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Abstract

Logistic models for random graphs are commonly used to study binary networks
when covariate information is available. After estimating the logistic parameters,
one of the main questions which arises in practice is to assess the goodness of
fit of the corresponding model. To address this problem, we add a general term,
related to the graphon function of W-graph models, to the logistic function. Such
an extra term aims at characterizing the residual structure of the network, that is
not explained by the covariates. We approximate this new generic logistic model
using a class of models with blockwise constant residual structure. This framework
allows to derive a Bayesian procedure from a model based selection context using
goodness-of-fit criteria. All these criteria depend on marginal likelihood terms for
which we do provide estimates relying on two series of variational approximations.
Experiments on toy data are carried out to assess the inference procedure. Finally,
two real networks from social sciences and ecology are studied to illustrate the
proposed methodology.

keywords : Random graphs; logistic regression; W -graph model; variational ap-
proximations

1 Introduction

Networks are now used in many scientific fields [14, 16, 30, 32, 37, 39] from biology
[2, 4, 22, 29] to historical sciences [19, 34] and geography [12]. Indeed, while being simple
data structures, they are yet capable of describing complex interactions between entities of
a system. A lot of effort has been put, especially in social sciences, in developing methods
to characterize the heterogeneity of these networks using latent variables and/or covariate
information. Latent variable techniques [13, 28] usually associate a hidden variable to each
node of a network such that the construction of edges involve mixture models. Because
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nodes can have different latent variables, they can have various connectivity patterns
within the network. A long series of papers has focused in the last ten years on the
stochastic block model (SBM) [30, 36]. The model assumes that nodes are spread in
unknown clusters and that the probability of connection of two nodes depends exclusively
on the clusters they belong to. Note that extensions have been proposed for SBM to deal
for instance with valued edges [27]. This alternative approach allows the use of covariates
to explain the presence of interactions between nodes. The latent position model (LPM)
[16] and the latent position cluster model (LPCM) [14] also allow to consider both latent
variables and covariates [27, 40]. Their goal is to integrate the two sources of heterogeneity
in a principle manner and assumptions are usually made regarding the hidden connectivity
patterns. In LPCM for instance, latent variables allow to model communities only where
two nodes of the same community are more likely to be connected.

In this paper, we tackle a different problem. Thus, we consider standard logistic models
which are highly used in practice to deal with covariates in networks, assuming edges to
be independent. Our framework aims at allowing practitioners to assess the goodness of
fit of their estimated models, i.e. testing the presence of heterogeneity in the network
not accounted for by the fitted model. It relies on two of the most flexible random graph
models with latent variables, namely the SBM and the W -graph model, to characterize
the residual structure not explained by the covariates.

Usual random graph models for binary networks, like SBM, can be seen as special cases of
the W -graph model. This model is characterized by a function W called graphon where
W (u, v) is the probability for two nodes, with latent coordinates u and v, sampled from an
uniform distribution over [0, 1], to connect. As shown in [26], it is the limiting adjacency
matrix of the network. This result comes from graph limit theory for which Diaconis and
Janson [11] gave a proper definition using Aldous-Hoover theorem, which is an extension
of deFinetti’s theorem to exchangeable arrays. Until recently, few inference techniques
had been proposed to infer the graphon function of a network. The earliest reference is
Kallenberg [20]. Since then, both parametric [15, 31] and non parametric [9] techniques
have been developed. Graphon inference is a particularly challenging problem which has
received strong attention is the last few years [1, 3, 9, 38]. In particular, we point out
the work of Latouche and Robin [25] who used a VBEM procedure to approximate the
graphon function as an average of SBM models with increasing number of blocks.

In this paper, we add a general term, related to the graphon function of W -graph models,
to the logistic regression model. This generic term allows to encode the residual structure
present in the data, not explained by the covariates. Unfortunately, exact inference of this
new logistic model for networks is not tractable and therefore we propose to rather consider
a series of models with blockwise constant residual structures. Within this framework,
after introducing prior distributions, the fit can be evaluated from a Bayesian model
averaging context and goodness-of-fit criteria are introduced. All these criteria depend
on marginal likelihood terms which are not tractable. To tackle this issue, two series of
variational approximations are considered and estimates are derived.
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In Section 2, we take a general point of view and the discussion is to the point to help
introducing the Bayesian testing procedure. Technical issues and theoretical aspects are
addressed in Section 3. Finally, toy and real data sets are analyzed in Section 4 and 5
respectively to illustrate the proposed methodology.

