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Abstract

This paper deals with linguistic models that may prove useful for representing

the information during decision making.

Data extraction is a complex problem, especially when dealing with infor-

mation coming from human beings (linguistic assertions, preferences, feelings,

etc.) and several models have emerged to overcome difficulties in expressing

the data. Among those models, we are interested in two of them: the 2-tuple

semantic model and the 2-tuple symbolic model.

In this paper we stress on a comparison between both models and we prove

that links can be made between them. An interesting result is obtained: the

2-tuple semantic model can generate a partitioning that is identical to the

one that would be generated thanks to the symbolic 2-tuple model. This

permits to compare the models and mix the two when there is a need to

use one model or another, depending on the applications, and then to reach

a consensus. In closing, an example of the use is given to demonstrate the
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value of the method.
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1. Introduction

Decision making implies to choose from several alternatives according to

a prior analysis that often involves information coming from human beings

and uncertainty (Howard, 1968; Holloway, 1979). Besides, being able to catch

the meaning conveyed by linguistic information is essential before making an

analysis. One of the most tricky issue is to deal with human thoughts, as-

sertions, preferences, feelings, etc. because of the intrinsic nature of natural

language. Since decades, a lot of works have been done to take into account

the vagueness and the imprecision of linguistic information using the fuzzy

set theory (Zadeh, 1965; Bellman and Zadeh, 1970). Among those works,

several computational models (Zadeh, 1975) have been proposed to manage

uncertainty, especially when it is not of probabilistic nature (Mart́ınez and

Herrera, 2012). In particular, a new model has appeared in 2000 called the

2-tuple fuzzy linguistic representation model (Herrera and Mart́ınez, 2000)

which gave birth to a kind of “2-tuple family” composed of several other

similar models: the 2-tuple fuzzy linguistic model able to deal with unbal-

anced linguistic term sets (Herrera et al., 2008), the 2-tuple proportional

model (Wang and Hao, 2006, 2007), the 2-tuple semantic model (Abchir and

Truck, 2013) and the generalized symbolic modifiers, seen as the foundation

for 2-tuple symbolic model (Truck and Akdag, 2006). Research related to the
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2-tuple linguistic model is abundant and worth considering in depth (Dong

et al., 2009; Pei et al., 2010; Wei, 2010; Wang, 2011; Xu and Wang, 2011; Li

and Dong, 2014; Dursun and Karsak, 2014).

Besides, it is important to consider all these improvements and more

generally all those models to keep variety and flexibility in the design and

implementation of decision making processes. To do so, one solution is to

try to unify the various models by proposing a “superset”, each model being

one piece of a bigger picture (i.e. the superset). A vectorial approach as a

unification of several 2 tuple models have been recently proposed but does

not include the 2-tuple semantic model (Truck and Malenfant, 2010). Our

proposal in this paper is to reconsider the 2-tuple semantic model in light of

the 2-tuple symbolic model and to make a specific link between both models.

The rest of the paper is organized as follows: section 2 describes various

2-tuple models from the literature and their characteristics. The third sec-

tion aims at showing that the 2-tuple symbolic model can be compared to

the 2-tuple semantic model while section 4 considers a case study with two

examples to demonstrate the feasibility of the approach. Section 5 addresses

decision-making systems in real world application, with particular emphasis

on assessments during foreign language acquisition. We finally draw some

conclusions and future works in section 6.

2. Some computational models to describe data

2.1. The 2-tuple fuzzy linguistic representation model

We now focus on the first model designed to handle uncertainty in lin-

guistic statements, keeping a simple computational model: the 2-tuple fuzzy
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linguistic representation model (Herrera and Mart́ınez, 2000). This model

considers a pair (si, α) where si is one among g + 1 linguistic terms from

a linguistic term set S and α ∈ [−.5, .5[ is called symbolic translation and

catches the uncertainty about a term (each term being represented with a

triangular fuzzy set). The underlying idea is that the result of any com-

putation must be expressed in the domain (set of departure). So domain

and codomain (target set) are supposed to be the same. For example, if

S = {s0 : very low , s1 : low , s2 : medium, s3 : high, s4 : very high} and the

computation is an arithmetic mean between (s2, 0), (s3, 0), (s3, 0) and (s3, 0)

then the resulting 2-tuple is (s3,−.25) and may represent the linguistic state-

ment “almost high”, with s3 ∈ S.

