open
arc. Let ψ be the composition ι ◦ φ−1 ◦ τ ◦ φ. Figure 10 shows an example of the action of ψ.

Since φ, τ and ι can all be reversed, the mapping ψ is bijective. Moreover, recall from the end of
Section 3.1, the mapping φ−1 ◦ τ ◦ φ preserves the opener-closer sequence. Therefore, every involution of
size n with m fixed points is mapped under ψ to an open matching diagram of size n with m open arcs.

Assume that an involution α has an enhanced `-nesting (i1, j1) . . . (i`, j`). If i` 6= j`, this enhanced nesting
is also a plain `-nesting. By the remark at the end of Section 3.1, we know that φ−1◦τ ◦φ(α) has a `-crossing,
so the same holds for ψ(α).

If i` = j`, then i` is a fixed point of α and hence an open arc in ψ(α). Moreover, the segment [i`, i` + 1]
is below the (` − 1)-nesting (i1, j1) . . . (i`−1, j`−1). So by Proposition 3, the 2i`th diagram of φ(α) has at
least ` columns. The 2i`th diagram of τ ◦ φ(α) has then k rows, and so [i`, i` + 1] is below a (`− 1)-crossing
in ψ(α). Thus, i` is in ψ(α) an open arc below a (`− 1)-crossing: the open matching ψ(α) has a `-crossing.
The converse is proved similarly.

In summary, ψ is a bijection between involution diagrams of size n with m fixed points and no enhanced k-
nesting and open matchings diagrams of size n with m open arcs and no k-crossing. �

The standard Young tableau in Figure 9 is mapped to the open arc diagram at the bottom of Figure 10.
Here, the parameter m takes value 2.

Remark that standard Young tableaux with height bounded by odd numbers are also characterized in
terms of open matching diagrams (but this time constrained by the plain nestings or crossings).

Proposition 12. The following classes are in bijection:
9



(i) the set of standard Young tableaux of size n with m odd columns and height bounded by 2k − 1;
(ii) the set of involutions of size n with m fixed points and no decreasing subsequence of length 2k;

(iii) the set of open matching diagrams of length n with no plain k-crossing and with m open arcs;
(iv) the set of open matching diagrams of length n with no plain k-nesting and with m open arcs.

Proof. The RSK correspondence (specifically, the property described in Lemma 9) gives a straightforward
bijection between (i) and (ii). Then, seeing isolated points as open arcs, it is easy to adapt Lemma 10 in
order to show the correspondence between (ii) and (iv). Finally the bijection between (iii) and (iv) is given
by φ−1 ◦τ ◦φ (still by interpreting isolated points as open arcs), where φ and τ are defined in Section 3.1. �

4.2. A new symmetric joint distribution for involutions. While looking for the previous bijection
we found a surprising symmetry property for involutions, which is now presented. Section 3.1 contained the
definition of nesting level ; in the context of involution diagrams, the notion can be refined in two different
ways, depending on whether we regard involution diagrams as enhanced set partition diagrams or as open
matchings.

The enhanced nesting level of an involution α, denoted ne↓(α), is the maximal number of dots in an
enhanced nesting of α (note that k marks the number of dots not number of arcs). Pursuant to Lemma 10,
the number ne↓(α) is also the length of the longest decreasing subsequence of α. Similarly, we define the
open nesting level of an involution α, denoted ne←(α): after transforming the diagram of α into an open
matching by changing every isolated point into an open arc, the open nesting level of α is the maximal
number of dots inside a nesting.

Remark that an enhanced nesting and a nesting in an open diagram are identical if they both have an
even number of dots; these are then plain nestings. The difference is made when the number of dots is odd,
say 2k+ 1. In this case, an enhanced nesting is made of a dot below a plain k-nesting, while a nesting in an
open matching is made of an open arc to the left of a plain k-nesting. This justifies the notation ne↓ and
ne←. Figure 11 compares the two patterns.

Example 13. The open nesting level of the involution (1 7)(3 9)(4 6)(5 10), depicted in Figure 9, is 5: the
numbers 2, 3, 4, 6, 9 form a nesting if we transform the dot 2 into an open arc. However the enhanced nesting
level of the same involution is 4: there is no dot below any 2-nesting.

Figure 11. Left. An enhanced 3-nesting with respectively 5 and 6 dots. Right. A 3-nesting
with respectively 5 and 6 dots (in an open matching).

A (weak) link between the two statistics can be easily derived from the preceding study, as stated in the
following proposition.

Proposition 14. There is a bijection θ from involution diagrams to involution diagrams such that for α
any involution diagram, β = θ(α), and ` ≥ 1, there is an enhanced `-nesting in α if and only if there is an
`-nesting in the open matching obtained by changing every fixed point in β by an open arc. In other words,
there exists a bijection θ between involutions α such that ne↓(α) = 2k − 1 or 2k and involutions β such that
ne←(β) = 2k − 1 or 2k.