2 Assessing goodness-of-fit

We consider a set of n individuals among which interactions are observed. The observed
interaction network is encoded in the binary adjacency matrix Y = (Yij)1≤i,j≤n where
Yij is 1 if nodes i and j are connected, and 0 otherwise. We further assume that a d-
dimensional vector, d ≥ 1, of covariates xij is available for each pair of nodes. In the
following, we denote as X = (xij)1≤i,j≤n the set of all covariates.

2.1 Logistic regression and residual structure

The influence of the covariates on the network topology can be easily accounted for using
a logistic regression model. Such a model assumes that the edges (Yij) are independent
with respective distribution

H0 : Yij ∼ B
[
g(xᵀijβ + α)

]
,

where β ∈ Rd, α ∈ R, g stands for the logistic function g(t) = 1/(1+exp(−t)), t ∈ R. Our
goal is to assess the goodness of fit of Model H0. Note that the network structure does
note explicitly appear in this model, as edges are considered as independent outcomes of
a (generalized) linear model.

To assess the fit of Model H0, we define a generic alternative network model. The
alternative we consider is inspired from the graphon model. More precisely, we consider
the model

H1 : Yij ∼ B
[
g(xᵀijβ + φ(Ui, Uj))

]
,

where the (Ui)1≤i≤n are independent unobserved latent variables, with uniform distribu-
tion over the (0, 1) interval. The non-constant function φ : (0, 1)2 7→ R encodes a residual
structure in the network, that is not accounted for by Model H0. Note that, in absence of
covariate, this model corresponds to a W -graph ([26]) with graphon function g ◦φ. Model
H0 corresponds to the case where the residual function φ is constant.

The inference of the function φ in Model H1 is not an easy task and, following [25]
and [1], we consider a class of blockwise constant φ function. More precisely, we define
the Model

MK : Yij ∼ B
[
g(xᵀijβ + Zᵀ

i αZj)
]
, (1)

where α is a K×K real matrix (K ≥ 1) and where the (Zi)1≤i≤n are independent vectors
with K coordinates, all zero except one. We denote πk (1 ≤ k ≤ K) the probability
that the kth coordinate is non-zero. Briefly speaking, each vector Zi has multinomial
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distribution M(1, π) where π = (πk)1≤k≤K . The set of parameters of such a model is
θ = (β, π, α). Note that in the absence of covariate, this model corresponds exactly to a
SBM model.

Model H0 is then equivalent to Model M1 so the goodness-of-fit problem can be
rephrased as the comparison between Model H0 and H ′1, where

H0 = M1 and H ′1 =
⋃
K≥2

MK .

2.2 Bayesian model comparison

Now, we are given a series of Models MK (K ≥ 1) indexed by K which characterize
H0 and H ′1. In this paper, we propose to compare H0 and H ′1 using a Bayesian model
comparison framework.

Thus, each Model MK is associated to a prior probability p(MK). The parameter θ
is then drawn conditionally on MK according to the prior distribution p(θ|MK). Given
θ, MK and the given set X of covariates, the graph is finally assumed to be sampled
according to Model (1). In this framework the prior probability of Models H0 and H ′1 are

p(H0) = p(M1) and p(H ′1) =
∑
K≥2

p(MK).

Moreover, the posterior probability of Model MK is

p(MK |Y ) =
p(Y |MK)p(MK)

p(Y )
=

p(Y |MK)p(MK)∑
K′≥1 p(Y |MK′)p(MK′)

. (2)

The goodness of fit of Model H0 can then be assessed by computing the posterior
probability of H0:

p(H0|Y ) = p(M1|Y ). (3)

The Bayes factor [21] between Models H0 and H ′1 can be computed in a similar way as

B01 =
p(Y |H0)

p(Y |H ′1)
where p(Y |H ′1) =

1

p(H ′1)

∑
K≥2

p(MK)p(Y |MK). (4)

3 Inference

The goodness-of-fit criteria introduced in the previous section all depend on marginal like-
lihood terms p(Y |MK) which have to be estimated from the data in practice. This is the
object of this section. The prior distributions p(MK) and p(θ|MK) are first introduced. A
variational three steps optimization scheme, based on global and local variational meth-
ods, is then derived for inference.
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In the following, we focus on undirected networks and therefore both the adjacency
matrix Y and the matrix X of covariates are symmetric: Yij = Yji and xij = xji,∀i 6= j.
The complete derivation of the model and the inference procedure in the directed case
are given as supplementary materials. Moreover, we do not consider self-loops, i.e. the
connection of a node to itself and therefore the pairs (i, i),∀i are discarded from the sums
and products involved.

