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We study the persistence exponent for random walks in random sceneries (RWRS) with integer values and for some special random walks in random environment in Z 2 including random walks in Z 2 with random orientations of the horizontal layers.
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Introduction and main results

Random walks in random sceneries were introduced independently by H. Kesten and F. Spitzer [START_REF] Kesten | A limit theorem related to a new class of self-similar processes[END_REF] and by A. N. Borodin [START_REF] Borodin | A limit theorem for sums of independent random variables defined on a recurrent random walk. (Russian)[END_REF]. Let S = (S n ) n≥0 be a random walk in Z starting at 0, i.e., S 0 = 0 and X n := S n -S n-1 , n ≥ 1 is a sequence of i.i.d. (independent identically distributed) Z-valued random variables. Let ξ = (ξ x ) x∈Z be a field of i.i.d. Z-valued random variables independent of S. The field ξ is called the random scenery. The random walk in random scenery (RWRS) Z := (Z n ) n≥0 is defined by setting Z 0 := 0 and, for n ∈ N * ,

Z n := n i=1 ξ S i . (1) 
We will denote by P the joint law of S and ξ. Limit theorems for RWRS have a long history, we refer to [START_REF] Guillotin-Plantard | Quenched central limit theorems for random walks in random scenery[END_REF] for a complete review.

In the following, we consider the case when the common distribution of the scenery ξ x is assumed to be symmetric with a third moment and with positive variance σ 2 ξ . Concerning the random walk (S n ) n≥1 , the distribution of X 1 is assumed to be centered and square integrable with positive variance σ 2 X . We assume without any loss of generality that neither the support of the distribution of X 1 nor the one of ξ 0 are contained in a proper subgroup of Z. 1 Under the previous assumptions, the following weak convergence holds in the space of càdlàg real-valued functions defined on [0, ∞), endowed with the Skorokhod topology (with respect to the classical J 1 -metric):

n -1 2 S ⌊nt⌋ t≥0 L =⇒ n→∞ (σ X Y (t)) t≥0 ,
where Y is a standard real Brownian motion. We will denote by (L t (x)) x∈R,t≥0 a continuous version with compact support of the local time of the process (σ X Y (t)) t≥0 (see [START_REF] Marcus | Markov processes, Gaussian processes, and local times[END_REF]). In [START_REF] Kesten | A limit theorem related to a new class of self-similar processes[END_REF], Kesten and Spitzer proved the convergence in distribution of ((n -3/4 Z [nt] ) t≥0 ) n , to a process ∆ = (∆ t ) t≥0 defined by

∆ t := σ ξ R L t (x) dW (x),
where (W (x)) x≥0 and (W (-x)) x≥0 are independent standard Brownian motions independent of Y . The process ∆ is called Kesten-Spitzer process in the literature. We are interested in the persistence properties of the sum Z n , n ≥ 1. Our main result in this setup is the following one.

Theorem 1. There exists a constant c > 0 such that for large enough T P max k=1,...,T

Z k ≤ 1 ≤ T -1/4 (log T ) c . ( 2 
)
If moreover E[e ξ 1 ] < ∞, then there exist positive constants c ′ , c ′′ and T 0 such that

T -1/4 (log T ) -c ′ H -1 c ′′ T -1 4 -1 ≤ P max k=1,...,T Z k ≤ 1 ( 3 
)
for every T > T 0 , where H is given by H(t) := E[e ξ 1 1 {e ξ 1 >t} ] and where H -1 (x) := inf{t > 0 : H(t) < x}, for every x > 0.

In particular, if there exist η > 1, A 1 > 0 and A 2 > 0 such that ∀x > 0, P(ξ 0 > x) ≤ A 1 e -A 2 x η , then there exist c ′ > 0 and T 0 > 0 such that T -1/4 e -c ′ (log T )

1 η ≤ P max k=1,...,T Z k ≤ 1 (4) 
for every T > T 0 .

If the distribution of ξ 1 has compact support, then there exist positive constants c ′ and T 0 such that T -1/4 (log T ) -c ′ ≤ P max k=1,...,T Z k ≤ 1 [START_REF] Bolthausen | A central limit theorem for two-dimensional random walks in random sceneries[END_REF] for every T > T 0 .

The corresponding results for the continuous-time Kesten-Spitzer process ∆ were obtained in [START_REF] Castell | On the one-sided exit problem for stable processes in random scenery[END_REF], also cf. [START_REF] Majumdar | Persistence of a particle in the Matheron -de Marsily velocity field[END_REF][START_REF] Matheron | Is transport in porous media always diffusive? A counterexample[END_REF][START_REF] Castell | Persistence exponent for random processes in Brownian scenery[END_REF]. The case of random walk in random gaussian scenery was treated in [START_REF] Aurzada | Persistence exponent for discrete-time, time-reversible processes[END_REF] with a lower bound in T -1/4 e -c ′ √ log T , coherent with our result. We would particularly like to stress that in all these results, the scenery was supposed to be gaussian. Now we will state an analogous result for particular models of random walks (M n ) n in random environment on Z 2 including random walks on Z 2 with random orientation of the horizontal layers.

To the y-th horizontal line, we associate the Z-valued random variable ξ y , corresponding to the only authorized horizontal displacement of the walk (M n ) n on this horizontal line. We assume that (ξ y ) y∈Z is a sequence of i.i.d. random variables the distribution of which is symmetric, has a moment of order 3 and a positive variance σ 2 ξ . We consider a distribution ν on Z admiting a variance and with null expectation (corresponding to the distribution of the vertical displacements when vertical displacement occur). We fix a parameter δ ∈ (0, 1). We consider a random walk in random environment M = (M n ) n on Z 2 starting from the origin (i.e. M 0 := (0, 0)), moving horizontally (with respect to (ξ y ) y ) with probability δ and moving vertically (with respect to ν) with probability 1δ as follows:

P(M n+1 = (x + ξ y , y)|M n = (x, y)) = δ (horizontal displacement) P(M n+1 = (x, y + z)|M n = (x, y)) = (1 -δ)ν({z}) (vertical displacement).
Observe that if the ξ y 's have Rademacher distribution (i.e. takes their values in {-1, 1}), then M is a walk on Z 2 with random orientations of the horizontal layers, the y-th horizontal layer being oriented to the left if ξ y = -1 and to the right if ξ y = 1). Such models have been considered by Matheron and de Marsilly in [START_REF] Matheron | Is transport in porous media always diffusive? A counterexample[END_REF], their transience has been established by Campanino and Pétritis in [START_REF] Campanino | Random walks on randomly oriented lattices[END_REF], see also [START_REF] Guillotin-Plantard | A functional limit theorem for a 2d-random walk with dependent marginals Electronic Communications in Probability[END_REF] for their asymptotic behaviour and [START_REF] Castell | A local limit theorem for random walks in random scenery and on randomly oriented lattices[END_REF] for local limit theorem in this context.