In this model, it is also required that there exist negation Neg , max and

min operators defined over this set (Herrera et al., 2000):

(i) a negation operator Neg(si) = sj such that j = g − i

(ii) a max operator: max(si, sj) = si if si ≥ sj

(iii) a min operator: min(si, sj) = si if si ≤ sj

An improvement of this model has been proposed to take into account

unbalanced linguistic term sets (Herrera et al., 2008) that are commonly used

to describe erratic phenomenas and irregular progression in the patterns such

as weather events or behavior under the influence of alcohol. The improve-

ment is a method that uses linguistic hierarchies (Cordón et al., 2001) to

build a partition on the set of departure. A linguistic hierarchy LH in a

level t is a set of n(t) equidistant terms, each term being represented with a

triangular fuzzy set. Linguistic hierarchies are meant to express granularity.

Each fuzzy unbalanced linguistic 2-tuple (si, α) is composed of two terms s
n(t)
j
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and s
n(t′)
k from either the same or a different level of hierarchy, i.e. t does

not necessarily equal t′. Those terms are the upside (left) and the downside

(right) of the 2-tuple respectively.

2.2. The 2-tuple semantic model

The 2-tuple semantic model is inspired by the 2-tuple fuzzy linguistic

model formalism (Abchir and Truck, 2013) and aims at solving issues where

linguistic term sets are very unbalanced. Symbolic translations α are used

to construct and generate the data set and the obtained 2-tuples are twofold.

Indeed, they all are composed of two half 2-tuples: an upside and a downside

2-tuple, except the first and the last 2-tuples of the partition. Specifically, the

linguistic input values are represented by a pair (s, v) where s is a linguistic

term and v the position (a numerical value) of s on the axis.

Definition 1. (Abchir and Truck, 2013) Let S be an unbalanced ordered

linguistic term set and U be the numerical universe where the terms are

projected. Each linguistic value is defined by a unique pair (s, v) ∈ S × U .

The numerical distance between si and si+1 is denoted by di with di = vi+1−vi.

Definition 2. (Abchir and Truck, 2013) Let S = {s0, . . . , sp} be an unbal-

anced linguistic label set and (si, α) be a linguistic 2-tuple. To support the

unbalance, S is extended to several balanced linguistic label sets, each one de-

noted Sn(t) = {sn(t)0 , . . . , s
n(t)
n(t)−1} defined in the level t of a linguistic hierarchy

LH with n(t) labels. There is a unique way to go from S (Definition 1) to S

according to a partitioning algorithm detailed in (Abchir and Truck, 2013).

Definition 3. (Abchir and Truck, 2013) Let l(t, n(t)) be a level from a lin-

guistic hierarchy. The grain g of l(t, n(t)) is defined as the distance between
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two 2-tuples (s
n(t)
i , α).

The grain g of a level l(t, n(t)) is denoted gl(t,n(t)) = 1/(n(t) − 1). For

instance, the grain of the second level of the hierarchy1 is gl(2,5) = .25.

The grain of level l(t − 1, n(t − 1)) is twice the grain of level l(t, n(t)), i.e.

gl(t−1,n(t−1)) = 2gl(t,n(t))

The algorithm of the partitioning is not given here but the main principles

are recalled. The result of the partitioning is the assignment of one or two

label(s) s
n(t)
i to each term sk. The selection of label s

n(t)
i depends on both the

distance dk (Definition 1) and the numerical value vk. The search for the best

level of hierarchy is the next step. The best level is the nearest one — since

all of them are known in advance — i.e., the level with the grain closest to

dk. Then the right s
n(t)
i is selected to match vk with best possible accuracy.

i is chosen such that it minimizes the quantity mini |∆−1(sn(tk)i , 0) − vk|,

with ∆−1(si, α) the function that computes the numerical equivalent value of

(si, α), i.e ∆−1(si, α) = i + α (see (Herrera and Mart́ınez, 2000) for further

details about ∆ and ∆−1 functions).

As linguistic hierarchies are distributed on [0, 1] by default, a scaling is

needed in order that they match universe U .

The algorithm returns a set of bridge unbalanced linguistic 2-tuples with

a level of granularity that may not be the same for the upside than for the

downside (see an example in table 2).

1We recall that there is only one way to construct a level of a linguistic hierarchy.
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2.3. The 2-tuple symbolic model

The third 2-tuple model comes from the symbolic framework proposed by

De Glas at the end of the eighties (De Glas, 1989).

Unlike Zadeh’s, there are no fuzzy sets in De Glas’ framework because

he assumes that the universe of discourse is finite and discrete. Zadeh, as

for him, considers a continuous or discrete universe of discourse on which

data take their values, and a continuous set of values between 0 and 1 that

expresses the membership of data to values of the universe of discourse.