In addition, θ preserves the length, the number of fixed points and the opener/closer sequence (viewing
fixed points as openers).

Proof. We define θ as the composition of

(1) the mapping φ described by Lemma 11;
(2) the operation that changes isolated points into open arcs;
(3) the mapping from open matchings to oscillating tableaux with bounded width ending a column (see

Subsection 3.2 and more precisely Proposition 6);
10



(4) the transposition of the Ferrers diagrams;
(5) the mapping from oscillating tableaux with bounded height ending at a column to open matchings;
(6) the operation that changes open arcs into isolated points.

All the properties of θ presented in the statement of this proposition are direct consequences of Lemma 11
and Proposition 6. �

Note that an enhanced nesting is preserved when the diagram is reflected. This is not true for an odd
nesting in an open diagram, because the isolated point must be to the left of the nesting. Despite the
fact they do not share this property, the enhanced nesting level and the open nesting level have symmetric
distribution, as stated in the following theorem.

Theorem 15. The statistics ne← and ne↓ have a symmetric joint distribution over all the involutions of
size n with m fixed points, i.e.,∑

α involution
of size n

with m fixed points

xne←(α)yne↓(α) =
∑

α involution
of size n

with m fixed points

yne←(α)xne↓(α).

Remark. The bijection θ from Proposition 14 does not swap the statistics ne↓ and ne←. For instance,
the involution α1 = (1 5)(2 3) of size 5 is mapped to the involution α2 = (2 3)(4 5): we have ne↓(α1) =
ne←(α1) = 4 but ne←(α2) = 3 and (even worse!) ne↓(α2) = 2. Nonetheless, the existence of the function θ
(and more particularly the fact that an involution with enhanced nesting level 2k− 1 or 2k is mapped under
θ to an involution with open nesting level 2k − 1 or 2k) is sufficient to prove Theorem 15.

Proof. Consider all involutions of fixed size, with a fixed number of fixed points. Let ai,j be the number of
involutions α in this class of such that ne↓(α) = i and ne←(α) = j. By Proposition 14, the bijection θ maps
involutions α such that ne↓(α) = 2k − 1 or 2k to involutions β such that ne←(β) = 2k − 1 or 2k; hence

(1)
∑
j≥0

a2k−1,j + a2k,j =
∑
i≥0

ai,2k−1 + ai,2k.

We can simplify the expression in Equation (1) as the values ne↓(α) and ne←(α) can only differ by at most
one for a given involution α. Indeed, if ` denotes the maximal number of arcs inside a nesting of an involution,
the open nesting level and the enhanced nesting level must equal either 2` or 2` + 1. Therefore, ai,j = 0
except for pairs (i, j) of the form (2`, 2`), (2`, 2` + 1), (2` + 1, 2`) or (2` + 1, 2` + 1). Equation (1) can be
thus rewritten as:

a2k−1,2k−1 + a2k−1,2k−2 + a2k,2k + a2k,2k+1 = a2k−2,2k−1 + a2k−1,2k−1 + a2k,2k + a2k+1,2k,

or after simplification
a2k,2k+1 − a2k+1,2k = a2k−2,2k−1 − a2k−1,2k−2.

In other words, the sequence (a2k,2k+1 − a2k+1,2k) is constant over all k ≥ 0. But since it equals 0 for k = 0,
we have for every k ≥ 0,

a2k,2k+1 = a2k+1,2k.

The other terms ai,j such that i 6= j vanish, so the last equality is sufficient to conclude the proof. �

The previous proof is simple but not constructive: can we describe an involution (on involutions) that
swaps the statistics ne← and ne↓? The answer is yes, and a description can be given in terms of iterations
of θ, where θ is the mapping defined by Proposition 14.

Lemma 16. Let θ(`) be the `th iteration of θ and Ai,j be the set of involutions α such that ne↓(α) = i and
ne←(α) = j.

For every α in A2k,2k+1 with k ≥ 0, there exists m ≥ 1 such that θ(`)(α) /∈ A2k,2k+1 ∪A2k+1,2k for

` ∈ {1, . . . ,m− 1}, and θ(m)(α) ∈ A2k+1,2k. Moreover, for every α′ in A2k+1,2k, there exists m′ ≥ 1 such

that θ(`
′)(α′) /∈ A2k,2k+1 ∪A2k+1,2k for `′ ∈ {1, . . . ,m′ − 1}, and θ(m

′)(α′) ∈ A2k,2k+1.
In other words, in the orbit of any involution under θ (this orbit is cyclic since θ is bijective and the

set of involutions of fixed size is finite), the elements of A2k,2k+1 ∪A2k+1,2k alternate between A2k,2k+1 and
A2k+1,2k.
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Figure 12. Schematic representation of typical orbits under θ. The white circles represent
the elements of A2k,2k+1, the gray circles the elements of A2k+1,2k and the small points are
the remaining elements.