The process M is strongly related to RWRS. Indeed it can be represented as follows

M n = ( Zn , S n ) = n k=1 ξ S k ε k , S n , S n := n k=1 Xk (1 -ε k ),
where ( Xk ) k is a sequence of i.i.d. random variables with distribution ν and (ε k ) k is a sequence of i.i.d. Bernoulli random variables with parameter δ (i.e. P(ε k = 1) = δ = 1 -P(ε k = 0)). We assume that (ξ y ) y , ( Xk ) k and (ε k ) k are independent. We then set X k := Xk (1ε k ). As for RWRS, we assume without any loss of generality that neither the support of ν nor the one of the distribution of ξ 0 are contained in a proper subgroup of Z. Observe that the second coordinate S of M is a random walk. Hence we focus our study on the first coordinate Z of M , which is very similar to RWRS. Our second main result states that the conclusion of Theorem 1 is still valid for Z.

Theorem 2 (Persistence of M on the leftside). There exists a constant c > 0 such that for large enough T P max k=1,...,T

Zk ≤ 1 ≤ T -1/4 (log T ) +c . (6) 
If moreover E[e ξ 1 ] < ∞, then there exist positive constants c ′ , c ′′ and T 0 such that

T -1/4 (log T ) -c ′ H -1 c ′′ T -1 4 -1 ≤ P max k=1,...,T Zk ≤ 1 , (7) 
for every T > T 0 . The function H is defined as in Theorem 1.

Let us recall that Z and Z are stationary but non-markovian processes with respect to the annealed distribution P and that they are markovian but non-stationary given the scenery ξ.

In Section 2, we prove some useful technical lemmas concerning the random walk S as well as the random walk in random scenery Z and the analogous process Z. Section 3 is devoted to the proof of Theorems 1 and 2.

Preliminary results

For every y ∈ Z and every integer n ≥ 1, we write N n (y) for the number of visits of the walk S to site y before time n, i.e.

N n (y) := #{k = 1, ..., n : S k = y}.

Using this notation, we observe that Z can be rewritten as follows:

Z n = y∈Z ξ y N n (y). Analogously Zn = y∈Z ξ y Ñn (y),
with Ñn (y) := #{k = 1, ..., n : S k = y and ε k = 1}. The behaviour of ( Ñn (y)) y will appear to be very similar to the behaviour of (N n (y)) y , at least for our purpose.

2.1. Preliminary results on the random walk. We set N * n = sup y N n (y) and R n := #{y ∈ Z : N n (y) > 0} for the number of sites that have been visited by the walk S before time n. Lemma 3. Let γ ∈ (0, 1 2 ). We set

Ω (1) n (γ) := {N * n ≤ n 1 2 +γ , R n ≤ n 1 2 +γ }
There exists C γ > 0 such that

P[Ω (1) n (γ)] = 1 -O (exp(-C γ n γ )) .
Proof. Due to Lemma 34 of [START_REF] Castell | A local limit theorem for random walks in random scenery and on randomly oriented lattices[END_REF], we know that there exists c γ > 0 such that P[R n ≤ n 

1 2 +γ ] = 1 -O (exp(-c γ n γ )).
:= min{k ≥ 1, N * k = a}. P[N * n ≥ a + b] = n j=1 P[τ a = j, N * n -N * j ≥ b] ≤ n j=1 P[τ a = j, sup y (N n (y) -N j (y)) ≥ b] ≤ n j=1 P[τ a = j]P[N * n-j ≥ b] ≤ P[N * n ≥ a]P[N * n ≥ b]. Hence P[N * n ≥ a b] ≤ (P[N * n ≥ a]
) b and so

P[N * n ≥ E[N * n ]n γ ] ≤ P[N * n ≥ ⌊3E[N * n ]⌋] ⌊n γ /3⌋ ≤ E[N * n ] ⌊3E[N * n ]⌋ ⌊n γ /3⌋ ≤ 2 -⌊n γ /3⌋ .
We conclude by using the fact that

E[N * n ] ∼ c ′ √ n.
Lemma 4. Let µ ∈ (0, 1] and γ ∈ (0, 1/2) and ϑ > 0 such that γ > 2(1µ)ϑ. For any δ ∈ (0, γ 2 -(1µ)ϑ), we have

P sup y,z∈Z, 0<|y-z|<n ϑ |N n (y) -N n (z)| |y -z| µ > n 1 4 +γ = O e -n δ 2 . ( 8 
)
Under the assumptions of Theorem 2, we also have

P sup y,z∈Z, 0<|y-z|<n ϑ | Ñn (y) -Ñn (z)| |y -z| µ > n 1 4 +γ = O e -n δ 2 . ( 9 
)
Proof. Due to Lemma 3, it is enough to prove that

P sup k=1,...,n |S k | > e n δ 2
= O e -n δ 2 [START_REF] Castell | On the one-sided exit problem for stable processes in random scenery[END_REF] and that

P sup y,z∈En, 0<|y-z|<n ϑ N n (y) -N n (z) |y -z| µ > n 1 4 +γ = O e -n δ , (11) 
where

E n := {y ∈ Z : |y| ≤ e n δ 2 , N n (y) ≤ n 1 2
+γ } (and the analogous estimate with N n (•) replaced by Ñn (•) under the assumptions of Theorem 2). We start with the proof of the first estimate. From Doob's inequality, there exists some constant C > 0 such that

P[ sup k=1,...,n |S k | > e n δ 2 ] ≤ C E[S 2 n ] e -2n δ 2 = O ne -2n δ 2
so [START_REF] Castell | On the one-sided exit problem for stable processes in random scenery[END_REF]. Let us prove now the second estimate. Let τ j (y) be the j-th visit time of (S n ) n to y, that is τ 0 (y) := 0 and ∀j ≥ 0, τ j+1 (y) = inf{k > τ j (y) : S k = y} (resp. τ0 (y) := 0, τj+1 (y) = inf{k > τj (y) :

S k = y, ε k = 1}). Let y, z ∈ E n be such that N n (y) -N n (z) > 0, then there exists j ∈ {1, ..., ⌊n 1 2 +γ ⌋} such that τ j (y) ≤ n < τ j+1 (y) (observe that τ ⌊n 1 2 +γ ⌋+1 (y) > n).
For this choice of j, we have

N n (y) -N n (z) ≤ N τ j (y) (y) -N τ j (y) (z). Therefore P sup y,z∈En, 0<|y-z|<n ϑ N n (y) -N n (z) |y -z| µ > n 1 4 +γ ≤ y,z∈En, 0<|y-z|<n ϑ ⌊n 1 2 +γ ⌋ j=1 P N τ j (y) (y) -N τ j (y) (z) ≥ |y -z| µ n 1 4 +γ , ≤ y,z∈En, 0<|y-z|<n ϑ ⌊n 1 2 +γ ⌋ j=1 P 1 + j-1 k=1 (1 -M k (y, z)) ≥ |y -z| µ n 1 4 +γ , (12) 
since

N τ j (y) (y) -N τ j (y) (z) = j -j-1 k=0 M k (y, z) ≤ j -j-1 k=1 M k (y, z)
, where, following [START_REF] Kesten | A limit theorem related to a new class of self-similar processes[END_REF], we write M k (y, z) for the number of visits of (S n ) n to z between its k-th and (k + 1)-th visit to y, i.e.

