Computing the Chow variety of quadratic space curves - Archive ouverte HAL Access content directly
Conference Papers Year :

Computing the Chow variety of quadratic space curves

Abstract

Quadrics in the Grassmannian of lines in 3-space form a 19-dimensional projective space. We study the subvariety of coisotropic hypersurfaces. Following Gel'fand, Kapranov and Zelevinsky, it decomposes into Chow forms of plane conics, Chow forms of pairs of lines, and Hurwitz forms of quadric surfaces. We compute the ideals of these loci.
Fichier principal
Vignette du fichier
arxiv.compchow.pdf (111.18 Ko) Télécharger le fichier
Origin : Files produced by the author(s)
Loading...

Dates and versions

hal-01188213 , version 1 (31-08-2015)
hal-01188213 , version 2 (27-11-2015)

Identifiers

Cite

Peter Bürgisser, Kathlén Kohn, Pierre Lairez, Bernd Sturmfels. Computing the Chow variety of quadratic space curves. Sixth International Conference on Mathematical Aspects of Computer and Information Sciences (MACIS 2015), Nov 2015, Berlin, Germany. ⟨hal-01188213v2⟩
129 View
205 Download

Altmetric

Share

Gmail Facebook Twitter LinkedIn More