According to De Glas, the membership may be partial and is expressed

with x ∈α A which means that x belongs to A with degree α or that x satisfies

A with degree α. The latter is a boolean assertion. A is a multiset, α (also

denotes vα) is a linguistic term or an adverbial expression such as very low,

low, medium, etc. More precisely according to De Glas, “x is vαA” can be

written “x (is vα)A” or “x is A” is τα-true. Each vα has a truth degree τα.

To unify the notations, we denote τα as τi or τj.

So under De Glas’ framework, there is no second dimension in the data

representation anymore, in order to keep only the abscissa axis that contains

the degrees associated to the possible values. These degrees belong to a scale

that permits to introduce a total order relation, denoted ≤.

Several tools have been proposed to allow for a modification of data and

tools to allow for an aggregation of data (Truck and Akdag, 2006, 2009).

Data are linguistic ones and seen as symbols. Several Generalized Symbolic

Modifiers (GSMs) have been proposed and are defined through a totally

ordered set of M truth degrees LM = {τ0, . . . , τi, . . . , τM−1} (τi ≤ τj ⇔ i ≤

j). Four basic operators have been defined: ∨ (max), ∧ (min), ¬ (symbolic
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negation, with ¬τj = τM−j−1) and the  Lukasiewicz implication →
L
: τi →L

τj = min(τM−1, τM−1−(i−j)) (Truck and Akdag, 2006).

Truth degree τi′ is computed according to a GSM m with a radius ρ, de-

noted mρ. Actually mρ modifies the pair (τi,LM) into another pair (τi′ ,LM ′).

Definition 4. (Truck and Akdag, 2006)

mρ : LM → LM ′

τi 7→ τi′

The position of degree in the scale is denoted p(τi) = i. A proportion is

associated with each linguistic degree: Prop(τi) = p(τi)
M−1 .

Three distinct GSM families have been defined: weakening, reinforcing

(see Table 1) and central ones (see Definition 5 for an example of such a

GSM, called DC for dilation and central).

Definition 5. (Truck and Akdag, 2006)

DC(ρ) =

 τi′ = τiρ

LM ′ = LMρ−ρ+1

3. Using the 2-tuple symbolic model to build a meaningful data

partition

3.1. Preliminaries

The GSMs used in the 2-tuple symbolic model are tools which modify

pairs (value, scale) greatly or slightly and which possibly change the scale.

The scale is either eroded or dilated, or possibly unchanged. Thus, parallels

can be drawn between those GSMs and the change of linguistic hierarchy level
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MODE Weakening Reinforcing

NATURE

τi′ = τi

τi′ = τmax(0,i−ρ) LM ′ = Lmax(i+1,M−ρ)
ER(ρ)

LM ′ = Lmax(1,M−ρ) τi′ = τmin(i+ρ,M−ρ−1)Erosion EW(ρ)

LM ′ = Lmax(1,M−ρ)
ER′(ρ)

τi′ = τi

LM ′ = LM+ρ
DW(ρ)

τi′ = τi+ρ

τi′ = τmax(0,i−ρ) LM ′ = LM+ρ
Dilation

LM ′ = LM+ρ
DW′(ρ)

DR(ρ)

τi′ = τmax(0,i−ρ) τi′ = τmin(i+ρ,M−1)
Conservation

LM ′ = LM
CW(ρ) LM ′ = LM

CR(ρ)

Table 1: Summary of weakening and reinforcing GSMs. (Truck and Akdag, 2006)

through grain g (from Definition 3) underlying the partitioning algorithm

that achieves the semantic 2-tuples.

Indeed, the 2-tuple semantic model as well as the symbolic 2-tuple model,

do not differentiate between the various hierarchies as long as the approxi-

mation is adequate or good enough to express the data without loss of infor-

mation. In particular, using a coarse or a thin grain scale to express a value

is considered as strictly equivalent with the symbolic 2-tuples. Only the ra-

tio Prop(τi,LM) counts. For instance, the pair (τi,LM) = (τ1,L3) is strictly

equivalent to the pair (τ2,L5) or the pair (τ4,L9) because Prop(τ1,L3) =
1

2
=

Prop(τ2,L5) =
2

4
= Prop(τ4,L9) =

4

8
. On the contrary, they are not really

equivalent when considering semantic 2-tuples because the partitioning algo-

rithm always tries to find the coarsest grain scale to decrease computation

time.

9



3.2. A new partitioning algorithm for the 2-tuple symbolic model

We now propose to build a partitioning using GSMs in the 2-tuple sym-

bolic model.

Several values must first be taken into account. Those values are not

known in advance and nor is it known how many there are. This means that

the partitioning is temporal, being calculated on the fly and the input

values are not always ordered.

