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FIXED POINTS FOR
MONOTONE ITERATIVELY LOCAL CONTRACTIONS

Let the quasi-ordered metric space (X, d,≤) and the increasing self-mapping T of X be
such that: for each x ∈ X with x ≤ Tx, there exists a rank n(x) ∈ N and an increasing

function f(x) : R
2n(x)+1
+ → R+ with

d(Tn(x)x, Tn(x)y) ≤
f(x)(d(x, Tx), ..., d(x, Tn(x)x); d(x, y), ..., d(x, Tn(x)y)),

for all y ∈ X, x ≤ y ≤ Ty; then, under some additional assumptions involving these elements,

T has at least one fixed point in X. A number of related contributions in this direction due

to Sehgal, Guseman and Matkowski are obtained as corollaries.

Let (X, d) be a complete metric space and T , a self-mapping of X. Assume
that for each x ∈ X there exists a n(x) ∈ N , such that Tn(x) is (metrically)
contractive at x; then, under what additional conditions does T possess a fixed
point in X?

A first answer to this question was given in 1969 by Sehgal [12] - for continu-
ous T - through a specific iterative procedure; a reformulation of it for mappings
which are not necessarily continuous was performed in the 1970 Guseman’s pa-
per [5]. During the last decade, a number of technical extensions (in the sense
of the contractivity condition) of these basic results were obtained by Cirić [2],
Khazanchi [7], Iseki [6], Rhoades [11] and Singh [13]. The most general state-
ment of this kind, obtained in 1977 by Matkowski [9], reads as follows.

Theorem 1. Suppose that there is a function f : R5
+ → R+, increasing in

each variable, such that, denoting

g(t) = f(t, t, t, 2t, 2t), t ≥ 0,

the following conditions are fulfilled

(c1) limn→∞ gn(t) = 0, for all t > 0

(c2) t− g(t)→∞ as t→∞;

and suppose that for each x ∈ X there is a positive integer n(x) ∈ N such that

(1)
d(Tn(x)x, Tn(x)y) ≤
f(d(x, Tn(x)x), d(x, y), d(x, Tn(x)y), d(Tn(x)x, y), d(Tn(x)y, y))
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for all y ∈ X. Then, T has a unique fixed point z ∈ X and Tnx → z, for any
x ∈ X.

A close analysis of the above conditions shows that, by virtue of the evident
relations

d(Tn(x)x, y) ≤ d(x, Tn(x)x) + d(x, y), x, y ∈ X,

d(Tn(x)y, y) ≤ d(x, Tn(x)y) + d(x, y), x, y ∈ X,

a slight extension of Theorem 1 might be reached if one replaces (1) by the
contractivity condition

(1′)
d(Tn(x)x, Tn(x)y) ≤
F (d(x, Tn(x)x), d(x, y), d(x, Tn(x)y)), y ∈ X,

where F : R3
+ → R+ is defined as

F (ξ, η, ζ) = f(ξ, η, ζ, ξ + η, ζ + η), ξ, η, ζ ≥ 0.

A natural question appearing at this moment is that of determining what hap-
pens when the right-hand side of (1’) depends on the variables

((d(x, T ix); 1 ≤ i ≤ n(x)), (d(x, T jy); 0 ≤ j ≤ n(x));

or, in other words, when the function F = F (x) acts from R
2n(x)+1
+ to R+. At

the same time, observe that, from a ”relational” viewpoint, the result we just
recorded may be deemed as being expressed modulo the trivial quasi-ordering on
X; so that, a more adequate formulation of it in terms of genuine quasi-orderings
would be of interest. It is precisely our main aim to get a generalization - under
the above lines - of the fixed point Matkowski theorem; some further extensions
to contractivity conditions involving all iterates of T in the right-hand side of
(1’) (Browder [1]) or different iterates of T in the left-hand side (Fisher [4]) will
be given elsewhere.

Let X be a nonempty set, d a metric on X and ≤ a quasi-ordering (i.e., a
reflexive and transitive relation) on X. A sequence (xn;n ∈ N) in X will be
said to be increasing when

xi ≤ xj for i ≤ j;

in this context, the notation xn ↑ x will mean:

(xn;n ∈ N) is increasing and convergent to x.