3.1 Prior distributions

With no prior information on which model should be preferred, we give equal weights
p(H0) = p(H ′1) = 1/2 to H0 and H ′1. Therefore, p(M1) = 1/2. Alternative choices can be
made by integrating expert knowledge at hand. Recall that p(H ′1) =

∑
K≥2 p(MK).

For Model MK , the prior distribution over the model parameters in θ is defined as a
product of conjugate prior distributions over the different sets of parameters: p(θ|MK) =
p(β|MK)p(π|MK)p(α|MK). Since π is involved in a multinomial distribution to sample
the vectors Zi, a Dirichlet prior distribution is chosen

p(π|MK) = Dir(π; e),

where e is a vector with K components such that ek = e0 > 0,∀k ∈ {1, . . . , K}. Note that
fixing e0 = 1/2 induces a non-informative Jeffreys prior distribution which is known to be
proper [18]. It is also possible to obtain a uniform distribution over the K−1 dimensional
simplex by setting e0 = 1.

In order to characterize the d-dimensional regression vector β, a Gaussian distribution
is considered

p(β|η,MK) = N (β; 0,
Id
η

) =
d∏
j=1

N (βj; 0,
1

η
),

with Id the d× d identity matrix and η > 0 a parameter controlling the inverse variance.
Similarly, the matrix α is modeled using a product of Gaussian distributions with γ > 0
controlling the variance

p(α|γ,MK) =
K∏
k≤l

N (αkl; 0,
1

γ
).

Since we focus on undirected networks, α has to be symmetric and therefore the product
involves the k ≤ l terms of α. In the directed case (see supplementary materials), the
product is over all terms k, l and the vec operator, which stacks the columns of a matrix
into a vector, is used to simplify the calculations.

Finally, Gamma distributions are considered for γ

p(γ|MK) = Gam(γ; a0, b0), a0, b0 > 0,

and η
p(η|MK) = Gam(η; c0, d0), c0, d0 > 0.
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By construction, Gamma distributions are informative. In order to limit the influence
on the posterior distributions, the hyperparameters controlling the scale (a0, c0) and rate
(b0, d0) are usually set to low values in the literature.

The choice of modeling the prior information on the parameters α and β from such
Gaussian-Gamma distributions has been widely considered both in standard Bayesian
linear regression and Bayesian logistic regression (see for instance [6, 7]). The prior
distributions p(β|MK) and p(α|MK) are then obtained by marginalizing over p(η|MK)
and p(γ|MK) respectively. This results in prior distributions from the class of generalized
hyperbolic distributions. For more details, we refer to [8].

In the following, and in order to simplify the notations, the dependency on MK is
omitted in the prior and posterior distributions.

3.2 Variational approximations

Denoting Z the set of all latent vectors (Zi), the marginal log-likelihood of Model MK ,
also called the integrated observed data log-likelihood, is given by

log p(Y |MK) = log

{∑
Z

∫
p(Y |Z, α, β)p(Z|π)p(α|γ)p(β|η)p(π)p(γ)p(η)dπdαdβdγdη

}
.

(5)
It requires a marginalization over the prior distributions of all parameters. In particular,
it involves testing all the Kn configurations of Z. Unfortunately, (5) is not tractable and
therefore we propose to rely on variational approximations for inference purposes. Let us
first consider the global variational decomposition

log p(Y |MK) = LK(q) + KL (q(·)||p(·|Y,MK)) . (6)

Maximizing the functional LK(·), which is a lower bound of log p(Y |MK), with respect to
the distribution q(·), is equivalent to minimizing the Kullback-Leibler divergence between
q(·) and the unknown posterior distribution p(·|Y ). LK(·) is given by

LK(q) =
∑
Z

∫
q(Z, π, α, β, γ, η) log

p(Y, Z, π, α, β, γ, η)

q(Z, π, α, β, γ, η)
dπdαdβdγdη.

In order to maximize the lower bound, we assume that the distribution can be factorized
as follows:

q(Z, π, α, β, γ, η) = q(π)q(α)q(β)q(γ)q(η)
n∏
i=1

q(Zi).

Unfortunately, LK(·) is still intractable due to the logistic function in p(Y |Z, α, β). Fol-
lowing the work of [17], a tractable lower bound is derived.