The algorithm is the following (see Algorithm 1): first, the input values

denoted A,B,C... are either zero or positive integers (indeed the value i from

τi is zero or a positive integer). Those integers are denoted valA, valB, valC ,

etc.

Thus the input values have to be transformed into positive integers by

means of a multiplying factor γ to be computed.

Each value is then transformed into a pair (τi,LM) according to the fol-

lowing rule: the M chosen value equals max(2, val + 1) because M ≥ 2 by

nature, and τi equals τval . The procedure being iterative, let us denote this

first M : M1.

If the next input value cannot be expressed inside the current scale (i.e.

if valB ≥ M1) then it is necessary to choose another M , called M2. M2

equals valB + 1. The pair (B, valB) can now be defined as being equivalent

to (τvalB ,LM2).

Besides, as M has changed (M1 became M2), it is compulsory to re-

compute the previous pairs in this new scale of M truth degrees (here we

must recompute the correspondence between (A, valA) and the symbolic 2-

tuples). As a result, (A, valA) who was equal to (τvalA ,LM1) is transformed
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into (τvalA ,LM2) through a DW GSM: DW(M2 −M1).

It continues the partitioning process for each value, keeping in mind that

coefficient γ should always lead to integer values. If not, γ (denoted γold)

must be changed into a new value γ = γold ∗ c, with c a positive non-zero

multiplying factor.

Then all the previous pairs have to be recomputed using a DC GSM:

DC(c). New pairs (τval,LM2) are thus obtained.

The iterative steps only stop when all the input values have been pro-

cessed.
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Algorithm 1 Partitioning algorithm using GSMs
Require: A,B,C, ... are the input values denoted by pairs (A0, valA0

), (A1, valA1
), ...,

(Ai, valAi ), ... (the last pair is known only at runtime since the cardinality is unknown

ahead of time)

γ ← 1; M ← 2; i← j ← 0

1: while there are input values Ai do

2: if (valAi ∗ γ) /∈ N then

3: γold ← γ

4: γ ← γold ∗ c such that (valAi
∗ γ) ∈ N

5: while there are Aj values already processed do

6: recompute valAj (i.e. (τζ ,LM )) using DC(c): (τζold ,LMold
)
DC(c)−→ (τζ ,LM )

7: j ← j + 1

8: end while

9: Mold ←M

10: j ← 0

11: end if

12: valAi
← valAi

∗ γ

13: if valAi
≥M then

14: Mold ←M

15: M ← valAi + 1

16: while there are Aj valued already processed do

17: recompute valAj
(i.e. (τζ ,LM )) using DW(M −Mold):

(τζold ,LMold
)
DW(M−Mold )−→ (τζ ,LM )

18: j ← j + 1

19: end while

20: end if

21: compute valAi : its associated pair is (τvalAi
,LM )

22: j ← 0

23: end while

24: return the set of associated pairs (τζ ,LM ) to each (Ai, valAi
)
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4. Case study

We now consider two examples. The first one deals with the blood alcohol

concentration (BAC in percentage) in the USA, while the second one focuses

on studies on foreign language learning.

4.1. First example

In this example, it is focused on five main values: 0% means no alcohol,

.05% is the legal limit for drivers under 21, .065% is an intermediate value

(illegal for young drivers but legal for the others), .08% is the legal limit for

drivers older than 21 and .3% is considered as the BAC level where risk of

death is possible (Abchir and Truck, 2013).

The set of pairs (s, v) is thus the following:

{(NoAlcohol, .0), (YoungLegalLimit, .05), (Intermediate, .065), (LegalLimit, .08),

(RiskOfDeath, .3)}.

Table 2 recalls the resulting semantic 2-tuples obtained by the partitioning

algorithm from (Abchir and Truck, 2013).

• The first input value to be used to construct the partition is (A, 0): it

represents in percentage the absence of alcohol in the blood. With the

symbolic 2-tuple notation, (A, 0) can be written (τi,Lj) = (τ0,L2) or

(τi,Lj) = (τ0,L3) or (τi,Lj) = (τ0,L4), etc.;

• the second input value is (B, .05): it represents in percentage the legal

limit of alcohol in the blood for drivers under age 21;

• the third input value is (C, .06): it represents in percentage the early

stage to behavioral disinhibition (the value has rounded up from .065
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linguistic term level semantic 2-tuple

NoAlcohol R l(3, 9) (s90, 0)

YoungLegalLimit L l(3, 9) (s91, .0417)

YoungLegalLimit R l(5, 33) (s335 , .01)

Intermediate L l(5, 33) (s336 , 0)