The ambient space X will be termed quasi-order complete when any increasing
Cauchy sequence converges; of course, any complete metric space is quasi-order
complete too, but the converse is not in general valid as simple examples show.
It is supposed further that
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X is a quasi-order complete metric space

the self-mapping T of X is increasing (x ≤ y implies Tx ≤ Ty)

and the conditions below are satisfied

(i) Y := Xi
T := {x ∈ X;x ≤ Tx} is not empty

(ii) to any x in Y there corresponds a rank n(x) ∈ N and a function f(x) :

R
2n(x)+1
+ → R+, increasing in each variable, with

(2)
d(Tn(x)x, Tn(x)y) ≤
f(x)(d(x, Tx), ..., d(x, Tn(x)x); d(x, y), ..., d(x, Tn(x)y), y ∈ Y, x ≤ y.

Let g(x) indicate, for each x ∈ Y , the function from R+ to itself, given by

g(x)(t) = f(x)(t, ..., t; t, ..., t), t ≥ 0.

The following technical result will be largely used in the sequel.

Lemma 1. Suppose that, for each x0 ∈ Y ,

(iii) g(x0)(t) < t, t > 0 (hence g(x0)(0) = 0)
and
t− g(x0)(t)→∞ as t→∞

(iv) limk→∞ g(xk) ◦ ... ◦ g(x0)(t) = 0, t > 0,
where n0 = n(x0), x1 = Tn0x0 and, inductively,
ni = n(xi), xi+1 = Tnixi, i ≥ 1.

Then, for each x ∈ Y ,

(Tmx;m ∈ N) converges (in X);

and, moreover,

d(Tmx, Tmy)→ 0 as m→∞, for any y ∈ Y , x ≤ y.

Proof. Let x ∈ Y be given. We firstly claim that

(3) d(x, Tmx) ≤ t, m ∈ N , for some t = t(x) > 0.

Indeed, it follows by (iii) that, given α > 0, there exists β = β(α, x) ≥ α, such
that

(4) t ≤ α+ g(x)(t) implies t ≤ β.

Put α = max(d(x, Tx), ., ., d(x, Tn(x)x)). We want to show that (3) holds, with
t = β. To this end, suppose that the considered assertion would be false; and
let m denote the infimum of those ranks for which the reverse of (3) takes place.
Of course,
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m > n(x), d(x, T kx) ≤ β, 1 ≤ k ≤ m− 1, and d(x, Tmx) > β;

so that, by (2), we get the relation

d(x, Tmx) ≤ d(x, Tn(x)x) + d(Tn(x)x, Tmx) ≤
α+ f(x)(d(x, Tx), ..., d(x, Tn(x)x); d(x, Tm−n(x)x), ..., d(x, Tmx)) ≤
α+ f(x)(α, ..., α;β, ..., β, d(x, Tmx)) ≤ α+ g(x)(d(x, Tmx));

contradicting (4) and proving our assertion. In this case, letting x = x0 in Y ,
put

n0 = n(x0) = m0, x1 = Tn0x0 = Tm0x0

and, inductively,

ni = n(xi), mi = n0 + ...+ ni, xi+1 = Tnixi = Tmix0, i ≥ 1.

By the above claim,

d(x0, T
mx0) ≤ t0, m ∈ N , for some t0 > 0;

so that, combining with (2), we have

d(x1, T
mx1) = d(Tn0x0, T

n0Tmx0) ≤ f(x0)(d(x0, Tx0), ..., d(x0, T
n0x0);

d(x0, T
mx0), ..., d(x0, T

n0+mx0)) ≤ g(x0)(t0), m ∈ N ;

or equivalently,
d(Tm0x0, T

mx0) ≤ g(x0)(t0), m ≥ m0;

this fact, again combined with (2), gives us

d(x2, T
mx2) = d(Tn1x1, T

n1Tmx1) ≤ f(x1)(d(x1, Tx1), ..., d(x1, T
n1x1);

d(x1, T
mx1), ..., d(x1, T

n1+mx1)) ≤ g(x1) ◦ g(x0)(t0), m ∈ N ;

or equivalently,

d(Tm1x0, T
mx0) ≤ g(x1) ◦ g(x0)(t0), m ≥ m1;

and so on. By a finite induction procedure one gets

d(xk+1, T
mxk+1) ≤ g(xk) ◦ ... ◦ g(x0)(t0), m, k ∈ N ;

or equivalently,

d(Tmkx0, T
mx0) ≤ g(xk) ◦ ... ◦ g(x0)(t0), m ≥ mk, k ∈ N ;

from which, combining with (iv), one arrives at the conclusion:

(Tnx0;n ∈ N) is an increasing Cauchy (hence convergent) sequence.
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Finally, given the element y0 ∈ Y with x0 ≤ y0, put

y1 = Tn0y0 and, inductively, yi+1 = Tniyi = Tmiy0, i ≥ 1;

and observe that, again by the above claim (3), one has

d(x0, T
mx0), d(x0, T

my0) ≤ t0, m ∈ N , for some t0 > 0.

