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FIXED POINTS FOR MONOTONE ITERATIVELY LOCAL CONTRACTIONS

Let the quasi-ordered metric space (X, d, ≤) and the increasing self-mapping T of X be such that: for each x ∈ X with x ≤ T x, there exists a rank n(x) ∈ N and an increasing function f (x) : R 2n(x)+1 + → R + with d(T n(x) x, T n(x) y) ≤ f (x)(d(x, T x), ..., d(x, T n(x) x); d(x, y), ..., d(x, T n(x) y)), for all y ∈ X, x ≤ y ≤ T y; then, under some additional assumptions involving these elements, T has at least one fixed point in X. A number of related contributions in this direction due to Sehgal, Guseman and Matkowski are obtained as corollaries.

Let (X, d) be a complete metric space and T , a self-mapping of X. Assume that for each x ∈ X there exists a n(x) ∈ N , such that T n(x) is (metrically) contractive at x; then, under what additional conditions does T possess a fixed point in X?

A first answer to this question was given in 1969 by Sehgal [START_REF] Sehgal | A fixed point theorem for mappings with a contractive iterate[END_REF] -for continuous T -through a specific iterative procedure; a reformulation of it for mappings which are not necessarily continuous was performed in the 1970 Guseman's paper [START_REF] Guseman | Fixed point theorems for mappings with a contractive iterate at a point[END_REF]. During the last decade, a number of technical extensions (in the sense of the contractivity condition) of these basic results were obtained by Cirić [START_REF] Cirić | Fixed point theorems for mappings with a generalized contractive iterate at a point[END_REF], Khazanchi [START_REF] Khazanchi | Results on fixed points in complete metric space[END_REF], Iseki [START_REF] Iseki | A generalization of Sehgal-Khazanchi's fixed point theorem[END_REF], Rhoades [START_REF] Rhoades | A comparison of various definitions of contractive mappings[END_REF] and Singh [START_REF] Singh | Fixed point theorems for contractive-type mappings[END_REF]. The most general statement of this kind, obtained in 1977 by Matkowski [START_REF] Matkowski | Fixed point theorems for mappings with a contractive iterate at a point[END_REF], reads as follows.

Theorem 1. Suppose that there is a function f : R 5 + → R + , increasing in each variable, such that, denoting

g(t) = f (t, t, t, 2t, 2t), t ≥ 0, the following conditions are fulfilled (c 1 ) lim n→∞ g n (t) = 0, for all t > 0 (c 2 ) t -g(t) → ∞ as t → ∞;
and suppose that for each x ∈ X there is a positive integer n(x) ∈ N such that

(1) d(T n(x) x, T n(x) y) ≤ f (d(x, T n(x) x), d(x, y), d(x, T n(x) y), d(T n(x) x, y), d(T n(x) y, y))
for all y ∈ X. Then, T has a unique fixed point z ∈ X and T n x → z, for any x ∈ X.

A close analysis of the above conditions shows that, by virtue of the evident relations d(T n(x) x, y) ≤ d(x, T n(x) x) + d(x, y), x, y ∈ X, d(T n(x) y, y) ≤ d(x, T n(x) y) + d(x, y), x, y ∈ X, a slight extension of Theorem 1 might be reached if one replaces (1) by the contractivity condition

(1 )

d(T n(x) x, T n(x) y) ≤ F (d(x, T n(x) x), d(x, y), d(x, T n(x) y)), y ∈ X,
where

F : R 3 + → R + is defined as F (ξ, η, ζ) = f (ξ, η, ζ, ξ + η, ζ + η), ξ, η, ζ ≥ 0.
A natural question appearing at this moment is that of determining what happens when the right-hand side of (1') depends on the variables

((d(x, T i x); 1 ≤ i ≤ n(x)), (d(x, T j y); 0 ≤ j ≤ n(x));
or, in other words, when the function F = F (x) acts from R 2n(x)+1 + to R + . At the same time, observe that, from a "relational" viewpoint, the result we just recorded may be deemed as being expressed modulo the trivial quasi-ordering on X; so that, a more adequate formulation of it in terms of genuine quasi-orderings would be of interest. It is precisely our main aim to get a generalization -under the above lines -of the fixed point Matkowski theorem; some further extensions to contractivity conditions involving all iterates of T in the right-hand side of (1') (Browder [START_REF] Browder | Remarks on fixed point theorems of contractive type[END_REF]) or different iterates of T in the left-hand side (Fisher [4]) will be given elsewhere.