Proposition 1 Given any n × n positive real matrix ξ = (ξij)1≤i,j≤n, a lower bound of
the first lower bound is given by

log p(Y |MK) ≥ LK(q) ≥ LK(q; ξ),
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where

LK(q; ξ) =
∑
Z

∫
q(Z, π, α, β, γ, η) log

√
h(Z, α, β, ξ)p(Z, π, α, β, γ, η)

q(Z, π, α, β, γ, η)
dπdαdβdγdη,

and

log h(Z, α, β, ξ) =
n∑
i 6=j

{
(Yij −

1

2
)(Zᵀ

i αZj + xᵀijβ) + log g(ξij)−
ξij
2

− λ(ξij)
(
(Zᵀ

i αZj + xᵀijβ)2 − ξ2
ij

)}
,

with ξij ∈ R+, ξij = ξji. Moreover, λ(ξij) = (g(ξij)− 1/2) /(2ξij), g being the logistic
function.

The proof is given in Appendix A.1. The quality of the lower bound LK(q; ξ), which
was obtained through a series of Taylor expansions, clearly depends on the choice of the
matrix ξ. As we shall see in Section 3.2.2, ξ can be estimated from the data to obtain
tight bounds.

3.2.1 Variational Bayes EM

For now, we assume that the matrix ξ is fixed and we rely on LK(q; ξ) as a lower bound
of log p(Y |MK). In order to maximize the lower bound, a VBEM algorithm [5] is applied
on LK(q; ξ). This optimization scheme is iterative and is related to the EM algorithm
[10]. Keeping all distributions fixed except one, the bound is maximized with respect
to the remaining distribution. This procedure is repeated in turn until convergence of
the bound. The optimization of the distribution q(Z) over the latent variables usually
refers to the variational E step. The updates of q(π), q(α), q(β), q(γ), and q(η) refer here
to the variational M step. Proposition 2 provides the update formula of the E-step and
Propositions 3 to 7 provide these of the M-step. The corresponding proofs are given in
Appendix A.2 to A.7.

Proposition 2 The variational E update step for each distribution q(Zi) is given by:

q(Zi) =M(Zi; 1, τi),

where
∑K

k=1 τik = 1 and

τik ∝ exp

{
K∑
l=1

(mα)kl

n∑
j 6=i

(
(Yij −

1

2
)− 2λ(ξij)x

ᵀ
ijmβ

)
τjl −

K∑
l=1

Eαkl
[α2
kl]

n∑
j 6=i

λ(ξij)τjl

+ ψ(enk)− ψ
( K∑
l=1

enl

)}
.

ψ(·) denotes the digamma function which is the logarithmic derivative of the gamma func-
tion.
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Proposition 3 The variational M update step for the distribution q(π) is given by:

q(π) = Dir(π; en),

where, ∀k ∈ {1, . . . , K}, enk = e0 +
∑n

i=1 τik, τik being given by Proposition 2.

Proposition 4 The variational M update step for the distribution q(β) is given by:

q(β) = N (β; mβ, Sβ),

where

S−1
β =

cn
dn
Id +

n∑
i 6=j

λ(ξij)xijx
ᵀ
ij,

and

mβ = Sβ
1

2

n∑
i 6=j

(
Yij −

1

2
− 2λ(ξij)τ

ᵀ
i mατj

)
xij.

Proposition 5 The variational M update step for the distribution q(γ) is given by:

q(γ) = Gam(γ; an, bn),

where an = a0 + K(K+1)
4

and bn = b0 + 1
2

∑K
k≤l Eαkl

[α2
kl].

Proposition 6 The variational M update step for the distribution q(η) is given by:

q(η) = Gam(η; cn, dn),

where cn = c0 + d
2

and dn = d0 + 1
2
Tr(Sβ)+ 1

2
mᵀ
βmβ, Sβ and mβ being given by Proposition

4.

Proposition 7 The variational M update step for the distribution q(α) is given by:

q(α) =
K∏
k 6=l

N
(
αkl; (mα)kl, (σ

2
α)kl
)
,

where

(σ2
α)−1
kk =

an
bn

+
n∑
i 6=j

λ(ξij)τikτjk,∀k,

(σ2
α)−1
kl =

an
bn

+ 2
n∑
i 6=j

λ(ξij)τikτjl, ∀k 6= l,

(mα)kk = (σ2
α)kk

n∑
i 6=j

(
1

2
(Yij −

1

2
)− λ(ξij)x

ᵀ
ijmβ

)
τikτjk, ∀k,

(mα)kl = (σ2
α)kl

n∑
i 6=j

(
(Yij −

1

2
)− 2λ(ξij)x

ᵀ
ijmβ

)
τikτjl,∀k 6= l.
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3.2.2 Optimization of ξ

So far, we have seen how the lower bound LK(q; ξ) of log p(Y |MK) could be maximized
with respect to the distribution q(Z, π, α, β, γ, η). However, we have not addressed yet
how ξ could be estimated from the data. Given a distribution q(·), we propose to maximize
LK(q; ξ) with respect to each variable ξij in order to obtain the tightest bound LK(q; ξ) of
log p(Y |MK). This follows the work of [7] on Bayesian hierarchical mixture of experts and
[23, 24] on the overlapping stochastic block model. As shown in the following proposition,

this leads to new estimates ξ̂ij of ξij.