An example of this correspondence is illustrated in Figure 12.

Proof. Consider i > 0 such that θ(i)(α) = α (such an i exists as θ acts bijectively on the finite set of
involutions of a fixed length). Since ne←(α) = 2k + 1, we have ne↓(θ(i−1)(α)) > 2k.

Let m denote the smallest j > 0 such ne↓(θ(j)(α)) > 2k. We have then ne↓(θ(m−1)(α)) ≤ 2k. Using the

properties of θ we know that ne←(θ(m)(α)) ≤ 2k, hence ne↓(θ(m)(α)) ≤ 2k + 1. As ne↓(θ(m)(α)) > 2k, we

must have ne↓(θ(m)(α)) = 2k + 1 and ne←(θ(m)(α)) = 2k.

We have just showed that for α and θ(i)(α) belonging to A2k,2k+1, there exists m ∈ {1, . . . , i − 1} such

that θ(m)(α) ∈ A2k+1,2k. The proof is over if we manage to show the statement concerning α′. This can be
done either by using the same reasoning or by an argument of cardinality (with Theorem 15). �

The previous lemma sets out how to build the desired involution. Essentially, from an involution of
A2k+1,2k, we iterate θ until obtaining an involution of A2k,2k+1. If, on the other hand, the involution belongs
to A2k,2k+1 we want to go backward, so we iterate θ−1 until obtaining an involution of A2k+1,2k. If an
involution does not fall under one of the previous forms, it necessarily belongs to a set of the form A`,`, and
we can then set this involution as a fixed point.

Proposition 17. Let α be an involution and Ai,j be the set of involutions α such that ne↓(α) = i and

ne←(α) = j. If α ∈ A2k,2k+1, set mα as the smallest integer m such that θ(m)(α) ∈ A2k+1,2k. If α ∈ A2k+1,2k,

set mα as the opposite of smallest integer m such that θ(−m)(α) ∈ A2k,2k+1. Otherwise, set mα as 0.

The mapping α 7→ θ(mα)(α) is an involution on the class of involutions that exchanges the statistics ne↓
and ne←. It preserves the size of the involutions, the number of fixed points and the opener/closer sequence5.

Remark. What about the open crossing level of an involution, that is to say the maximum number of dots
contained in a k-crossing, when this involution is transformed into an open matching? It is easy to see that
the open crossing level shares the same distribution as the open nesting level or the enhanced nesting level
(in particular via the bijection φ−1 ◦ τ ◦ φ). However, this statistic does not have a symmetric distribution,
whether it is with the open nesting level or with the enhanced nesting level.

4.3. Generating function expressions. One consequence of Theorem 1 is a collection of new generating
function expressions for standard Young tableaux of bounded height. They come from an application of
enumeration results of Weyl chamber walks [17, 20].

4.3.1. A Determinant Expression. The generating functions for Young tableaux of bounded height and Weyl
chamber walks can both be expressed in terms of Bessel functions. We denote by

bj(x) = Ij(2x) =
∑
n

(2x)2n+j

n!(n+ j)!
,

5if we consider isolated points as left endpoints of arcs
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the hyperbolic Bessel function of the first kind of order j.

Let Ỹk(t) be the exponential generating function for the class of standard Young tableaux with height

bounded by k. Formulas for Ỹk(t) follow from works of Gordon, Houten, Bender and Knuth [18, 19, 4], which
depend on the parity of k. We are only interested in the even values here.

Theorem 18 ([18, 19, 4]). The exponential generating function for the class of standard Young tableaux of
height bounded by 2k is given by

Ỹ2k(t) = det[bi−j(t) + bi+j−1(t)]1≤i,j≤k.

Around the same time, Grabiner-Magyar [20] determined a formula for the exponential generating function
of the Wk-oscillating walks of length n between two given points. Throughout this section, we translate the
region Wk to apply the previous results. Namely, we use

Wk = {(x1, . . . , xk) ∈ Zk : x1 > · · · > xk > 0}.

Theorem 19 (Grabiner-Magyar [20]). For fixed λ, µ ∈ Wk, the exponential generating function Õλ,µ(t) of
the Wk-oscillating walks from λ to µ, counted by their lengths, satisfies

Õλ,µ(t) = det
(
bµi−λj (2t)− bµi+λj (2t)

)
1≤i,j≤k .