Let X be a nonempty set, d a metric on X and ≤ a quasi-ordering (i.e., a reflexive and transitive relation) on X. A sequence (x n ; n ∈ N ) in X will be said to be increasing when

x i ≤ x j for i ≤ j;
in this context, the notation x n ↑ x will mean:

(x n ; n ∈ N ) is increasing and convergent to x.
The ambient space X will be termed quasi-order complete when any increasing Cauchy sequence converges; of course, any complete metric space is quasi-order complete too, but the converse is not in general valid as simple examples show. It is supposed further that X is a quasi-order complete metric space the self-mapping T of X is increasing (x ≤ y implies T x ≤ T y) and the conditions below are satisfied

(i) Y := X i T := {x ∈ X;
x ≤ T x} is not empty (ii) to any x in Y there corresponds a rank n(x) ∈ N and a function f (x) : R

2n(x)+1 + → R + , increasing in each variable, with (2) d(T n(x) x, T n(x) y) ≤ f (x)(d(x, T x), ..., d(x, T n(x) x); d(x, y), ..., d(x, T n(x) y), y ∈ Y, x ≤ y.
Let g(x) indicate, for each x ∈ Y , the function from R + to itself, given by g(x)(t) = f (x)(t, ..., t; t, ..., t), t ≥ 0.

The following technical result will be largely used in the sequel.

Lemma 1. Suppose that, for each

x 0 ∈ Y , (iii) g(x 0 )(t) < t, t > 0 (hence g(x 0 )(0) = 0) and t -g(x 0 )(t) → ∞ as t → ∞ (iv) lim k→∞ g(x k ) • ... • g(x 0 )(t) = 0, t > 0,
where n 0 = n(x 0 ), x 1 = T n0 x 0 and, inductively,

n i = n(x i ), x i+1 = T ni x i , i ≥ 1.
Then, for each x ∈ Y ,

(T m x; m ∈ N ) converges (in X);
and, moreover,

d(T m x, T m y) → 0 as m → ∞, for any y ∈ Y , x ≤ y.
Proof. Let x ∈ Y be given. We firstly claim that

(3) d(x, T m x) ≤ t, m ∈ N , for some t = t(x) > 0.
Indeed, it follows by (iii) that, given α > 0, there exists

β = β(α, x) ≥ α, such that (4) t ≤ α + g(x)(t) implies t ≤ β.
Put α = max(d(x, T x), ., ., d(x, T n(x) x)). We want to show that (3) holds, with t = β. To this end, suppose that the considered assertion would be false; and let m denote the infimum of those ranks for which the reverse of (3) takes place.

Of course,

m > n(x), d(x, T k x) ≤ β, 1 ≤ k ≤ m -1, and d(x, T m x) > β;
so that, by (2), we get the relation

d(x, T m x) ≤ d(x, T n(x) x) + d(T n(x) x, T m x) ≤ α + f (x)(d(x, T x), ..., d(x, T n(x) x); d(x, T m-n(x) x), ..., d(x, T m x)) ≤ α + f (x)(α, ..., α; β, ..., β, d(x, T m x)) ≤ α + g(x)(d(x, T m x));
contradicting (4) and proving our assertion. In this case, letting x = x 0 in Y , put

n 0 = n(x 0 ) = m 0 , x 1 = T n0 x 0 = T m0 x 0
and, inductively,

n i = n(x i ), m i = n 0 + ... + n i , x i+1 = T ni x i = T mi x 0 , i ≥ 1.
By the above claim,

d(x 0 , T m x 0 ) ≤ t 0 , m ∈ N , for some t 0 > 0;
so that, combining with (2), we have

d(x 1 , T m x 1 ) = d(T n0 x 0 , T n0 T m x 0 ) ≤ f (x 0 )(d(x 0 , T x 0 ), ..., d(x 0 , T n0 x 0 ); d(x 0 , T m x 0 ), ..., d(x 0 , T n0+m x 0 )) ≤ g(x 0 )(t 0 ), m ∈ N ;
or equivalently, d(T m0 x 0 , T m x 0 ) ≤ g(x 0 )(t 0 ), m ≥ m 0 ;

this fact, again combined with (2), gives us

d(x 2 , T m x 2 ) = d(T n1 x 1 , T n1 T m x 1 ) ≤ f (x 1 )(d(x 1 , T x 1 ), ..., d(x 1 , T n1 x 1 ); d(x 1 , T m x 1 ), ..., d(x 1 , T n1+m x 1 )) ≤ g(x 1 ) • g(x 0 )(t 0 ), m ∈ N ;
or equivalently,