Proposition 8 The estimate ξ̂ij of ξij maximizing LK(q; ξ) is given by

ξij =

√√√√ K∑
k,l

τikτjlEαkl
[α2
kl] + 2

K∑
k,l

τikτjl(mα)klx
ᵀ
ijmβ + Tr(xijx

ᵀ
ij(Sβ +mβm

ᵀ
β)).

Note that ξ̂ij = ξ̂ji,∀i 6= j since the networks considered are undirected.

This gives rise to a three steps optimization scheme. Given a matrix ξ, the variational
E and M steps of the VBEM algorithm are used to maximize LK(q; ξ) with respect to
q(·). This distribution is then held fixed and the bound is maximized with respect to ξ.
These three steps are repeated until convergence of the lower bound. The proof is given
in Appendix A.9.

3.3 Estimation

Goodness-of-fit For any K, we have seen how variational techniques could be used
to approximate the marginal log-likelihood log p(Y |MK) using a lower bound L̂K :=
maxq,ξ LK(q, ξ). As exposed in Section 2.1, our goodness-of-fit procedure relies on the
posterior probability of K, that is p(MK |Y ). Indeed, this posterior distribution cannot be
derived in a exact manner but, as shown in [35], the distribution p̂(MK |Y ) that minimizes
the Kullback-Leibler divergence with p(MK |Y ) satisfies

p̂(MK |Y ) ∝ p(MK) exp{L̂K}.

The approximate posterior probability of H0 is then p̂(H0|Y ) = p̂(M1|Y ) and the corre-

sponding approximate posterior Bayes factor B̂01, defined in (4), can be computed is the
same manner.

The following proposition, which is proved in Appendix A.8, shows that many terms
of LK(q; ξ) vanish, when computed after a specific optimization step, so that the lower
bound takes a simpler form.

9



Proposition 9 If computed right after the variational M step, the lower bound is given
by

LK(q; ξ) =
1

2

n∑
i 6=j

{
log g(ξij)−

ξij
2

+ λ(ξij)ξ
2
ij

}
+ log

C(en)

C(e)
+ log

Γ(an)

Γ(a0)
+ log

Γ(cn)

Γ(c0)

+ a0 log b0 + an(1− b0

bn
− log bn) + c0 log d0 + cn(1− d0

dn
− log dn)

+
1

2

K∑
k≤l

log(σ2
α)kl +

1

2
log |Sβ| −

n∑
i=1

K∑
k=1

τik log τik +
1

2

K∑
k≤l

(σ2
α)−1
kl (mα)2

kl −
1

2
mᵀ
βS
−1
β mβ

+
1

2
mᵀ
β

n∑
i 6=j

(Yij −
1

2
)xij,

where C(x) =
∏K

k=1 Γ(xk)
/

Γ
(∑K

k=1 xk

)
and Γ(·) is the gamma function.

Residual structures While the main object of this work is to provide tools to assess
the goodness of fit of a logistic regression model for networks, the considered variational
algorithm also provides a natural way to estimate the residual structure φ. We recall that,
under Model H0, i.e. the network is completely explained by the covariates, the function
φ is constant.

Still, under the alternative Model H1, a residual structure remains, that is encoded in
φ. As a consequence, an estimate of this function can be useful to investigate the residual
structure, similarly to the residual plot classically used in a regression context. Removing
the covariate effect, recall that MK is a SBM model. Therefore, an approximate posterior
mean can be derived, relying on the VBEM model averaging approach considered in [25]
for SBM. Proposition 10 provides the approximate posterior mean of the function φ, that
we propose as the network counterpart of the residual plot in regression. Note that it
results from an integration over all model parameters and Models MK .

Proposition 10 From Proposition 1 in [25], for (u, v) ∈ [0, 1]2, u ≤ v, the approximate
posterior mean of the residual structure φ is

Ê
[
φ(u, v)|Y

]
=
∑
K≥1

p̂(MK |Y )Ê
[
φ(u, v)|Y,MK

]
,

where

Ê
[
φ(u, v)|Y,MK

]
=
∑
k≤l

(mα)kl [Fk−1,l−1(u, v; e)− Fk,l−1(u, v; e)− Fk−1,l(u, v; e) + Fk,l(u, v; e)] .