M k (y, z) := τ k (y)<n≤τ k+1 (y)

1 {Sn=z} .
Under assumptions of Theorem 2, (12) still holds for Ñn (•) instead of N n (•) if we replace τ j (y) by τj (y) and M k (y, z) by Mk (y, z) := τk (y)<n≤τ k+1 (y) 1 {Sn=z,εn=1} .

Due to the strong Markov property, (M k (y, z)) k≥1 is a sequence of i.i.d. random variables. Let us recall (see pages 13-14 in [START_REF] Kesten | A limit theorem related to a new class of self-similar processes[END_REF] for more details) that its common law is given by

P[M k (y, z) = 0] = 1 -p(|y -z|), ∀ℓ ≥ 1, P[M k (y, z) = ℓ] = (1 -p(|y -z|)) ℓ-1 (p(|y -z|)) 2 , with p(x) = p(-x) ∼ c|x| -1 . Observe also that, under the assumptions of Theorem 2, ( Mk (y, z)) k≥1 is a sequence of i.i.d. random variables with P[ Mk (y, z) = 0] = 1 -p(z -y) and P[ Mk (y, z) = ℓ] = p(z -y)(1 -p(y -z)) ℓ-1 p(y -z) if ℓ ≥ 1 where p(x) denotes the probability that (S n , ε n ) n≥1 visits (x, 1) before (0, 1). Observe that 2 p(x) = k≥0 (1 -δ -p(x)) k p(x)(1 -p(-x)) = p(x) δ + p(x) (1 -p(-x)).
2

The fact that (Sn, εn) n≥1 visits (x, 1) before (0, 1) means that S visits 0 several times (let us say k times, with k ≥ 0) before its first visit at x but that ǫn = 0 at each of these visits to 0 (this happens with probability (1 -δ -p(x)) k ), that S goes to x before coming back to 0 (this happens with probability p(x)) and finally that, starting from S = x, (Sn, εn) n≥1 visits (x, 1) before (0, 1) (this happens with probability 1 -p(-x)).

Iterating this formula we obtain that p

(x) = p(x) δ+p(x) 1 -p(x) δ+p(x) (1 -p(x)) = p(x)(δ+p(x)p(x)) (δ+p(x)) 2 which leads to p(x) 2 + δ ≤ p(x) = p(x) δ + 2p(x) ≤ p(x) δ .
There exists C 0 > 1 such that

∀x = 0, C -1 0 |x| -1 ≤ p(x) ≤ C 0 |x| -1 (13) 
and

∀x = 0, C -1 0 |x| -1 ≤ p(x) ≤ C 0 |x| -1 . (14) 
Observe that M 1 (y, z) has expectation 1 and admits exponential moment of every order:

∀t > 0, G |y-z| (t) := E e t(1-M 1 (0,|y-z])) = (1 -p(|y -z|))e t -1 + 2p(|y -z|) 1 -(1 -p(|y -z|))e -t .
Hence, for every positive integer J ≤ n 1 2 +γ , due to the Markov inequality, we obtain that for every t > 0,

P 1 + J k=1 (1 -M k (y, z)) ≥ |y -z| µ n 1 4 +γ = P exp t + t J k=1 (1 -M k (y, z)) ≥ exp t|y -z| µ n 1 4 +γ ≤ exp -t |y -z| µ n 1 4 +γ E exp t + t J k=1 (1 -M k (y, z)) ≤ exp -t |y -z| µ n 1 4 +γ (G |y-z| (t)) J e t ≤ exp -t |y -z| µ n 1 4 +γ (1 -C -1 0 |y -z| -1 )e t -1 + 2C -1 0 |y -z| -1 1 -(1 -C -1 0 |y -z| -1 )e -t J e t ≤ exp -t |y -z| µ n 1 4 +γ (1 -C -1 0 |y -z| -1 )e t -1 + 2C -1 0 |y -z| -1 1 -(1 -C -1 0 |y -z| -1 )e -t n 1 2 +γ e t
since the function f : p → (1-p)e t -1+2p 1-(1-p)e -t is decreasing on (0, 1) such that f (0) = e t and f (1) = 1. Now using the Taylor expansion of e t at 0, we observe that

(1 -p)e t -1 + 2p 1 -(1 -p)e -t = 1 + q p t + q p t 2 2 + q p O(t 3 ) 1 + q p t -q p t 2 2 + q p O(t 3 ) with p = C -1 0 |y -z| -1 and q = 1 -p where O(t 3 ) is uniform in p. Taking t = p n -1 4 -γ 2 , we obtain (1 -p)e t -1 + 2p 1 -(1 -p)e -t = 1 + q n -1 4 -γ 2 + qp n -1 2 -γ 2 + p 2 O(n -3 4 -3γ 2 ) 1 + q n -1 4 -γ 2 -qp n -1 2 -γ 2 + p 2 O(n -3 4 -3γ 2 ) = 1 + qp n -1 2 -γ + O(n -3 4 - 3γ 
2 ). and so

P 1 + J k=1 (1 -M k (y, z)) ≥ |y -z| µ n 1 4 +γ = O e -C -1 0 |y-z| µ-1 n γ 2 = O e -C -1 0 n -(1-µ)ϑ+ γ 2 .
Taking δ ∈ (0, γ 2 -(1µ)ϑ) and combining this with (12), we deduce [START_REF] Castell | Persistence exponent for random processes in Brownian scenery[END_REF] and the analogous estimate for Ñn (•) instead of N n (•) under the assumptions of Theorem 2 (replacing M k by Mk and p(•) by p(•) in the above argument). 

V n := n k,ℓ=1 1 {S k =S ℓ } = n k,ℓ=1 y∈Z 1 {S k =S ℓ =y} = y (N n (y)) 2 .
Under the assumptions ot Theorem 2, we set Ṽn := y ( Ñn (y)) 2 . Lemma 5. Let γ ∈ (0, 1/48). There exists a sequence of S-measurable sets (Ω (0) n (γ)) n , an integer n 0 > 0 and a positive constant c such that P(Ω

(0) n (γ)) = 1 + O e -n δ 2
for any δ < γ 2 and such that, for every n ≥ n 0 such that n ∈ dN, the following inequalities hold on Ω (0) n (γ):

P[ Z n = 0 | S] ≥ c √ V n , n 1 2 -γ ≤ N * n ≤ n 1 2 +γ , R n ≤ n 1 2 +γ
and n

3 2 -γ ≤ V n ≤ n 3 2 +γ .
Under the assumptions of Theorem 2, there exists a sequence of (S, (ε k ) k )-measurable sets ( Ω(0) n (γ)) n , an integer n 0 > 0 and a positive constant c such that P(Ω (0)

n (γ)) = 1 + O e -n δ 2
for any δ < γ 2 and such that, for every n ≥ n 0 such that the following inequalities hold on Ω(0) n (γ):