d(T m1 x 0 , T m x 0 ) ≤ g(x 1 ) • g(x 0 )(t 0 ), m ≥ m 1 ;
and so on. By a finite induction procedure one gets

d(x k+1 , T m x k+1 ) ≤ g(x k ) • ... • g(x 0 )(t 0 ), m, k ∈ N ;
or equivalently,

d(T m k x 0 , T m x 0 ) ≤ g(x k ) • ... • g(x 0 )(t 0 ), m ≥ m k , k ∈ N ;
from which, combining with (iv), one arrives at the conclusion:

(T n x 0 ; n ∈ N ) is an increasing Cauchy (hence convergent) sequence.

Finally, given the element y 0 ∈ Y with x 0 ≤ y 0 , put y 1 = T n0 y 0 and, inductively, y i+1 = T ni y i = T mi y 0 , i ≥ 1;

and observe that, again by the above claim (3), one has

d(x 0 , T m x 0 ), d(x 0 , T m y 0 ) ≤ t 0 , m ∈ N , for some t 0 > 0.
This fact, combined with (2), leads us by the same procedure as before, at the estimate

d(x k+1 , T m x k+1 ), d(x k+1 , T m y k+1 ) ≤ g(x k ) • ... • g(x 0 )(t 0 ), m, k ∈ N ;
or equivalently

d(T m k x 0 , T m x 0 ), d(T m k x 0 , T m y 0 ) ≤ g(x k ) • ... • g(x 0 )(t 0 ), m ≥ m k , k ∈ N,
proving that (T m x 0 ; m ∈ N ) and (T m y 0 ; m ∈ N ) have the same limit when it exists; and so, completing the argument.

Q.E.D.
Let X, d and ≤ be endowed with their previous meaning. Given the mapping T from X to itself, let us call it continuous at the left when

x n ↑ x and x n ≤ x, n ∈ N , imply T x n → T x.
Also, the ambient quasi-ordering ≤ will be said to be self-closed, when

x ≤ y n , n ∈ N and y n ↑ y imply x ≤ y; note that any semi-closed quasi-ordering in Nachbin's sense [START_REF] Nachbin | Topology and Order[END_REF]Appendix] is necessarily self-closed.

As an immediate application of Lemma 1, the first main result of the present note is the following one.

Theorem 2. Under the general hypotheses (i)-(iv), assume in addition that

T is continuous at the left and ≤ is self-closed.

Then, the following conclusions will be valid

(C 1 ) Z := X e T := {x ∈ X; x = T x} is not empty (C 2 ) for every x ∈ Y , (T n x; n ∈ N ) converges to an element of Z (C 3 ) if x, y ∈ Y are comparable, (T n x; n ∈ N ) and (T n y; n ∈ N ) have the same limit (in Z).
Proof. Indeed, it follows by Lemma 1 that, given x ∈ Y ,

T n x ↑ z (and so T n x ≤ z, n ∈ N ), for some z ∈ X;

in which case, by the left continuity property, T n x ↑ T z and the proof is complete.

Q.E.D.

Let us call the considered quasi-ordering ≤, anti self-closed when y n ≤ x, n ∈ N , and y n ↑ y imply y ≤ x;

(observe at this moment that a sufficient condition for ≤ to be anti selfclosed is that ≥ (its dual) be semi-closed)

normal when it is both self-closed and anti self-closed.

The following theorem (as another application of Lemma 1) is the second main result of the present note.

Theorem 3. Under the conditions (i)-(iv), assume in addition that ≤ is a normal ordering on X. Then, conclusions (C 1 )-(C 3 ) above continue to hold; and, moreover, (C 4 ) for each x ∈ Y the element z = lim n→∞ T n x has the properties (P 1 ): x ≤ z, (P 2 ): if z ≤ y ∈ Y then z = y.

Proof. Let x ∈ Y be arbitrary fixed. By Lemma 1,

T n x ↑ z (hence x ≤ T n x ≤ z, n ∈ N ) for some z ∈ X.

It immediately follows that

T n x ≤ T z, n ∈ N ; so, by normality, z ≤ T z. Now, x ≤ z ∈ Y gives, again by Lemma 1,

T n z ↑ z (hence T z ≤ T n z ≤ z, n ∈ N )
and therefore (as ≤ is ordering) z ∈ Z. The remaining part is evident. Q.E.D.