Fk,l(u, v; e) denotes the joint cdf of the Dirichlet variables (σk, σl) such that σk =
∑k

l=1 πl
and π has a Dirichlet distribution Dir(e).
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4 Simulation study

In order to assess the proposed methodology, we carried out a series of experiments on
simulated data first and then on real data. In this section, we focus on the estimation of
the posterior probability p̂(H0|Y ). We aim at evaluating the capacity of the approach to
detect H1 using toy data. Similar results were obtained for the estimated Bayes factors
B̂01 and identical conclusions were drawn.

We simulated networks using Model H1. Thus, each node is first associated to a latent
position Ui sampled from a uniform distribution over the (0, 1) interval. Then, a vector
of covariates xi ∈ Rd is drawn for each node, using a standardized Gaussian distribution,
i.e. with zero mean and covariance matrix set to the identity matrix, with d = 2. In
order to construct the covariate vector xij ∈ Rd for each edge (i, j) with (i < j), we fixed
xij = xi−xj. For the function φ(·, ·), we considered a design inspired by the one proposed
in [25]. In this work, the graphon function is W (u, v) = ρλ2(uv)λ−1 where the parameter
ρ > 0 controls the graph density and λ > 0 the degree concentration. For more details,
we refer to [25]. Note that the maximum of the graphon function is ρλ2 so λ < 1/

√
ρ

must hold since W (·, ·) is a probability. In our case, the probabilities for nodes to connect
are given through a logistic function g(·) and therefore we set φ(u, v) = g−1

(
ρλ2(uv)λ−1

)
.

For λ = 1, the function φ(·, ·) is constant and so the networks are actually sampled from
Model H0. Conversely, for all λ > 1, data sets come from Model H1. As λ increases, the
residual structure, not accounted for by Model H0, becomes sharper and thus easier to
detect.

We considered networks of size n = 100 and n = 150 as well as three values for the
parameter ρ ∈ {10−2, 10−1.5, 10−1} helping controlling the sparsity. Finally, we tested 9
different values of λ in [1, 5]. For each of the triplets (n, ρ, λ), we simulated 100 networks
and we applied the methodology we propose for values of K between 1 and 10. Because
the variational algorithm depends on the initialization, as any EM like procedure, for
each K it was run twice and the best run was selected, such that the lower bound was
maximized. Note that equal prior probabilities were given for the Models MK (K ≥ 2)
such that p(H ′1) = 1/2. Moreover, we set a0 = b0 = c0 = d0 = e0 = 1.

The results are presented in Figure 1. It appears that for low values of λ, the median
(indicated in bold on the boxplots) of the estimated values of p̂(H0|Y ) is 1 and goes to 0,
when λ increases, as expected. The results for the scenario with the highest sparsity (ρ =
10−2) and n = 100 are unstable although the median values share this global property.
Much stable results were obtained for larger networks. Interestingly, experiments can be
distinguished in the way Model H1 is detected. As soon as λ > 1, then the true model
responsible for generating the data is H1 and so the probability of Model H0 should be
lower than 1/2. In practice, the estimated probability p̂(H0|Y ) is lower than 1/2 for
slightly larger values of λ. For instance, for ρ = 10−1.5 and n = 150, p̂(H0|Y ) ≈ 0 for
λ = 2. For ρ = 10−1 and n = 100 the detection threshold appears sooner, for λ = 1.5. The
experiments illustrate that H1 is detected more easily, as the network size n increases and
the sparsity parameter ρ decreases. Overall the results are encouraging with particularly
low detection threshold. For ρ = 10−1 and n = 150, Model H1 is always detected when
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Figure 1: Boxplots of the estimated values p̂(H0|Y ) of the posterior probability p(H0|Y ),
obtained with the variational approximations, for values of λ ranging from 1 to 5. Six
scenarios considered with the number n of nodes in {100, 150} and the sparsity parameter
ρ in {10−2, 10−1.5, 10−1}. Model H0 is true for λ = 1 and false for λ > 1.
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5 Illustrations

We applied our approach for the analysis of two real networks from social sciences and
ecology. For both studies, equal prior probabilities were given for the Models MK (K ≥ 2)
such that p(H ′1) = 1/2. Moreover, we set a0 = b0 = c0 = d0 = e0 = 1.

5.1 Blog network

The network is made of 196 vertices and was built from a single day snapshot of political
blogs extracted on 14th October 2006 [39]. Nodes correspond to blogs and an edge connect
two nodes if there is an hyperlink from one blog to the other. They were annotated
manually by the “Observatoire Présidentiel” project such that, for each node, labels are
available. Thus, each node is associated to a political party from the left wing to the right
wing and the status of the writer is also given (political analyst or not). This data set
has been studied in a series of works [23, 24, 25, 39] where all the authors pointed out the
crucial role of the labels in the construction of the network. The proposed methodology
gives a statistical framework to decipher whether the network is fully explained by these
labels built manually using expert knowledge.