We specialize the start and end positions as λ = δ = (k, k−1, . . . , 1) and µ = δ+me1 = (k +m, k − 1, . . . , 1).

We are interested in the sum over all values of m, and define Õk(t) ≡
∑
m≥0 Õδ,me1+δ(t). We deduce the

following.

Proposition 20. The exponential generating function for the class of oscillating tableaux ending with a row
shape is the finite sum

Õk(t) =

k−1∑
u=0

(−1)u
2k−1−2u∑
`=u

b` det(bi−j − bkd−i−j)0≤i≤k−1,i6=u,1≤j≤k−1.

This follows from the fact that the infinite sum which arises from direct application of Grabiner and
Magyar’s formula telescopes after applying the identity b−k = bk. The proof is technical, and largely an
exercise in tracking indices after applying co-factor expansion of the determinants.

The bijection between the classes implies Õk(t) = Ỹ2k(t). Here are the first two values, which are well
known:

Õ1(t) = Ỹ2(t) = b0 + b1, Õ2(t) = Ỹ4(t) = b20 + b0b1 + b0b3 − 2b1b2 − b22 − b21 + b1b3.

4.3.2. A Diagonal Expression. Standard Young tableaux can also be viewed as oscillating tableaux with
no deleting steps. (The entries tell you which box was added at a given time.) This gives us an interesting
correspondence between two lattice path classes.

Theorem 21. The set of oscillating lattice walks of length n in Wk starting at δ = (k, k − 1, . . . , 1) and
ending at the boundary at the boundary {me1 + δ : m ≥ 0} is in bijection with the set of oscillating lattice
walks of length n in W2k, using only positive steps (ej), starting at δ and ending anywhere in the region.

We next obtain a new diagonal expression for standard Young tableaux of bounded height. The expres-
sion is also a corollary of the bijection. We find the expression via the oscillating walks, and an application
of Gessel and Zeilberger’s Weyl chamber reflectable walk model. The advantage of these diagonal repre-
sentations is potential access to asymptotic enumeration formulas, and possibly alternative combinatorial
representations. All of the generating functions are D-finite, and we can use the work of [6] to determine
bounds on the shape of the annihilating differential equation.

Theorem 22. The ordinary generating function for oscillating walks starting at δ and ending on the bound-
ary {me1 + δ : m ≥ 0}, is given by the formula

Ok(t) = ∆

[
t2k−1(z3z

2
4 · · · zk−2k )(z1 + 1)

∏
1≤j<i≤k(zi − zj)(zizj − 1) ·

∏
2≤i≤k(z2i − 1)

1− t(z1 · · · zk)(z1 + z1 + · · · zk + zk)

]
.

The proof of Theorem 22 is a rather direct application of Gessel and Zeilberger’s formula for reflectable
walks in Weyl chambers (the reader is directed to [17, 20] for details).
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Proof. As oscillating tableaux are counted by walks in the region Wk := {(x1, . . . , xd) : x1 > · · · > xk > 0},
taking steps {±e1, . . . ,±ek}, and starting at δ = (k, k − 1, . . . , 1), they are a reflectable walk model in the
Weyl chamber Bk. This Weyl chamber is generated by the simple roots

{e1 − e2, . . . , ek−1 − ek, ek},
and has a Weyl group G of order 2k k!: the group has the full action of Sk on Rk, along with negating any
subset of coordinates. Any group element σ which acts on δ by permuting its entries (keeping all its entries
positive) has its order in the Weyl group the same as its order in Sk. Furthermore, negating k entries of an
element corresponds to an even element of the Weyl group if and only if k is even. Thus, if

E(z) := (z1 · · · zk)
∏
i<j

(zi − zj),

then ∑
w∈G

(−1)l(w)zw(δ) =
∑

I⊂{1,...,k}
(−1)|I|E(σI(z)),

where σI sends the element zj to 1/zj if j ∈ I and fixes it otherwise. This sum simplifies to

A(z) =
∑
w∈G

(−1)l(w)zw(δ) =
1

(z1 · · · zk)k

∏
1≤j<i≤k

(zi − zj)(zizj − 1)
∏

1≤i≤k
(z2i − 1),

which can be proven by noting that both expressions represent (z1 · · · zk)kA(z) as a polynomial of total degree
k(3k + 1)/2 with the same solutions (and then comparing the leading coefficients of both expressions).

We are interested in walks that end on the boundary M = {me1 + δ : m ∈ N}. The generating function
of the endpoints is

B(z) =
∑
b∈M

z−b =
1

zk−11 zk−12 zk−23 · · · zk(z1 − 1)
.

Finally, the generating function of unrestricted walks starting at the origin is

C(z) =
1

1− t(z1 · · · zk)(z1 + z1 + · · · zk + zk)
.