Intermediate R l(4, 17) (s173 , 0)

LegalLimit L l(4, 17) (s174 , .0167)

LegalLimit R l(1, 3) (s31,−.2333)

RiskOfDeath R l(1, 3) (s31, 0)

Table 2: The 2-tuple set for the BAC example where L and R are the upside (L for left)

and downside (R for right) of labels respectively. (Abchir and Truck, 2013)

to .06 to shorten the following example, but the algorithm works with

any value as long as it is positive);

• the fourth input value is (D, .08): it represents in percentage the legal

limit of alcohol in the blood for drivers that are 21 years of age or older;

• the fifth input value is (E, .3): it represents in percentage the limit at

which there is a potential for death or serious harm to life.

We now take two different assumptions according to the order in which

the input values appear.
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4.1.1. First assumption

Let us assume that the input values appear in the following order: B,C,A,

E,D. Once the algorithm 1 is complete, we shall obtain:

(i) for (B, .05) value

• (γ ∗ .05) /∈ N because γ = 1. As a result, γold = 1, γ = c = 100

and valB = .05 ∗ 100 = 5

• valB ≥ 2 then Mold = 2 and M = 5 + 1 = 6. Scale LM equals L6

• (B, .05) is thus equal to (τvalB ,L6) i.e. (τ5,L6)

(ii) for (C, .06) value

• (γ ∗ .06) ∈ N because γ = 100

• valC = .06 ∗ 100 = 6

• valC ≥ 6 then Mold = 6 and M = 6 + 1 = 7. Scale LM equals L7

• because of new scale LM , to reflect the changes, B must be recom-

puted using DW(M−Mold) = DW(7−6) = DW(1): (τ5,L6)
DW(1)−→

(τ5,L7)

• As a result, (C, .6) is thus equal to (τ6,L7)

(iii) for (A, 0) value

• (γ ∗ 0) ∈ N because γ = 100

• valA = 0 ∗ 100 = 0

• valA < 7 so no recalculation

• (A, 0) is thus equal to (τ0,L7)

(iv) for (E, .3) value
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• (γ ∗ .3) ∈ N because γ = 100

• valE = .3 ∗ 100 = 30

• valE ≥ 7 then Mold = 7 and M = 30 + 1 = 31. Scale LM equals

L31

• B must be recomputed using DW(31−7) = DW(24): (τ5,L7)
DW(24)−→

(τ5,L31)

• C must be recomputed using DW(24): (τ6,L7)
DW(24)−→ (τ6,L31)

• A must be recomputed using DW(24): (τ0,L7)
DW(24)−→ (τ0,L31)

• As a result, (E, .3) is thus equal to (τ30,L31)

(v) for (D, .08) value

• (γ ∗ .08) ∈ N because γ = 100

• valD = .08 ∗ 100 = 8

• valD < 31 so no recalculation

• (D, .08) is thus equal to (τ8,L31)

Figure 1 summarizes the execution of the algorithm with those five or-

dered input values.

4.1.2. Second assumption.

Let us assume that the input values appear in the following order: E,B,A,

C,D. Once the algorithm 1 is complete, we shall obtain:

(i) for (E, .3) value

• (γ ∗ .3) /∈ N because γ = 1. As a result, γold = 1, γ = c = 10 and

valE = .3 ∗ 10 = 3

16



(τ5,L7)

30
(τ5,L31)(v) (τ30,L31)(τ0,L31) (τ6,L31) (τ8,L31)

0 5 6 8

30
(τ5,L31) (τ30,L31)(τ0,L31) (τ6,L31)

0 5 6

(i)

step (A, 0) (B, .05) (C, .06) (D, .08) (E, .3)

(ii)

5
(τ5,L6)

0
DW(1)

0
(τ5,L7)

6

60 5
(τ6,L7)(τ5,L7)(iii) (τ0,L7)

30
(τ5,L31)(iv) (τ0,L31) (τ6,L31)

0 5 6

DW(24)

60 5
(τ5,L7)

Figure 1: Temporal partitioning with GSMs, first assumption.