P Zn = 0 (S, (ε k ) k ) ≥ c Ṽn 1 { n k=1 ε k ∈dN * } , n 1 2 -γ ≤ sup Ñn (Z) ≤ N * n ≤ n 1 2 +γ , R n ≤ n 1 2 +γ
and n

3 2 -γ ≤ Ṽn ≤ n 3 2 +γ .
Remark: If we assume that ϕ ξ is non negative (in this case P(ξ 1 = 0) > 0), then there exists c > 0 such that for every n ≥ 1

P[ Z n = 0 | S] ≥ c √ V n .
Indeed, observe that

P[Z n = 0|S] = 1 2π π -π E e itZn |S dt = 1 2π π -π y ϕ ξ (tN n (y)) dt. (15) 
Remark that for every y ∈ Z, N n (y) ≤ √ V n . We know that ϕ ξ (t) -1 ∼ -

σ 2 ξ 2 t 2 .
Let β > 0 be such that, for every real number u satisfying |u| < β, we have ϕ ξ (u) ≥ e -σ 2 ξ u 2 . Since ϕ ξ is non negative, we have

P[Z n = 0|S] ≥ 1 2π β/ √ Vn -β/ √ Vn y [ϕ ξ (tN n (y))] dt ≥ 1 2π β/ √ Vn -β/ √ Vn y e -σ 2 ξ t 2 (Nn(y)) 2 dt = 1 2π β/ √ Vn -β/ √ Vn e -σ 2 ξ t 2 Vn dt ≥ 1 2πσ ξ √ V n |u|<σ ξ β e -u 2 du.
The proof of Lemma 5 is based on the same idea. The fact that ϕ ξ can take negative values complicates the proof.

Proof of Lemma 5. We have

P[Z n = 0|S] = 1 2π π -π E e itZn |S dt = 1 2π π -π y ϕ ξ (tN n (y)) dt. ( 16 
)
Observe that e 2iπξ 1 /d = E[e 2iπξ 1 /d ] almost surely and so

E[e 2iπξ 1 /d ] d = E[e 2iπξ 1 ] = 1.
Hence, for any integer m ≥ 0 and any u ∈ R, we have

ϕ ξ 2mπ d + u = ϕ ξ 2π d m ϕ ξ (u)
and so

P[Z n = 0|S] = 1 2π π -π E e itZn |S dt = 1 2π d-1 k=0 π/d -π/d y ϕ ξ 2π d kNn(y) ϕ ξ (tN n (y)) dt = 1 2π d-1 k=0 ϕ ξ 2π d kn π/d -π/d y [ϕ ξ (tN n (y))] dt = d 2π π/d -π/d y [ϕ ξ (tN n (y))] 1 {n∈dN * } dt. ( 17 
)
Under the assumptions of Theorem 2, proceeding analogously we obtain

P[ Zn = 0|(S, (ε k ) k )] = d 2π π/d -π/d y ϕ ξ (t Ñn (y)) 1 { n k=1 ε k ∈dN * } dt, (18) 
since y∈Z Ñn (y) = n k=1 ε k . We know that ϕ ξ (t) -1 ∼ -

σ 2 ξ 2 t 2 .
Let β > 0 be such that, for every real number u satisfying |u| < β, we have e -σ 2 ξ u 2 ≤ ϕ ξ (u) ≤ e - σ 2 ξ 4 u 2 (observe that the fact that the distribution of ξ is symmetric implies that ϕ ξ takes real values). Using the fact that

N n (y) ≤ N * n ≤ √ V n , we have d 2π β/N * n -β/N * n y [ϕ ξ (tN n (y))] dt ≥ d 2π β/ √ Vn -β/ √ Vn y e -σ 2 ξ t 2 (Nn(y)) 2 dt = d 2π β/ √ Vn -β/ √ Vn e -σ 2 ξ t 2 Vn dt ≥ d 2πσ ξ √ V n |u|<σ ξ β e -u 2 du.
This gives d 2π

β/N * n -β/N * n y ϕ ξ (tN n (y)) dt ≥ c √ V n , (19) 
for some positive constant c, and analogously

d 2π β/ Ñ * n -β/ Ñ * n y ϕ ξ (tN n (y)) dt ≥ c Ṽn , (20) 
under the assumptions of Theorem 2 if Ṽn = 0.

Let Ω n (γ) be the set defined by

Ω n (γ) = R n ≤ n 1 2 +γ , N * n ≤ n 1 2 +γ , sup y =z;|y-z|≤n |N n (y) -N n (z)| |y -z| ≤ n 1 4 +γ .
Due to Lemmas 3 and 4 (applied with µ = 1 and ϑ = 1),

P(Ω n (γ)) = 1 + O e -n δ 2
for any δ < γ 2 . On Ω n (γ), due to the Cauchy-Schwartz inequality, we have n = y N n (y)1 {Nn(y)>0} ≤ V n y 1 {Nn(y)>0}

1 2 ≤ √ R n V n and so V n ≥ n 3 2 -γ . Observe also that V n ≤ N * n y N n (y) = n N * n ≤ n 3 2 +γ . Moreover n = y N n (y) ≤ R n N * n . Hence N * n ≥ n 1 2
-γ . This gives the three last inequalities in the first case.

Under the assumptions of Theorem 2, we set analogously

Ωn (γ) = R n ≤ n 1 2 + 3γ 4 , N * n ≤ n 1 2 + 3γ 4 , sup y =z;|y-z|≤n | Ñn (y) -Ñn (z)| |y -z| ≤ n 1 4 +γ , n k=1 ε k > n(1 -γ)δ 4 .
If n is large enough, on Ωn (γ), we also obtain that n using the same arguments as above and the fact that y Ñn (y) = n k=1 ε k . To end the proof of the lemma, it remains to prove the first inequality. Due to [START_REF] Majumdar | Persistence in nonequilibrium systems[END_REF] and [START_REF] Marcus | Markov processes, Gaussian processes, and local times[END_REF], it remains to prove that there exists n 1 > 0 such that, for every n ≥ n 1 , on Ω n (γ), we have

β N * n ≤|t|≤ π d y |ϕ ξ (tN n (y))| dt ≤ βn -1 2 -γ ≤|t|≤ π d y |ϕ ξ (tN n (y))| dt ≤ c 2 √ V n , (21) 
and the analogous inequality obtained by replacing N n (•) by Ñn (•) and V n by Ṽn , under the assumptions of Theorem 2. To this end, we will use elements of the proof of [START_REF] Castell | A local limit theorem for random walks in random scenery and on randomly oriented lattices[END_REF] and more precisely the proofs of Propositions 9 and 10 therein.