So by the classical result of Gessel and Zeilberger, we have the generating function representation

F (t) := ∆ (A(z)B(z)C(z)) ,

which is exactly the formula given in the statement of this theorem. �

5. Tableau sequences as Baxter classes

The combinatorial class that came to be known as Baxter permutations was introduced in 1967 in a
paper of Baxter [2] studying compositions of commuting functions. A Baxter permutation of size n is
a permutation σ ∈ Sn such that there are no indices i < j < k satisfying σ(j + 1) < σ(i) < σ(k) <
σ(j) or σ(j) < σ(k) < σ(i) < σ(j+ 1). We shall denote by Bn the number of Baxter permutations of size
n is Bn. They constitute entry A001181 of the Online Encyclopedia of Integer Sequences (OEIS) [22].

Chung, Graham, Hoggart and Kleiman [13] found the explicit formula

(2) Bn =

n∑
k=1

(
n+1
k−1
)(
n+1
k

)(
n+1
k+1

)(
n+1
1

)(
n+1
2

) .

Many combinatorial classes have subsequently been discovered to have the same counting sequence –
for example triples of lattice paths [14] and plane bipolar orientations [3]. A recent comprehensive survey
of Felsner, Fusy, Noy and Orden [15] finds many structural commonalities among these seemingly diverse
families of objects. Remarkably, there are intuitive bijections connecting these classes, see for instance [5].

The generating function of hesitating tableaux (i) in Proposition 7 was determined by Xin and Zhang [26].
Baxter numbers appear in their Table 3, and they mention that the equivalence between the two could be
proved by applying creative telescoping to a formula for Bn resembling the one given in Equation (2) above.

Our contribution to this area is an explicit proof of that equivalence, and an exploration of the connection
between these classes and the other well known Baxter classes. Clearly, the classes of Proposition 7 have
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combinatorial bijections between them, but they do not share many of the properties of the other known
Baxter classes. However, each of them does have a natural subclass of objects enumerated by Catalan
numbers, as many Baxter families also do. (For example, non-crossing partitions are counted by Catalan
numbers.)

Proposition 23. The following classes are in bijection:

(i) the set of hesitating tableaux with height bounded by 2, starting with empty diagram, ending in a
partition with a single part;

(ii) the set of open partition diagrams of length n with no enhanced 3-crossing;
(iii) W2-hesitating walks of length n ending on the x-axis;
(iv) Baxter permutations of size n+ 1.

Remark that Theorem 2 is simply the implication that (i) and (iv) from Proposition 23 are in bijection.
We prove this with a generating function argument, and deduce the other bijections using Proposition 7.

5.1. Proof of Theorem 2. We prove Theorem 2 and conjecture a stronger result which could be useful
to prove the bijection combinatorially. This conjecture is partially verified using some of the intermediary
computations, so it is useful to have them made explicit. We note that this is slightly different from both the
proof that appears in a previous version of this work [11] and from the suggested proof of Xin and Zhang [26].

We first set up some notation. Let x = 1
x , and consider the ring of formal series Q[x, x][[t]]. The opera-

tor CTx extracts the constant term in x of series of Q[x, x][[t]].
We recall the work of Bousquet-Mélou and Xin [7]. Here, we only require the k = 2 case from their work,

and have consequently eliminated some of the subscripts from the statements of their results. Also, note
that their definition of W2 is shifted one unit to the right, hence in the statement of their results, walks start
at (1, 0) rather than (0, 0).

Let Q denote the first quadrant in the plane, Q = {(x, y) : x, y ≥ 0}, and let W2 denote the region
W2 = {(x, y) : x > y ≥ 0}. Walks taking n steps that start at λ and end at µ and remain in Q and W2 are,
respectively, denoted by q(λ, µ, n) and w(λ, µ, n).

Bousquet-Mélou and Xin’s Proposition 12 in [7], based on a classic reflection argument, implies the
following. For any starting and ending points λ and µ in W2, the number of W2-hesitating walks going from
λ to µ can be expressed in terms of the number of Q-hesitating walks:

w(λ, µ, n) = q(λ, µ, n)− q(λ, µ, n)

where (x, y) = (y, x). They define a simple sign reversing involution between pairs of walks; the walks
restricted to W2 appear as fixed points.

We consider the following two generating functions for Q-hesitating walks that start at (1, 0) and end on
an axis:

H(x; t) =
∑

i≥1,n≥0
q((1, 0), (i, 0), 2n)xi tn and V (y; t) =

∑
i≥1,n≥0

q((1, 0), (0, i), 2n)yi tn.

By applying the proposition we see immediately that the bivariate generating function W (x; t) for W2-
hesitating walks that start at (0, 1) and end on the x- axis satisfies the formula

(3) W (x; t) =
∑

i≥1,n≥0
w2((1, 0), (i, 0), 2n)xitn = H(x; t)− V (x; t).