This fact, combined with (2), leads us by the same procedure as before, at the
estimate

d(xk+1, T
mxk+1), d(xk+1, T

myk+1) ≤ g(xk) ◦ ... ◦ g(x0)(t0), m, k ∈ N ;

or equivalently

d(Tmkx0, T
mx0), d(Tmkx0, T

my0) ≤ g(xk) ◦ ... ◦ g(x0)(t0), m ≥ mk, k ∈ N,

proving that (Tmx0;m ∈ N) and (Tmy0;m ∈ N) have the same limit when it
exists; and so, completing the argument. Q.E.D.

Let X, d and ≤ be endowed with their previous meaning. Given the mapping
T from X to itself, let us call it continuous at the left when

xn ↑ x and xn ≤ x, n ∈ N , imply Txn → Tx.

Also, the ambient quasi-ordering ≤ will be said to be self-closed, when

x ≤ yn, n ∈ N and yn ↑ y imply x ≤ y;

note that any semi-closed quasi-ordering in Nachbin’s sense [10, Appendix] is
necessarily self-closed.

As an immediate application of Lemma 1, the first main result of the present
note is the following one.

Theorem 2. Under the general hypotheses (i)-(iv), assume in addition that

T is continuous at the left and ≤ is self-closed.

Then, the following conclusions will be valid

(C1) Z := Xe
T := {x ∈ X;x = Tx} is not empty

(C2) for every x ∈ Y , (Tnx;n ∈ N) converges to an element of Z

(C3) if x, y ∈ Y are comparable, (Tnx;n ∈ N) and (Tny;n ∈ N) have
the same limit (in Z).

Proof. Indeed, it follows by Lemma 1 that, given x ∈ Y ,
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Tnx ↑ z (and so Tnx ≤ z, n ∈ N), for some z ∈ X;

in which case, by the left continuity property, Tnx ↑ Tz and the proof is com-
plete. Q.E.D.

Let us call the considered quasi-ordering ≤,

anti self-closed when yn ≤ x, n ∈ N , and yn ↑ y imply y ≤ x;
(observe at this moment that a sufficient condition for ≤ to be anti self-
closed is that ≥ (its dual) be semi-closed)

normal when it is both self-closed and anti self-closed.

The following theorem (as another application of Lemma 1) is the second main
result of the present note.

Theorem 3. Under the conditions (i)-(iv), assume in addition that ≤ is
a normal ordering on X. Then, conclusions (C1)–(C3) above continue to hold;
and, moreover,

(C4) for each x ∈ Y the element z = limn→∞ Tnx has the properties
(P1): x ≤ z, (P2): if z ≤ y ∈ Y then z = y.

Proof. Let x ∈ Y be arbitrary fixed. By Lemma 1,

Tnx ↑ z (hence x ≤ Tnx ≤ z, n ∈ N) for some z ∈ X.

It immediately follows that

Tnx ≤ Tz, n ∈ N ;

so, by normality, z ≤ Tz. Now, x ≤ z ∈ Y gives, again by Lemma 1,

Tnz ↑ z (hence Tz ≤ Tnz ≤ z, n ∈ N)

and therefore (as ≤ is ordering) z ∈ Z. The remaining part is evident. Q.E.D.

A technical inspection of the additional conditions involved in the statements
above shows that it is possible in some concrete cases that

neither T is continuous at the left

nor ≤ is a normal ordering.

To discuss this eventuality, assume that, for any x ∈ Y , the function f(x) from

R
2n(x)+1
+ to R+ has the properties

(v) for each (α1, .., αn(x)) ∈ R
n(x)
+ with αn(x) > 0, there exists β > 0 with

β + f(x)(α1, ..., αn(x);β, ..., β) < αn(x)
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(vi) for each (α1, ..., αn(x)) ∈ R
n(x)
+ with α1 > 0, αn(x) = 0, we have

f(x)(α1, ..., αn(x);α1, ..., αn(x), α1) < α1.