We considered a set of three covariates xij = (x1
ij, x

2
ij, x

3
ij) ∈ R3 artificially constructed

to analyze the influence of both the political parties and the writer status. We set x1
ij = 1

if blogs i and j have the same labels, 0 otherwise. Moreover, x2
ij = 1 if one of the two

blogs i and j is written by political analysts, 0 otherwise. Finally, x3
ij = 1 if both are

written by political analysts, 0 otherwise.
We ran the variational algorithm on this data set for K between 1 and 16. For each

K, the procedure was repeated 20 times and the run maximizing the lower bound was
selected. We obtained a value of p̂(H0|Y ) ≈ 3.6e− 172 close to zero and therefore Model
H0 was rejected. The covariates cannot explain entirely the construction of the network.

For illustration purposes, the estimation of the residual structure g ◦ φ̂ of this data
set is provided in Figure 2 (d = 3). In practice, we used Proposition 10 to estimate φ̂
and then applied g(·) to obtain a graphon like surface. We can observe that g ◦ φ̂ is not
constant for d = 3 which is coherent with H0 being rejected. Moreover, we also give in
this figure the estimated residual structure without taking the covariates into account
(d = 0). Clearly, the shape of g ◦ φ̂ is simpler when d = 3. In particular, many of the hills
on the diagonal vanish when adding the covariates. Thus, the covariates help in studying
and explaining parts of the network. However, they are not sufficient and some of the
heterogeneity observed in the network cannot be explained by political parties and writer
status.

5.2 Tree network

This data set was first introduced by [33] and further studied in [27]. We considered
the tree network which describes the interactions between 51 trees where two trees in-
teract if they share at least one common fungal parasite. Three covariates are available
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Figure 2: Estimation of the blog network residual structure with and without covariates.
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Figure 3: Estimation of the tree network residual structure with and without covariates.

w
it

h
ou

t
co

va
ri

at
es

w
it

h
co

va
ri

at
es

(d
=

3)

characterizing the genetic, geographic, and taxonomic distances between the tree species.
As for the blog network, we applied the variational algorithm for values of K between

1 and 16. For each K, the procedure was repeated 20 times for various initializations and
the best run was selected. Model H0 was rejected with a value of p̂(H0|Y ) ≈ 7.5e − 153
close to zero. Thus, the interactions between trees through common fungal parasite cannot
be entirely explained by the distances available. This is consistent with a these from [27]
who describe a residual heterogeneity in the valued version of this network, after taking
the covariates into account.

Finally, we give the estimated residual structure g ◦ φ̂ for this data set in Figure 3
(d = 3). First, we note that the structure is not constant which is coherent with H0 being
rejected. Moreover, we also provide in this figure the estimated structure without taking
the covariates into account (d = 0). Thus, as for the blog network, we find that adding
the covariates induces a simplification of g ◦ φ̂. The extra diagonal holes vanish and the
residual structure is closer to a constant function.
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6 Conclusion

In this paper we proposed a framework to assess the goodness of fit of logistic models
for binary networks. Thus, we added a generic term, related to the graphon function of
W -graph models, to the logistic regression model. The corresponding new model was ap-
proximated with a series of models with blockwise constant residual structure. A Bayesian
procedure was then considered to derive goodness-of-fit criteria. All these criteria depend
on marginal likelihood terms for which we did provide estimates relying on variational
approximations. The first approximation was obtained using a variational decomposition
while the second involves a series of Taylor expansions. The approach was tested on toy
data sets and encouraging results were obtained. Finally, it was used to analyze two real
networks from social sciences and ecology. We believe the methodology has a large spec-
trum of applications since logistic regression models are highly used in practice to deal
with covariates in binary networks.
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A Appendix

A.1 Proof of Proposition 1

Let us start by showing that:

log p(Y |Z, α, β) ≥ log
√
h(Z, α, β, ξ),

where ξ is an n × n positive real matrix. We use the bound on the log-logistic function
introduced by [17] from Taylor expansions:

log g(x) ≥ log g(ξ) +
x− ξ

2
− λ(ξ)(x2 − ξ2),∀(x, ξ) ∈ R× R+, (7)

where λ(ξ) = (g(ξ) − 1/2)/(2ξ). Note that (7) is an even function and therefore we can
consider only positive values of x without loss of generality. Since

log p(Yij|Zi, Zj, α, β) = Yij(Z
ᵀ
i αZj + xᵀijβ) + log g(−Zᵀ

i αZj − x
ᵀ
ijβ),

then

log p(Yij|Zi, Zj, α, β) ≥ Yij(Z
ᵀ
i αZj + xᵀijβ) + log g(ξij)−

Zᵀ
i αZj + xᵀijβ + ξij

2
− λ(ξij)((Z

ᵀ
i αZj + xᵀijβ)2 − ξ2

ij)

= (Yij −
1

2
)(Zᵀ

i αZj + xᵀijβ)− ξij
2

+ log g(ξij)

− λ(ξij)((Z
ᵀ
i αZj + xᵀijβ)2 − ξ2

ij).