Theorem 2 is equivalent to the statement

(4) W (1; t) =
∑

Bn+1t
n.

Proof of Theorem 2. For i ≥ 0, Bousquet-Mélou and Xin [7] show the following

[xi+1]H(x; t) = CTx
Y

t(1 + x)
x̄2+i(x2 − x̄2Y 2 + x̄3Y )(5)

[xi+1]V (x; t) = CTx
Y

t(1 + x)
x3+i(x2 − x̄2Y 2 + x̄3Y ).(6)
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Thus, we deduce

[xi+1]W (x; t) = [xi+1]H(x; t)− V (x; t) = CTx
Y

t(1 + x)
(x̄2+i − x3+i)(x2 − x̄2Y 2 + x̄3Y ).

Hence we have

W (1; t) = T (t) + U(t) + V (t),

where

T (t) = CTx
∑
i≥0

Y

t(1 + x)
(x̄i − x5+i),

U(t) = −CTx
∑
i≥0

Y 3

t(1 + x)
(x̄4+i − x1+i),

V (t) = CTx
∑
i≥0

Y 2

t(1 + x)
(x̄5+i − xi).

Then we use the following identity from [7] (valid for k ≥ 1 and ` ∈ Z)

CTx
Y k

t(1 + x)
x̄` = CTx

Y k

t(1 + x)
x`−k+1,

which gives the following simplifications:

T (t) = CTx
∑
i≥0

Y

t(1 + x)
(xi − x5+i) = CTx

Y

t(1 + x)
(1 + x+ x2 + x3 + x4),

U(t) = −CTx
∑
i≥0

Y 3

t(1 + x)
(x2+i − x1+i) = CTx

Y 3

t(1 + x)
x,

V (t) = CTx
∑
i≥0

Y 2

t(1 + x)
(x4+i − xi) = CTx

Y 2

t(1 + x)
(−1− x− x2 − x3).

Hence, defining A`,k(t) = CTx
Y k

t(1+x)x
`, we can collect terms to obtain

(7) W (1; t) =

4∑
r=0

Ar,1(t) +A1,3(t)−
3∑
r=0

Ar,2(t).

It is shown in [7] that the Lagrange inversion formula yields, for n ∈ N,

[tn]A`,k(t) =
∑
j∈Z

an(`, k, j), with an(`, k, j) =
k

n+ 1

(
n+ 1

j

)(
n+ 1

j + k

)(
n

j − `

)
.

Here we apply the convention
(
n
j

)
= 0 for j < 0 or j > n.

Next, it is straightforward to detect and check the linear relations (valid for n ∈ N and j ∈ Z)

an(4, 1, n− j + 2) + an(1, 3, j − 1)− an(2, 2, n− j + 1)− an(3, 2, j) = 0,

an(1, 1, n− j) + an(2, 1, j + 1)− an(0, 2, j) = 0,

which respectively give A4,1(t)+A1,3(t)−A2,2(t)−A3,2(t) = 0 and A1,1(t)+A2,1(t)−A0,2(t) = 0. Remarkably,
expression (7) for W (1; t) simplifies to

W (t) = A0,1(t) +A3,1(t)−A1,2(t).

For n ≥ 1, the Baxter number Bn is given by Bn =
∑
j∈Z bn,j , with bn,j =

(n+1
j−1)(

n+1
j )(n+1

j+1)
(n+1

1 )(n+1
2 )

, and again it is

easy to detect and check that (for n ∈ N and j ∈ Z)

an(0, 1, j) + an(3, 1, j + 1)− an(1, 2, j) = bn+1,j+1,

so that A0,1(t) +A3,1(t)−A1,2(t) =
∑
n≥0Bn+1t

n, and thus [tn]W (1; t) = Bn+1. �
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{[1, 1]; [i, j]→ [1, j + 1], . . . , [i, j + 1], [i + 1, j], . . . [i + 1, 1]} {[0, 2]; [i, j]→ [0, j], . . . , [i− 1, j], [1, j + 1], . . . , [i + j − 1, 2]}

{[0, 0]; [i, j]→ [i, i], [i + 1, j]
[i, j], [i, j + 1], . . . , [i, i− 1], if i > 0
[i− 1, j], [i− 1, j + 1], . . . , [i− 1, i− 1], if i > 0
[i, j − 1], [i− 1, j − 1] if i > 0, and j > 0}.

Figure 13. The first five levels of each of the Baxter generating trees. They are respectively
from [5] [8] [10].