We fix ε > 3γ such that 3γ + 3ε < 1 4 (this is possible since γ < 1 48 ). We first follow the proof of Proposition 9 in [START_REF] Castell | A local limit theorem for random walks in random scenery and on randomly oriented lattices[END_REF] (here ε 0 = β) and more precisely of Lemma 14 therein. Let y 1 ∈ Z be such that N n (y 1 ) = N * n and set y 0 := min{y ≥ y 1 :

N n (y) ≤ β 2 n 1 2 -ε }.
On Ω n (γ), for n large enough, y 0 > y 1 (since ε > γ) and so N n (y 0 -1)

> β 2 n 1 2 -ε ≥ N n (y 0 ). Moreover, still on Ω n (γ), N n (y 0 -1) -N n (y 0 ) ≤ n 1 4 +γ which is smaller than β 4 n 1 2 -ε for n large enough so that β 4 n 1 2 -ε ≤ N n (y 0 ) ≤ β 2 n 1 2 -ε . Now, on Ω n (γ), for every z ∈ Z such that |y 0 -z| ≤ e n := β 10 n 1 4 -ε-γ , then |N n (z) -N n (y 0 )| ≤ |y 0 -z|n 1 4 +γ ≤ β 10 n 1 2 -ε
and so

β 10 n 1 2 -ε < N n (z) < βn 1 2 -ε , hence |tN n (z)| ≤ β if n -1 2 -γ < |t| < n -1 2 +ε and so, on Ω n (γ), y∈Z |ϕ ξ (tN n (y))| ≤ exp - σ 2 ξ 4 t 2 y 0 +en z=y 0 -en (N n (z)) 2 ≤ exp - σ 2 ξ 4 n -1-2γ 2e n β 2 100 n 1-2ε ≤ exp - σ 2 ξ 2 n 1 4 -3γ-3ε β 3 10 3 .
Hence we have proved that, for n large enough, on Ω n (γ),

βn -1 2 -γ ≤|t|≤n -1 2 +ε y |ϕ ξ (tN n (y))| dt ≤ c 4 √ V n (22) 
since 3γ + 3ε < 1 4 . Under the assumptions of Theorem 2, the same argument gives +γ . Due to this remark and using the notations and results contained in Section 2.8 of [START_REF] Castell | A local limit theorem for random walks in random scenery and on randomly oriented lattices[END_REF], we take for Ω (0) n (γ) the subset of Ω n (γ) ∩ D n on which #{z : N n (z) ∈ I} ≥ n 1 2 -2γ /4 (with D n and I being defined in Section 2.8 of [START_REF] Castell | A local limit theorem for random walks in random scenery and on randomly oriented lattices[END_REF] applied with α = 2). Since γ < 1 8 and 3γ < ε < 1 2 , we obtain that P(Ω n (γ) \ Ω (0) n (γ)) = o(e -cn ) for some c > 0 3 . Moreover, there exists an integer n 2 such that if n ≥ n 2 , on Ω (0)

n (γ) we have ∀t ∈ [n -1 2 +ε , π d ], y |ϕ ξ (tN n (y))| ≤ exp(-n γ ) ≤ c 4 √ V n (24) 
(see the lines before the proof of Lemma 17 of [START_REF] Castell | A local limit theorem for random walks in random scenery and on randomly oriented lattices[END_REF]). The same argument (with the flat peaks instead of the peaks as explained in Section 5.4 of [START_REF] Castell | A local limit theorem for random walks in random scenery and on randomly oriented lattices[END_REF] gives also (for every n large enough)

∀t ∈ [n -1 2 +ε , π d ], y |ϕ ξ (t Ñn (y))| ≤ exp(-n γ ) ≤ c 4 Ṽn ( 25 
)
on some set Ω(0) n (γ) such that P( Ωn (γ) \ Ω(0) n (γ)) = o(e -cn ).

3 Indeed, using the notations Dn, En and I of Section 2.8 of [START_REF] Castell | A local limit theorem for random walks in random scenery and on randomly oriented lattices[END_REF], P(Dn) = 1 -o(e -cn ); moreover following the proof of Lemma 15 of [START_REF] Castell | A local limit theorem for random walks in random scenery and on randomly oriented lattices[END_REF] we obtain that Ωn(γ)∩Dn ⊂ En, and finally, due to the remark following Lemma 17 of [START_REF] Castell | A local limit theorem for random walks in random scenery and on randomly oriented lattices[END_REF], p2(n) := P(En, #{z : Nn(z) ∈ I} < n 

2.3.

A conditional Berry-Esseen bound for RWRS. Let Φ be the distribution function of the standard gaussian distribution, i.e.

∀u ∈ R, Φ(u) = 1 √ 2π u -∞ e -x 2 2 dx. ( 26 
)
For p ≥ 1, let us define the p-fold self-intersection local time of the random walk up to time n

Q (p) n := y∈Z N n (y) p .
Under the assumptions of Theorem 2, we define

Q(p) n := y∈Z Ñn (y) p .
Lemma 6. There exists a positive constant C such that for every n ≥ 1

sup x∈R P Z n σ ξ √ V n ≤ x S -Φ(x) ≤ C E[|ξ 0 | 3 ] E[|ξ 0 | 2 ] 3/2 Q (3) n V 3/2 n
and such that, under the assumptions of Theorem 2,

sup x∈R P Zn σ ξ Ṽn ≤ x (S, (ε k ) k ) -Φ(x) ≤ C E[|ξ 0 | 3 ] E[|ξ 0 | 2 ] 3/2 Q(3) n Ṽ 3/2 n .
Proof. This result directly follows from Berry-Esseen theorem since conditionally on the random walk, Z n (resp. Zn ) is the sum of centered, independent random variables ξ y N n (y) (resp. ξ y Ñn (y) under the assumptions of Theorem 2).

Proof of Theorems 1 and 2

3.1. Relation to exponential functionals. The main idea is to relate the persistence probability to the exponential functional T ℓ=ℓ 0 e Z ℓ (with ℓ 0 ∈ {0, 1}), cf. [START_REF] Molchan | Maximum of fractional Brownian motion: probabilities of small values[END_REF][START_REF] Aurzada | On the one-sided exit problem for fractional Brownian motion[END_REF][START_REF] Castell | On the one-sided exit problem for stable processes in random scenery[END_REF][START_REF] Aurzada | Persistence of fractional Brownian motion with moving boundaries and applications[END_REF][START_REF] Castell | Persistence exponent for random processes in Brownian scenery[END_REF]. In [START_REF] Molchan | Maximum of fractional Brownian motion: probabilities of small values[END_REF] it is shown that the continuous-time analog of this quantity behaves as cT H-1 for any continuoustime H-self-similar process with stationary increments and a certain other time-reversibility property. Further, certain moment conditions are assumed in [START_REF] Molchan | Maximum of fractional Brownian motion: probabilities of small values[END_REF] (also see [START_REF] Molchan | Maximum of fractional Brownian motion: probabilities of small values[END_REF]). We will apply the following lemma which does not have these moment conditions and in which H-self-similarity (which does not make sense in discrete time) is replaced by [START_REF] Slepian | The one-sided barrier problem for Gaussian noise[END_REF] extracting the "natural scaling" of the process Z. [START_REF] Aurzada | Persistence exponent for discrete-time, time-reversible processes[END_REF]] Let Z = (Z n ) n∈N be a stochastic process with lim