A technical inspection of the additional conditions involved in the statements above shows that it is possible in some concrete cases that neither T is continuous at the left nor ≤ is a normal ordering.

To discuss this eventuality, assume that, for any x ∈ Y , the function f (x) from R 2n(x)+1 + to R + has the properties (v) for each (α 1 , .., α n(x) ) ∈ R n(x) + with α n(x) > 0, there exists β > 0 with β + f (x)(α 1 , ..., α n(x) ; β, ..., β) < α n(x) (vi) for each (α 1 , ..., α n(x) ) ∈ R n(x) + with α 1 > 0, α n(x) = 0, we have f (x)(α 1 , ..., α n(x) ; α 1 , ..., α n(x) , α 1 ) < α 1 . Now, as a completion of the above results, we have Theorem 4. Again under the hypotheses (i)-(iv), assume in addition that (v)+(vi) hold and that ≤ is a normal quasi-ordering. Then, conclusions (C 1 )-(C 3 ) still remain valid.

Proof. Let x ∈ Y be a given element. By the above reasoning,

T n x ↑ z (hence x ≤ T n x ≤ z, n ∈ N ) for some z ∈ Y ;
this fact, in conjunction with Lemma 1, gives us T n z ↑ z. Let ε > 0 be arbitrary fixed; there exists k(ε) ∈ N such that and therefore, if we suppose z = T z, (vi) will be contradicted. This completes the proof of Theorem 4.

d(z, T k z) ≤ ε, ∀k ≥ k(ε); and this gives d(z, T n(z) z) ≤ d(z, T m z) + d(T n(z) z, T m z) ≤ d(z, T m z)+ f (z)(d(z, T z), ..., d(z, T n(z) z); d(z, T m-n(z) z), ..., d(z, T m z)) ≤ ε + f (z)(d(z, T z), ..., d(z, T n(z) z); ε, ..., ε), ∀m ≥ k(ε) + n(z); so, by (v), z = T n(z) z.
Q.E.D.

Remark. Theorem 2 may he viewed as a quasi-order extension of Sehgal's result quoted before (cf. also Dugundji and Granas [3, Ch 1, Sect 3]) while Theorem 4 is a quasi-order "functional" version of Matkowski's contribution stated as Theorem 1; remark at this point the essential role of the variables of rank 1, n(x), n(x) + 1, 2n(x), 2n(x) + 1 in the conditions (v)+(vi) involving f (x). At the same time, Theorem 3although formulated as a fixed point result -may be deemed in fact as a maximality principle in (Y, ≤), being comparable under this perspective to a related author's one [START_REF] Turinici | A class of operator equations on ordered metric spaces[END_REF], obtained by means of a "compactness" procedure (cf. Krasnoselskii and Sobolev [START_REF] Krasnoselskii | O nepodvizhnych tochkach razryvnych operatorov[END_REF]).

  Furthermore,d(z, T z) = d(T n(z) z, T n(z) T z) ≤ f (z)(d(z, T z), ..., d(z, T n(z) z); d(z, T z), ..., d(z, T n(z) z), d(z, T n(z) T z)) = f (z)(d(z, T z), ..., d(z, T n(z)-1 z), 0; d(z, T z), ..., d(z, T n(z)-1 z), 0, d(z, T z));

To complete our exposition, it would be desirable to show by a concrete example that our theorems are effectively independent from the other contributions in this area subsumed to Theorem 1.

Let A denote the subset of all (x, y) ∈ R 2 with x ≥ 0, endowed with the Euclidean metric and with the ordering: (x, y) ≤ (x , y ) if and only if x ≥ x , y ≥ y ; and let X indicate the subset of A defined as

endowed with the induced metric and ordering; clearly, X is a complete (hence order complete) metric space and ≤ is a normal ordering on X. Define a selfmapping T of X by

Of course, (i) holds with

At the same time, given

proving (ii) holds too with f (x)(t) = g(x)(t) = n n+1 t, t ≥ 0. Finally, observe that (iii) is trivially satisfied in our case; while (iv) reduces to the evident relation lim

Consequently, Theorem 3 is applicable to this context, the only fixed point of T being the origin. However, conditions of Theorem 1 are not fulfilled; because, e.g., (T n (2, -2); n ∈ N ) does not converge to (0, 0). This proves our claim.