5.2. Consequence: a new generating tree. A generating tree for a combinatorial class expresses recursive
structure in a rooted plane tree with labeled nodes. The objects of size n are each uniquely generated, and
the set of objects of size n comprise the nth level of the tree. They are useful for enumeration, and for
showing that two classes are in bijection. Theorem 2 yields a new generating tree construction for Baxter
objects.

Several different formalisms exist for generating trees, notably [1]. The central properties are as follows.
Every object γ in a combinatorial class C is assigned a label `(γ) ∈ Zk, for some fixed k. There is a
rewriting rule on these labels with the property that if two nodes have the same label then the ordered list
of labels of their children is also the same. We consider labels that are pairs of positive integers, specified
by {`Root : [i, j]→ Succ([i, j])}, where `Root is the label of the root.

Two generating trees for Baxter objects are known in the literature, and one consequence of Theorem 2
is a third, using the generating tree for open partitions given by Burrill et al. [10]. This tree differs from the
other two already at the third level, illustrating a very different decomposition of the objects. For the three
different systems we give the succession rules, and the first 5 levels of the tree (unlabelled), in Figure 13.

5.3. A conjectured refinement. We have proved that the coefficients a(n,m) counting W2-hesitating
walks of length 2n from (0, 0) to (m, 0) satisfy

∑
m a(n,m) = Bn+1, with Bn the nth Baxter number. A

bijective proof is yet to be found, and in that perspective a natural question is whether the parameter m
corresponds to a simple parameter on another Baxter family.

Proposition 24. The family of Q-hesitating excursions, that is to say the hesitating walks in the lattice
Q = {(x, y) : x, y ≥ 0} starting and ending at the origin, is a Baxter family: the number of such walks of
length 2n is equal to Bn+1.

Proof. We show an easy bijection with the set Tn of non-intersecting triples of lattice paths each of length n
with steps either N = (0, 1) (north steps) or E = (1, 0) (east steps), with respective starting points (−1, 1),
(0, 0), (1,−1) and respective ending points (k−1, n−k+1), (k, n−k), (k+1, n−k−1) for some k ∈ {0, . . . , n}.
For 3 distinct points p1, p2, p3 in Z2 on a same line of slope −1, ordered from top-left to bottom-right, define
the distance-pair for (p1, p2, p3) as the pair (i, j) of nonnegative integers such that x(p1) = x(p2)− i− 1 and

x(p3) = x(p2) + j + 1. Let (P1, P2, P3) ∈ Tn. For r ∈ {0, . . . , n} and i ∈ {1, 2, 3}, let p
(r)
i be the point on Pi

after r steps, and let d(r) be the distance-pair for (p
(r)
1 , p

(r)
2 , p

(r)
3 ); note that d(0) = (0, 0) and d(n) = (0, 0)

and that d(r) ∈ q for 0 ≤ r ≤ n. Moreover, for 0 < r ≤ n, the vector δ(r) := d(r) − d(r − 1) is in the
set {(±1, 0), (0,±1), (1,−1), (−1, 1), (0, 0)}, with two possibilities for being (0, 0) (whether the rth steps in
P1, P2, P3 are all north or all east). Hence the situation for the successive distance-pairs d0, . . . , dn is exactly
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the same as for the successive points of even rank in a Q-excursion of length 2n. Figure 14 (left and middle)
illustrates this bijection. �

Figure 14. Left. A non-intersecting triple of lattice paths. Middle. A Q-hesitating excur-
sion. The stay steps are drawn as loops. The switch-multiplicity of the walk is 3 (the white
arrows indicate the marked steps). Right. A W2-hesitating excursion with 3 marked steps
each leaving the diagonal. These three objects are in correspondence.

We now define a secondary parameter m for Q-excursions. Let w be a Q-excursion of length 2n where er
denotes the rth step, for 1 ≤ r ≤ 2n. Consider, if any, the first step ei1 that visits the region x < y. Then
consider, if any, the first step ei2 after ei1 that visits the region x > y, and so on (switching between x < y
and x > y each time). We have here a stopping iterative process yielding, for some m ≥ 0, m marked steps
ei1 , . . . , eim with i1 < . . . < im; m is called the switch-multiplicity of the excursion. For instance, the switch-
multiplicity of the excursion at the middle of Figure 14 is 3. Note also that m ≤ n since two marked steps
cannot be consecutive (the case m = n is reached by the unique excursion where i1 = 1, i2 = 3, i3 = 5, . . .,
i.e., the excursion that alternates pairs of steps (0, 1), (0,−1) with pairs of steps (1, 0), (−1, 0)). Denote
by q(n,m) the number of Q-hesitating excursions of length 2n and switch-multiplicity m, and a(n,m) the
number of W2-hesitating walks of length 2n from (0, 0) to (m, 0).

Conjecture 1. For n,m ≥ 0, we have q(n,m) = a(n,m).