Lemma 7. [see Lemma 5 in

T →+∞ 1 T H ℓ(T ) E sup t∈[0,1] Z [tT ] = κ, ( 27 
)
for some H ∈ (0, 1), κ ∈ (0, ∞), and with ℓ being a slowly varying function at infinity. Further assume that Z is time-reversible in the sense that for any T ∈ N, the vectors (Z T -k -Z T ) k=0,...,T and (Z k ) k=0,...,T have the same law. Then,

lim sup x→+∞ x 1-H ℓ(x) E [x] l=0 e Z l -1 ≤ κH and lim inf x→+∞ x 1-H ℓ(x) E [x] l=1 e Z l -1 ≥ κH.
Note the difference in the summation l = 0, . . . vs. l = 1, . . ., which complicates the use of this lemma to prove the lower bounds in Theorems 1 and 2. Our additional assumptions for the lower bounds of Theorems 1 and 2 come from the fact that the sum starts from 1 in the second inequality of Lemma 7.

3.2. Verification of Lemma 7 for RWRS. The goal of this subsection is to verify that Lemma 7 holds with H := 3/4 and ℓ ≡ 1 for the RWRS Z and for Z.

We first show that RWRS is time-reversible. Note that

Z T -k -Z T = T -k j=1 ξ S j - T j=1 ξ S j = - T j=T -k+1 ξ S j , k = 0, . . . , T.
By conditioning on the random walk and using the symmetry of the environment as well as the fact that the environment is i.i.d. (and thus spatially homegeneous), the above vector has the same distribution as

T j=T -k+1 ξ S j -S T +1 = k j=1 ξ S T -j+1 -S T +1 , k = 0, . . . , T.
Since (ξ y ) y and (ξ -y ) y have the same distribution, the above vector has the same distribution as

k j=1 ξ S T +1 -S T -j+1 , k = 0, . . . , T. (28) 
Now we condition on the environment and use that

S T +1 -S T -j+1 = T +1 i=T -j+2 X i = j i=1
X T +2-i , j = 0, . . . , T, has the same law as (S j ) j=0,...,T , which in connection with [START_REF] Spitzer | Principles of Random Walks[END_REF] shows the claim that Z is timereversible.

Under the assumptions of Theorem 2, using the fact that that Zk = k ℓ=1 ξ S ℓ-1 ε ℓ = k ℓ=1 ξ S ℓ ε ℓ for every positive integer T , the vector

( ZT -k -ZT ) k=0,...,T = - T ℓ=T -k+1 ξ S ℓ-1 ε ℓ has the same distribution as T ℓ=T -k+1 ξ S T -S ℓ-1 ε ℓ k=0,...,T = T ℓ=T -k+1 ξ Xℓ (1-ε ℓ )+...+ XT (1-ε T ) ε ℓ k=0,...,T
(since (ξ y ) y and (-ξ S T -y ) y have the same distribution given (S, (ε k ) k )), which has the same distribution as

T ℓ=T -k+1 ξ XT -ℓ+1 (1-ε T -ℓ+1 )+...+ X1 (1-ε 1 ) ε T -ℓ+1 k=0,...,T = k ℓ=1 ξ S ℓ ε ℓ k=0,...,T = Zk k=0,...,T
(since ( Xℓ , ε ℓ ) ℓ=1,...,T and ( XT -ℓ+1 , ε T -ℓ+1 ) ℓ=1,...,T have the same distribution given ξ). Hence we have proved the time-reversibility of Z. Now let us verify [START_REF] Slepian | The one-sided barrier problem for Gaussian noise[END_REF]. Note that the sequence of random variables T -3/4 max k=1,...,T Z k is uniformly bounded in L 2 : Indeed, given S, the random variable Z n is a sum of associated random variables with zero mean and finite variance, so from Theorem 2 in [START_REF] Newman | An invariance principle for certain dependent sequences[END_REF],

E[( max k=1,...,T Z k ) 2 |S] ≤ E[Z 2 T |S] = V T .
By integrating with respect to the random walk, we get

E[( max k=1,...,T Z k ) 2 ] ≤ E[V T ] ∼ CT 3/2 ,
cf. (2.13) in [START_REF] Kesten | A limit theorem related to a new class of self-similar processes[END_REF]. Since the sequence of processes (Z [tT ] /T 3/4 ) t≥0 weakly converges for the Skorokhod topology to the process (∆ t ) t≥0 (see [START_REF] Kesten | A limit theorem related to a new class of self-similar processes[END_REF] and the remark following Theorem 2 of [START_REF] Castell | A local limit theorem for random walks in random scenery and on randomly oriented lattices[END_REF]), we get lim

T →+∞ E sup t∈[0,1] Z [tT ] T 3/4 = E sup t∈[0,1] ∆ t =: κ,
which is known to be finite using Proposition 2.1 in [START_REF] Castell | On the one-sided exit problem for stable processes in random scenery[END_REF].

Under assumptions of Theorem 2, we proceed analogously to prove that ( 27) holds for Z. We obtain E[( max k=1,...,T

Zk ) 2 ] ≤ E[ ṼT ] ≤ E[V T ] ∼ CT 3/2 ,
cf. (2.13) in [START_REF] Kesten | A limit theorem related to a new class of self-similar processes[END_REF]. The fact that the sequence of processes ( Z[tT ] /T 3/4 ) t≥0 weakly converges for the Skorokhod topology to the process (K δ ∆ t ) t≥0 where K δ = δ (1-δ) 1/4 has been proved in [START_REF] Guillotin-Plantard | A functional limit theorem for a 2d-random walk with dependent marginals Electronic Communications in Probability[END_REF] and so lim

T →+∞ E sup t∈[0,1] Z[tT ] T 3/4 = K δ E sup t∈[0,1]
∆ t =: κ.

3.3.

Proof of the upper bound. As in [START_REF] Molchan | Maximum of fractional Brownian motion: probabilities of small values[END_REF] and [START_REF] Aurzada | On the one-sided exit problem for fractional Brownian motion[END_REF], the main idea in the proof of the upper bound in [START_REF] Aurzada | Persistence of fractional Brownian motion with moving boundaries and applications[END_REF], is to bound the exponential functionals Let us precise that these inequalities will play the role of the Slepian Lemma in [START_REF] Castell | On the one-sided exit problem for stable processes in random scenery[END_REF][START_REF] Castell | Persistence exponent for random processes in Brownian scenery[END_REF][START_REF] Aurzada | Persistence exponent for discrete-time, time-reversible processes[END_REF]. Let a T ≥ (log T ) 6 and set β T := σ ξ V a T . Let us define the random function

φ(k) := 1 for 0 ≤ k < a T , 1 -β T for a T ≤ k ≤ T ,
which is S-measurable. Clearly, we have

E   T k=0 e Z k -1 S   ≥ T k=0 e φ(k) -1 P ∀k ∈ {0, . . . , T }, Z k ≤ φ(k) S . (33) 
From ( 29), we have

P ∀k ∈ {0, . . . , T }, Z k ≤ φ(k) S ≥ P max k=0,...,a T Z k ≤ 1 S P max k=a T ,...,T Z k ≤ 1 -β T S .
Note that

P max k=a T ,...,T Z k ≤ 1 -β T S ≥ P Z a T ≤ -β T ; max k=a T ,...,T (Z k -Z a T ) ≤ 1 S ≥ P Z a T ≤ -β T S • P max k=a T ,...,T (Z k -Z a T ) ≤ 1 S ,
by [START_REF] Taqqu | Weak convergence to fractional Brownian motion and to the Rosenblatt process[END_REF]. Moreover, it is easy to check that for every T > 1

T k=0 e φ(k) ≤ e(a T + 1 + T e -β T ).