• valE ≥ 2 then Mold = 2 and M = 3 + 1 = 4. Scale LM equals L4

• (E, .3) is thus equal to (τvalE ,L4) i.e. (τ3,L4)

(ii) for (B, .05) value

• (γ ∗ .05) /∈ N because γ = 10. As a result, γold = 10, c = 10,

γ = 100

• E must be recomputed using DC(c) = DC(10): (τ3,L4)
DC(10)−→

(τ30,L31)

• Mold = 31
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• valB = .05 ∗ 100 = 5

• valB < 31 so no recalculation

• (B, .05) is thus equal to (τ5,L31)

(iii) for (A, 0) value

• (γ ∗ 0) ∈ N because γ = 100

• valA = 0 ∗ 100 = 0

• valA < 31 so no recalculation

• (A, 0) is thus equal to (τ0,L31)

(iv) for (C, .06) value

• (γ ∗ .06) ∈ N because γ = 100

• valC = .06 ∗ 100 = 6

• valC < 31 so no recalculation

• (C, .06) is thus equal to (τ6,L31)

(v) for (D, .08) value

• (γ ∗ .08) ∈ N because γ = 100

• valD = .08 ∗ 100 = 8

• valD < 31 so no recalculation

• (D, .08) is thus equal to (τ8,L31)

Figure 2 summarizes the execution of the algorithm with those five or-

dered input values.

18



(τ30,L31)

0 5

0 5 6 8

0 5 6

0 5

30
(τ5,L31) (τ30,L31)

30
(τ5,L31)(v) (τ30,L31)(τ0,L31) (τ6,L31) (τ8,L31)

30
(τ5,L31)(iv) (τ30,L31)(τ0,L31) (τ6,L31)

30
(τ5,L31)(iii) (τ30,L31)(τ0,L31)

(τ3,L4)

DC(10)

(i)

step (A, 0) (B, .05) (C, .06) (D, .08) (E, .3)

30

0 30
(ii)

Figure 2: Temporal partitioning with GSMs, second assumption.

4.2. Second example

The second example deals with assessments and observations made as

part of studies on foreign language acquisition.

Let us consider learners answering questions from a teacher who wants to

know their level during and at the end of the lesson. The accuracy (and/or

relevance) of the responses given by students is the observation. For each

student, Accuracy is the result of the aggregation of several assessments.

Indeed, each question is related to one or more concepts and skills such as

morphosyntax, syntax, lexicon, etc. Thus several questions are grouped to

reflect a certain skill.
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For each skill, Accuracy is expressed in percentage and has the six follow-

ing values: 0% means that the student only got the wrong answers and did

not understand the concept at all, nor developed the skill; 23% means that

the student generally got the wrong answers; 50% means that half of the an-

swers were right and the other half were wrong; 77% means that the student

understood many principles of the concept, but weaknesses are still observed;

89% means that most of the principles have been understood; 100% means

that the student gave only right answers and that the skill is acquired.

After normalization, the set of pairs (s, v) is the following:

{(VeryBad, 0), (Bad, .23), (Medium, .5), (Good, .77), (VeryGood, .89), (Perfect, 1)}.

Table 3 gives the resulting semantic 2-tuples obtained by the partitioning

algorithm from (Abchir and Truck, 2013).

• The first input value to be used to construct the partition is (A, 0): it

represents the value VeryBad. (A, 0) can be written (τi,Lj) = (τ0,L2)

or (τi,Lj) = (τ0,L3) or (τi,Lj) = (τ0,L4), etc.;

• the second input value is (B, .23): it represents the value Bad ;

• the third input value is (C, .5): it represents the value Medium;

• the fourth input value is (D, .77): it represents the value Good ;

• the fifth input value is (E, .89): it represents the value VeryGood ;

• the sixth input value is (F, 1): it represents the value Excellent.

As in the previous example, we take two different assumptions according

to the order in which the input values appear.
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linguistic term level semantic 2-tuple

VeryBad R l(3, 9) (s90, 0)

Bad L l(3, 9) (s92,−.16)

Bad R l(2, 5) (s335 ,−.08)

Medium L l(2, 5) (s336 , 0)

Medium R l(2, 5) (s173 , 0)

Good L l(2, 5) (s174 , .08)

Good R l(3, 9) (s31, .16)

VeryGood L l(3, 9) (s174 , .12)

VeryGood R l(4, 17) (s31, .24)

Perfect R l(4, 17) (s31, 0)

Table 3: The semantic 2-tuple set for the foreign language learning example where L and

R are the upside and downside of labels respectively.