Now, as a completion of the above results, we have

Theorem 4. Again under the hypotheses (i)-(iv), assume in addition that
(v)+(vi) hold and that ≤ is a normal quasi-ordering. Then, conclusions (C1)-
(C3) still remain valid.

Proof. Let x ∈ Y be a given element. By the above reasoning,

Tnx ↑ z (hence x ≤ Tnx ≤ z, n ∈ N) for some z ∈ Y ;

this fact, in conjunction with Lemma 1, gives us Tnz ↑ z. Let ε > 0 be arbitrary
fixed; there exists k(ε) ∈ N such that

d(z, T kz) ≤ ε, ∀k ≥ k(ε);

and this gives

d(z, Tn(z)z) ≤ d(z, Tmz) + d(Tn(z)z, Tmz) ≤ d(z, Tmz)+
f(z)(d(z, Tz), ..., d(z, Tn(z)z); d(z, Tm−n(z)z), ..., d(z, Tmz)) ≤
ε+ f(z)(d(z, Tz), ..., d(z, Tn(z)z); ε, ..., ε), ∀m ≥ k(ε) + n(z);

so, by (v), z = Tn(z)z. Furthermore,

d(z, Tz) = d(Tn(z)z, Tn(z)Tz) ≤
f(z)(d(z, Tz), ..., d(z, Tn(z)z); d(z, Tz), ..., d(z, Tn(z)z), d(z, Tn(z)Tz)) =
f(z)(d(z, Tz), ..., d(z, Tn(z)−1z), 0; d(z, Tz), ..., d(z, Tn(z)−1z), 0, d(z, Tz));

and therefore, if we suppose z 6= Tz, (vi) will be contradicted. This completes
the proof of Theorem 4. Q.E.D.

Remark. Theorem 2 may he viewed as a quasi-order extension of Sehgal’s
result quoted before (cf. also Dugundji and Granas [3, Ch 1, Sect 3]) while
Theorem 4 is a quasi-order ”functional” version of Matkowski’s contribution
stated as Theorem 1; remark at this point the essential role of the variables of
rank

1, n(x), n(x) + 1, 2n(x), 2n(x) + 1

in the conditions (v)+(vi) involving f(x). At the same time, Theorem 3 –
although formulated as a fixed point result – may be deemed in fact as a maxi-
mality principle in (Y,≤), being comparable under this perspective to a related
author’s one [14], obtained by means of a ”compactness” procedure (cf. Kras-
noselskii and Sobolev [8]).
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To complete our exposition, it would be desirable to show by a concrete
example that our theorems are effectively independent from the other contribu-
tions in this area subsumed to Theorem 1.

Let A denote the subset of all (x, y) ∈ R2 with x ≥ 0, endowed with the
Euclidean metric and with the ordering:

(x, y) ≤ (x′, y′) if and only if x ≥ x′, y ≥ y′;

and let X indicate the subset of A defined as

X = {( 1

n
,

1

n
);n ≥ 1} ∪ {(0, 0), (2,−2), (3,−3)},

endowed with the induced metric and ordering; clearly, X is a complete (hence
order complete) metric space and ≤ is a normal ordering on X. Define a self-
mapping T of X by

T (
1

n
,

1

n
) = (

1

n+ 1
,

1

n+ 1
), n ≥ 1,

T (0, 0) = (0, 0), T (2,−2) = (3,−3), T (3,−3) = (2,−2).

Of course, (i) holds with

Y = {( 1

n
,

1

n
);n ≥ 1} ∪ {(0, 0)}.

At the same time, given x = ( 1
n ,

1
n ) ∈ Y , we have, for any y = ( 1

m ,
1
m ) ∈ Y with

m ≥ n, the relations

d(Tx, Ty) ≤ n

n+ 1
d(x, y),

proving (ii) holds too with

f(x)(t) = g(x)(t) = n
n+1 t, t ≥ 0.

Finally, observe that (iii) is trivially satisfied in our case; while (iv) reduces to
the evident relation

lim
k→∞

n

n+ k
= 0, n ∈ N.

Consequently, Theorem 3 is applicable to this context, the only fixed point of T
being the origin. However, conditions of Theorem 1 are not fulfilled; because,
e.g., (Tn(2,−2);n ∈ N) does not converge to (0, 0). This proves our claim.
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