In the following, C is a constant whose value may change but does not depend on T . Then, summing up (33) and the succeeding estimates, we can write that for T large enough

(a T +T e -β T )E   T k=0 e Z k -1 S   ≥ CP [Z a T ≤ -β T |S] P max k=0,...,a T Z k ≤ 1 S P max k=a T ,...,T (Z k -Z a T ) ≤ 1 S .
(34) The two first probabilities in the right hand side of (34) can be approximated with the distribution function of the standard Gaussian law N (0, 1). The error by doing this approximation will be controlled by using Lemma 6. Indeed, we have

P [Z a T ≤ -β T |S] = P [Z a T ≤ -β T |S] -Φ(-1) + Φ(-1) (35) ≥ Φ(-1) - C E[|ξ 0 | 3 ] E[|ξ 0 | 2 ] 3/2 Q (3) a T V 3/2 a T ≥ Φ(-1) - C V a T N * a T V 3/2 a T ≥ Φ(-1) - C N * a T V a T , (36) 
Moreover since the law of the random scenery is symmetric, from Lévy's inequality (see for instance Theorem 2.13.1 in [START_REF] Stout | Almost sure convergence[END_REF]), we get

P max k=0,...,a T Z k ≤ 1 S = 1 -P max k=0,...,a T Z k > 1 S ≥ 1 -2P Z a T > 1 S = P Z a T ≤ 1 S . (37) 
Now, let γ ∈ (0, 1/48), due to Lemma 5, for T large enough such that a T ∈ dN, 

P Z a T ≤ 1|S ≥ P Z a T = 0|S ≥ c V a T , (38) 
a T (γ), we have

P max k=a T ,...,T (Z k -Z a T ) ≤ 1 S ≤ C (a T + T e -β T )E T k=0 e Z k -1 S P [Z a T ≤ -β T |S] P max k=0,...,a T Z k ≤ 1 S ≤ C a 3 4 + γ 2 T (a T + T e -σ ξ a 3 4 - γ 2 T )E T k=0 e Z k -1 S (Φ(-1) -Ca -1 4 + 3γ 2 T ) ≤ Cγ a 3 4 + γ 2 T (a T + T e -σ ξ a 3 4 - γ 2 T )E   T k=0 e Z k -1 S  
for T large enough, where we used the facts that

β T = σ ξ V a T ≥ σ ξ a 3 4 -γ 2 T and that N * a T √ Va T ≤ a -1 4 + 3γ 2 T . It comes P max k=a T ,...,T (Z k -Z a T ) ≤ 1 ≤ P((Ω (0) a T (γ)) c )+ Cγ a 3 4 + γ 2 T (a T +T e -σ ξ a 3 4 - γ 2 T )E   T k=0 e Z k -1   (39) if a T ∈ dN. Let δ 0 ∈ (0, γ 2 ), we take a T = d 1 d ((log T )/4) 2 δ 0 , so that P((Ω (0) a T (γ)) c ) = o e -(a T ) δ 0 2 ≤ T -1 4 . We observe that a 3 4 -γ 2 T ≥ c 0 (log T ) ( 3 γ -2) > c 0 (log T ) 142 . Applying
Lemma 7, we conclude that there exists some constant c > 0 such that

P max k=a T ,...,T (Z k -Z a T ) ≤ 1 = O (log T ) c T -1 4 . (40) 
The left hand side of (40) is greater than the quantity we want to bound from above, since by stationarity of increments,

P max k=a T ,...,T (Z k -Z a T ) ≤ 1 = P max k=0,...,T -a T Z k ≤ 1 ≥ P max k=0,...,T Z k ≤ 1 . (41) 
Let us make now the assumptions of Theorem 2. Analogously, on Ω(0) a T (γ), if a T k=0 ε k ∈ dN, the following inequality holds

P max k=a T ,...,T ( Zk -Za T ) ≤ 1 (S, (ε k ) k ) ≤ Cγ a 3 4 + γ 2 T (a T + T e -σ ξ a 3 4 - γ 2 T )E   T k=0 e Zk -1 (S, (ε k ) k )   . ( 42 
)
We take 0 < 2δ 0 < γ < γ < 1 48 and ãT := ((log T )/4) 2 δ 0 . We define a T := min{k ≥ ãT : 4 ).

k ℓ=1 ε ℓ ∈ dN} (here a T is a (S, (ε k ) k )-measurable random variable). Since d ≤ 2, we observe that P(a T -ãT > ãδ 0 T ) ≤ P    ãδ 0 T ℓ=1 ε ℓ = 0    = (1 -δ) ãδ 0 T = o e -(ã T ) δ 0 2 = o(T - 1 
Moreover, there exists T0 such that, for every T ≥ T0 , Ω(0) ãT (γ) ∩ {a T ≤ ãT + ãδ 0 T } ⊆ Ω(0) a T (γ). Hence 

P max k=a T ,...,T ( Zk -Za T ) ≤ 1 ≤ P(( Ω(0) ãT (γ)) c ) + P(a T -ãT > ãδ 0 T ) + Cγ a 3 4 + γ 2 T (a T + T e -σ ξ a 3 4 - γ 2 
First, we clearly have

I 1 (T ) ≤ E[e -Z * T 1 Z * T ≥β log T ] ≤ T -β .
We observe that I 2 (T ) ≤ E e -Z 1 1 Z * T <β log T . Let us fix a parameter θ ∈ (0, 1) and let us define the event A := {Z 1 ≥log H -1 3κ 4 θT -1 4 }. Then,

I 2 (T ) ≤ H -1 3κ 4 θT -1 4 P [Z * T < β log T ] + E e -Z 1 1 A c . (46) 
Since Z 1 has the same distribution as ξ 1 , its distribution is symmetric and so 

Let γ ∈ (0, 1/48), δ 0 ∈ (0, γ 2 ) and a T = d⌈(β log T ) 2/δ 0 /d⌉. Note that from inequalities ( 29) and ( 30 

2. 2 .