4.2.1. First assumption

Let us assume that the input values appear in the following order: E,B,D,

C, F,A. Once the algorithm 1 is complete, we shall obtain:

(i) for (E, .89) value

• (γ ∗ .89) /∈ N because γ = 1. As a result, γold = 1, γ = c = 100

and valE = .89 ∗ 100 = 89

• valE ≥ 2 then Mold = 2 and M = 89 + 1 = 90. Scale LM equals

L90

• (E, .89) is thus equal to (τvalE ,L90) i.e. (τ89,L90)

(ii) for (B, .23) value
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• (γ ∗ .23) ∈ N because γ = 100

• valB = .23 ∗ 100 = 23

• valB < 90 so no computations here

• As a result, (B, .23) is thus equal to (τ23,L90)

(iii) for (D, .77) value

• (γ ∗ .77) ∈ N because γ = 100

• valD = .77 ∗ 100 = 77

• valD < 90 so no computations here

• As a result, (D, .77) is thus equal to (τ77,L90)

(iv) for (C, .5) value

• (γ ∗ .5) ∈ N because γ = 100

• valC = .5 ∗ 100 = 50

• valC < 90 so no computations here

• As a result, (C, .5) is thus equal to (τ50,L90)

(v) for (F, 1) value

• (γ ∗ 1) ∈ N because γ = 100

• valF = 1 ∗ 100 = 100

• valF ≥ 90 then Mold = 90 and M = 100 + 1 = 101. Scale LM
equals L101

• E must be recomputed using DW(101− 90) = DW(11):

(τ89,L90)
DW(11)−→ (τ89,L101)
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Table 4: Execution of the algorithm for the order E,B,D,C, F,A.

step (A, 0) (B, .23) (C, .5) (D, .77) (E, .89) (F, 1)

(i) (τ89,L90)

(ii) (τ23,L90) (τ89,L90)

(iii) (τ23,L90) (τ77,L90) (τ89,L90)

(iv) (τ23,L90) (τ50,L90) (τ77,L90) (τ89,L90)

(v) (τ23,L101) (τ50,L101) (τ77,L101) (τ89,L101) (τ100,L101)

(vi) (τ0,L101) (τ23,L101) (τ50,L101) (τ77,L101) (τ89,L101) (τ100,L101)

• B must be recomputed using DW(11): (τ23,L90)
DW(11)−→ (τ23,L101)

• D must be recomputed using DW(11): (τ77,L90)
DW(11)−→ (τ77,L101)

• C must be recomputed using DW(11): (τ50,L90)
DW(11)−→ (τ50,L101)

• As a result, (F, 1) is thus equal to (τ100,L101)

(vi) for (A, 0) value

• (γ ∗ 0) ∈ N

• valA = 0 ∗ 100 = 0

• valA < 101 so no computations here

• As a result, (A, 0) is thus equal to (τ0,L101)

As in the first example, table 4 summarizes the execution of the algorithm

with those six ordered input values.
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Table 5: Execution of the algorithm for the order B,A,E,D,C,F .

step (A, 0) (B, .23) (C, .5) (D, .77) (E, .89) (F, 1)

(i) (τ23,L24)

(ii) (τ0,L24) (τ23,L24)

(iii) (τ0,L90) (τ23,L90) (τ89,L90)

(iv) (τ0,L90) (τ23,L90) (τ77,L90) (τ89,L90)

(v) (τ0,L90) (τ23,L90) (τ50,L90) (τ77,L90) (τ89,L90)

(vi) (τ0,L101) (τ23,L101) (τ50,L101) (τ77,L101) (τ89,L101) (τ100,L101)

4.2.2. Second assumption

Let us assume that the input values appear in the following order: B,A,E,

D,C, F . Running the algorithm 1, we obtain the execution summarized in

table 5.

4.3. Results

For each example, when we compare the results obtained with the se-

mantic 2-tuples in table 2 (resp. table 3) and those obtained with this new

algorithm (see figures 1 and 2, resp. tables 4 and 5), it is possible to draw

the following parallels: the pairs2 (s
n(t)
j , αj), without any distinction of up-

side (L) or downside (R) semantic 2-tuples, are linked with (τi,LM) values

according to the two following assertions:

• (sj, αj) is equivalent to τi and

2The notation αj is used to distinguish from the various α values obtained in each

2-tuple.
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• n(t) is equivalent to LM .

Moreover, figures 1 and 2 (resp. tables 4 and 5) prove that the resulting

partition is the same regardless the order that the input values occur (see

step (v) — resp. step (vi) — in both executions).

This algorithm we propose in this paper offers a temporal and unique

partitioning (the resulting partition will always be the same with the same

input value set) in exhibiting a final scale that resembles the universe ob-

tained with the semantic 2-tuples. Of course, the resemblance stops where

the fuzzy sets attached to the 2-tuples begin.

These results are interesting if we want to use various 2-tuple represen-

tation models (by necessity, by desire or being forced to do it): it is thus

possible to unify those models or to go from one model to another more

easily. In decision-making systems, this can be very useful.