We have thought of the switch-multiplicity as a natural candidate because of the analogy with a well-
known bijection between excursions of length 2n on the line Z and walks of length 2n starting at 0 on the
half-line Z≥0 (with steps in ±1 for both types of walks), where a similar switch-multiplicity parameter for
excursions (this time switching between Z<0 and Z>0) corresponds to half the ending abscissa of positive
walks. However, what surprises us is that, while we have strong evidence the conjecture is true, we do not
even have a proof for m = 1 (the case m = 0 is trivial).

Let us now slightly reformulate the conjecture so that we have W2-hesitating walks on both sides. Consider
a Q-hesitating excursion w of length 2n, with ei1 , . . . , eim the steps given by the stopping iterative process
(switching between x < y and x > y). Accordingly w splits into a concatenated sequence of m + 1 parts
π0, . . . , πm, where π0 is the part before ei1 (π0 = w if m = 0), for 1 ≤ h < m, πh is the part between eih
(included) and eih+1

(excluded), and for m ≥ 1, πm is the ending part of W2 starting from eim . Each walk
πi starts and ends on the diagonal x = y and stays in x ≥ y for i even and in x ≤ y for i odd. Hence, if we
reflect each odd walk π2i+1 according to the diagonal x = y, we obtain a W2-hesitating walk from (0, 0) to
(0, 0) with m marked steps (the steps at positions i1, . . . , im) each leaving the diagonal x = y. In addition,
due to recording the marked steps, there is no loss of information (the original excursion can be recovered).
This correspondence is depicted by Figure 14 (middle and right). Hence, if we denote by a(n; i, j,m) the
number of W2-hesitating walks of length 2n from (0, 0) to (i, j) with 2n steps and m marked steps each
leaving the diagonal x = y, Conjecture 1 can be reformulated as:

Conjecture 2 (Reformulation). For n,m ≥ 0, we have

a(n;m, 0, 0) = a(n; 0, 0,m).
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Actually, an even stronger symmetry seems to hold:

Conjecture 25. For n, i, j ≥ 0, we have

a(n; i, 0, j) = a(n; j, 0, i).

Note that there is clearly a one-to-one correspondence between steps leaving the diagonal x = y and
steps ending at the diagonal x = y. Hence a(n; i, j,m) is also the number of W2-hesitating walks of length
2n from (0, 0) to (i, j) with 2n steps and m marked steps each ending at the diagonal x = y. In that
form it is easy to obtain a recurrence for the coefficients a(n; i, j,m) by considering the effect of adding the
last two steps (note that each of the two last steps has to be unmarked if empty or not ending at x = y,
and might be either unmarked or marked if non-empty and ending at x = 1). Denote by S the set of steps
{(±1, 0), (0,±1), (−1, 1), (1,−1)} together with the two stationary steps s1 and s2, where s1 simulates taking
the pair (1, 0) and (−1, 0) as a single step, and s2 simulates taking the pair (0, 1) and (0,−1) as a single
step. We have the following recurrence (with δ the Kronecker symbol), from which we have been able to
check that Conjecture 25 holds for all n, i, j with n ≤ 56:

• for n = 0,

a(n; i, j,m) = 1 if i = j = m = 0,

a(n; i, j,m) = 0 otherwise,

• for n > 0,

a(n; i, j,m) = 0 for (i, j,m) /∈ D := {0 ≤ j ≤ i, 0 ≤ m ≤ n},
a(n; i, j,m) = δi=j ·

∑
s∈S\s1

a(n− 1; i− x(s), j − y(s),m)

+δi>j ·
∑
s∈S

a(n− 1; i− x(s), j − y(s),m)

+δi=j ·
∑

s∈S\s1
a(n− 1; i− x(s), j − y(s),m− 1)

+δi=j+1 · a(n− 1; i, j,m− 1) for (i, j,m) ∈ D.

6. Conclusion

We conclude with a few thoughts on future directions. Starting with the correspondences described here,
we can easily give an expression for the generating function of standard Young tableaux of bounded height
as a diagonal of a rational function. The original proofs of the D-finiteness of these generating functions
(for arbitrary k) of Gessel [16] used a diagonal type operation over series with infinite variable sets. We
are interested in the conjecture of Christol which states that globally bounded D-finite series can always be
expressed as a diagonal of a rational function. Perhaps the key to understanding how to find such diagonal
expressions lurks in Weyl chamber walk representations of combinatorial objects, since they easily yield
diagonal expressions from the machinery of Gessel and Zeilberger.

Baxter numbers generalize, in some sense, Catalan numbers. Both are ubiquitous combinatorial sequences,
and both are related to hesitating walk families. Are hesitating walks in higher dimensions similarly common?
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