 2 A conditional local limit Theorem for the RWRS. Let ϕ ξ be the characteristic function of ξ 1 . Since ξ 1 takes integer values, e 2iπξ 1 = 1 a.s. and so ϕ ξ (u) = 1 for every u ∈ 2πZ. Let us consider the positive integer d such that d {u : |ϕ ξ (u)| = 1} = 2πZ. Another characterization of d is that it is the positive generator of the subgroup of Z generated by the bc, with b and c in the support of the distribution of ξ 1 (i.e. by the support of the distribution of ξ 0ξ 1 ). Since the support of ξ 1 is not contained in a proper subgroup of Z, we also have d = inf{n ≥ 1 : e 2iπnξ 1 /d = 1 a.s.}. Observe that e 2iπ d ξ 1 is almost surely constant and so (e 2iπ d ξ 1 ) 2 = ϕ ξ 2π d 2 = e 2iπ d (ξ 0 +ξ 1 ) almost surely. Since the distribution of ξ 1 is symmetric, P(ξ 0 + ξ 1 = 0) > 0 and so (e 2iπ d ξ 1 ) 2 = 1 almost surely. Hence either d = 1 (and e 2iπ d ξ 1 = 1 a.s.) or d = 2 (and e 2iπ d ξ 1 = -1 a.s.). The following lemma relates the conditional probability P[ Z n = 0 | S] to the self-intersection local time V n of the random walk S up to time n. Let us recall that V n is given by

3 2 -γ ≤ Ṽn ≤ n 3 2

 33 +γ and sup Ñn (Z) ≥ n 1 2 -γ

* n ≤ n 1 2

 1 15 of[START_REF] Castell | A local limit theorem for random walks in random scenery and on randomly oriented lattices[END_REF] still holds with our set Ω n (γ) since the proof only uses the fact that N +γ and that R n ≤ n 1 2

1 2 -

 2 2γ /4) = o(e -cn ). Therefore P(Ωn(γ)\Ω (0) n (γ)) ≤ P(Ωn(γ)\Dn)+p2(n) = o(e -cn ).

T k=0 e Z k - 1 of

 1 Lemma 7 from below by restricting the expectation to a well-chosen set of paths.Conditionally on S, Z k is the sum of centered and positively associated random variables. It follows that for every 0 ≤ u < v < w and all real numbers a, b,P max k=u,...,v Z k ≤ a, max k=v+1,...,w Z k ≤ b S ≥ P max k=u,...,v Z k ≤ a S P max k=v+1,...,w Z k ≤ b S(29)P max k=u,...,v Z k ≤ a, max k=v+1,...,w (Z k -Z v ) ≤ b S ≥ P max k=u,...,v Z k ≤ a S P max k=v+1,...,w (Z k -Z v ) ≤ b S ,(30)and analogously, under the assumptions of Theorem 2, P max k=u,...,v Zk ≤ a, max k=v+1,...,w Zk ≤ b (S, (ε k ) k ) ≥ P max k=u,...,v Zk ≤ a (S, (ε k ) k ) P max k=v+1,...,w Zk ≤ b (S, (ε k ) k ) (31) P max k=u,...,v Zk ≤ a, max k=v+1,...,w ( Zk -Zv ) ≤ b (S, (ε k ) k ) ≥ P max k=u,...,v Zk ≤ a (S, (ε k ) k ) P max k=v+1,...,w ( Zk -Zv ) ≤ b (S, (ε k ) k ) . (32)

4 .

 4 Proof of the lower bound. Fix β > 1/4 and define Z * T := max k=1,...,T Z k . Observe that E 1 (T ) + I 2 (T ).

E e -Z 1 1 1 4-1 4 - 1 .

 1141 A c = H H (I 1 (x) + I 2 (x))So we have shown that for T large,P [Z * T ≤ β log T ] ≥ c -1 T -1/4 H -1 3κ 4 θT

2 = 4 H 1 T - 1 / 4 H -1 3κ 4δ θT -1 4 - 1 ≤

 2411441 ), we haveP max k=1,...,T Z k ≤ 1 S ≥ P max k=1,...,a T Z k ≤ 1; Z a T ≤ -β log T ; max k=a T +1,...,T Z k -Z a T ≤ β log T S ≥ P max k=1,...,a T Z k ≤ 1 S • P [Z a T ≤ -β log T |S] •P max k=a T +1,...,T Z k -Z a T ≤ β log T S(48)From Lemma 5, (37), (38) and Lemma 6, for T large enough, on Ω (0) a T (γ),P max k=a T +1,...,T Z k -Z a T ≤ β log T S (49) ≤ c V a T Φ -β log T σ ξ V a Tthe last inequality and the stationarity of the increments, we getP [Z * T ≤ β log T ] ≤ E P max k=a T +1,...,T Z k -Z a T ≤ β log T S ≤ E P max k=a T +1,...,T Z k -Z a T ≤ β log T S 1 Ω (0) a T (γ) + P[(Ω (0) a T (γ)) c ] ≤ c(log T ) 3+2γ 2δ 0 P max k=1,...,T Z k ≤ 1 + P[(Ω (0) a T (γ)) c ]. a T (γ)) c ) = O e -(a T ) δ 0 O(T -β), by combining (47) and (51), we get the lower bound.Under the assumptions of Theorem 2, we proceed analogously by replacing Z by Z (and V by Ṽ ) and we obtain, for T large enough,P Z * T -a T ≤ β log T ≥ P Z * T ≤ β log T ≥ c -1 T -1/given by H(t) := E[e ξ 1 ε 1 1 {e ξ 1 ε 1 >t} ] = δH(t)+(1-δ)1 {t<1} (hence H-1 (u) = H -1(u/δ) as soon as u < δH(1)) andP max k=a T +1,...,T Zk -Za T ≤ β log T (S, (ε k ) k ) ≤ c(log T ) 3+2γ 2δ 0 P Z * T ≤ 1 (S, (ε k ) k ) ε k ∈ dN.We proceed now as for the upper bound. We take ãT := ((log T )/4) 2 δ 0 and 0 < 2δ 0 < γ < γ < 1 48 and ãT = ⌈(β log T ) 2/δ 0 ⌉. We define again a T := min{k ≥ ãT : k ℓ=1 ε ℓ ∈ dN}. Using the stationarity of ( Zk ) k , we obtainc -P Z * T -a T ≤ 1 ≤ E P maxk=a T +1,...,T Zk -Za T ≤ β log T (S, (ε k ) k ) ≤ P(( Ω(0) ãT (γ)) c ) + P(a T -ãT > ãδ 0 T ) +c(log T ) 3+2γ 2δ 0 P Z * T ≤ 1

  Let us prove that the argument therein can be adapted to prove the same result for N * n instead of R n . Observe first that a → P[N * n ≥ a] is sub-multiplicative. Indeed, let a, b be two positive integers. Let us write τ a

  holds a.s. on a sequence of S-measurable sets Ω

	(0) a T (γ). Due to (34), (36), (38), on Ω

for T large enough, from which we conclude.

supported by the french ANR project MEMEMO2. for some m > 1, then we replace