5. Decision systems using both linguistic 2-tuple models

5.1. Decision-making systems

According to Zimmermann, prescriptive decision theory is defined as fol-

lows:

Definition 6. (Zimmermann, 1987) Given the set of feasible actions, A, the

set of relevant states, S, the set of resulting events, E, and a (rational) utility

function, u — which orders the space of events with respect to their desirabil-

ity — the optimal decision under certainty is the choice of that action which

leads to the event with the highest utility, such a decision can be described

properly by the quadruple {A, S,E, u}.
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In a fuzzy environment, the decision is the intersection of fuzzy constraints

and fuzzy objective functions. The fuzzy constraints and the feasible actions

(or alternatives) are often expressed through linguistic values because they

come from human beings (Bellman and Zadeh, 1970; Kacprzyk and Yager,

1990; Chen and Mon, 1994; Chang and Chen, 1994; Yager et al., 1994; Kumar

and Bauer, 2009).

Among the decision-making systems are the assessment decision-making

systems where the results of assessment can inform decision-making. In 2003,

McMillan suggested that measurement specialists need to adapt technical

testing principles to be more relevant to the nature of classroom assessment

decision making (McMillan, 2003). The aim of such decision systems is to

increase the performance of both the candidates and the teacher who un-

derstands better the potential difficulties and can adapt his course. The

assessments made are designed to identify capability gaps such as skills, pro-

cesses, etc. Authors such as Shinn focus on curriculum-based measurement

— a way to monitor the candidates, providing current, week-by-week infor-

mation on the progress people are making — to assess people (especially

special children) (Shinn, 1989).

5.2. Real-world application

Let us return to the studies on foreign language acquisition as an example.

In this real-world application (the project is called VILLA, see for instance

(Rast et al., 2011)), a useful but tricky thing is the large amount of production

and performance data for learners to analyze. At first sight, identify, interpret

and analyze those data is not trivial. As noted earlier, the accuracy of the

response given by the learners is in fact the result of a weighted aggregation of
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Figure 3: An example of a confidence scale used in our study.

assessments related to several questions dealing with a same skill. Another

observation is the response time for each question. It is also the result of

weighted aggregations. Both Accuracy and ResponseTime yield pairs (s, v)

easily expressible in semantic 2-tuples.

But other observations can be features coming from subjective assess-

ments, judgments, feelings, etc. given by teachers. For instance, a feature

applies to the attitude or the behavior of the student, as perceived by the

teacher. For each set of questions, a linguistic scale (of the symbolic 2-tuple

type) is used to assess the confidence of the learner when answering questions.

Figure 3 shows such a scale.

Thus, there is some variation in the nature of those features (aggregations

of observations), as described above. To make a decision, it is compulsory

to take into account all the features in expressing them in a same model.

In this case, the semantic 2-tuple model is the most appropriate because

the confidence scale (symbolic 2-tuples) can be transformed into semantic

2-tuples through algorithm 1.

The next step needs to cluster learners in order to characterize them and

understand them better (the way they acquire a new language, etc.). This

goes beyond this study and will be the subject of upcoming papers with
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particular emphasis on clustering in such domains.

6. Conclusions

The novelty in this paper is a formal outcome, which links two linguistic

2-tuple models. Indeed we have proposed a thought about how to compare

or unify two different 2-tuple representation models: the 2-tuple semantic

model and the 2-tuple symbolic model. The first model is useful to catch

the semantics of a linguistic statement, especially when it deals with er-

ratic phenomenas whose patterns are subject to irregular progression, such

as legislation on blood alcohol levels where linguistic terms involved are un-

symmetrically distributed on the axis.

The second one is based on the symbolic framework and does not consider

any fuzzy set. This model is based on modifiers which change the ratio of

the linguistic value expressed.

The result obtained in this paper is an algorithm that constructs a par-

tition (with tools of the second model) similar to the one that would be

obtained with the first model, regardless the order of appearance of the in-

put values. The only difference between both partitions is the fact that the

symbolic 2-tuples don’t make use of fuzzy sets. So the algorithm suggests a

temporal and unique partitioning useful especially when the number of input

values is not known.

Thus the conclusions that can be drawn are the following: parallels be-

tween both models have been established. One model or the other can be

used to express the data, as soon as the underlying fuzzy sets are not needed

in future computations.
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Future works will focus on global unification of 2-tuple models (includ-

ing linguistic models such as the fuzzy linguistic 2-tuple model or the pro-

portional fuzzy 2-tuple model). Indeed this contribution should permit to

understand the 2-tuple semantic model better, being viewed and perceived

through the prism of the 2-tuple symbolic model. And vice versa. It should

permit to carry on establishing a general model that would comprise all the

2-tuple representation models.
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