Note that for undirected networks, the matrix ξ has to be symmetric, i.e. ξij = ξji,∀i 6= j.
We then have

log p(Y |Z, α, β) =
1

2

n∑
i 6=j

log p(Yij|Zi, Zj, α, β).

Therefore
log p(Y |Z, α, β) ≥ log

√
h(Z, α, β, ξ).

Finally,

LK(q) =
∑
Z

∫
q(Z, π, α, β, γ, η) log

p(Y, Z, π, α, β, γ, η)

q(Z, π, α, β, γ, η)
dπdαdβdγdη

=
∑
Z

∫
q(Z, π, α, β, γ, η) log

p(Y |Z, α, β)p(Z, π, α, β, γ, η)

q(Z, π, α, β, γ, η)
dπdαdβdγdη

≥
∑
Z

∫
q(Z, π, α, β, γ, η) log

√
h(Z, α, β, ξ)p(Z, π, α, β, γ, η)

q(Z, π, α, β, γ, η)
dπdαdβdγdη

= LK(q; ξ).
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A.2 Proof of Proposition 2

log q(Zi) = EZ\i,α,β,π

[
1

2
log h(Z, α, β, ξ) + log p(Z|π)

]
+ cst

= EZ\i,α,β,π

[
1

2

n∑
i 6=j

{
(Yij −

1

2
)Zᵀ

i αZj − λ(ξij)
(
(Zᵀ

i αZj)
2 + 2Zᵀ

i αZix
ᵀ
ijβ
)}

+
n∑
i=1

Zik log πk

]
+ cst.

Note that

EZj ,α[Zᵀ
i αZj] = EZj ,α

[
K∑
k,l

ZikαklZjl

]

=
K∑
k=1

Zik

{
K∑
l=1

(mα)klτjl

}
.

Furthermore

EZj ,α[(Zᵀ
i αZj)

2] = EZj ,α

( K∑
k,l

ZikαklZkl

)2


= EZj ,α

 K∑
k,k′ ,l,l′

ZikZik′αklαk′ l′ZjlZjl′

 .
(8)

Because all vectors Zi are sampled from a multinomial distribution with parameters (1, π),
all terms ZikZik′ = 0 for k 6= k

′
and Z2

ik = Zik in (8). Therefore

(Zᵀ
i αZj)

2 =
K∑
k,l

Zikα
2
klZjl. (9)

This leads to

EZj ,α[(Zᵀ
i αZj)

2] =
K∑
k=1

Zik

{
K∑
l=1

Eαkl
[α2
kl]τjl

}
.

Finally

log q(Zi) =
K∑
k=1

Zik

{
K∑
l=1

(mα)kl
1

2

n∑
j 6=i

(
(Yij−

1

2
)−2λ(ξij)x

ᵀ
ijmβ

)
τjl−

K∑
l=1

Eαkl
[α2
kl]

1

2

n∑
j 6=i

λ(ξij)τjl

+
K∑
l=1

(mα)lk
1

2

n∑
j 6=i

(
(Yji −

1

2
)− 2λ(ξji)x

ᵀ
jimβ

)
τjl −

K∑
l=1

Eαlk
[α2
lk]

1

2

n∑
j 6=i

λ(ξji)τjl

+ ψ(enk)− ψ
( K∑
l=1

enl

)}
+ cst.
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Since (mα)kl = (mα)lk, Eαkl
[α2
kl] = Eαlk

[α2
lk], Yij = Yji, xij = xji, ξij = ξji, then

log q(Zi) =
K∑
k=1

Zik

{
K∑
l=1

(mα)kl

n∑
j 6=i

(
(Yij−

1

2
)−2λ(ξij)x

ᵀ
ijmβ

)
τjl−

K∑
l=1

Eαkl
[α2
kl]

n∑
j 6=i

λ(ξij)τjl

+ ψ(enk)− ψ
( K∑
l=1

enl

)}
+ cst.

Therefore
q(Zi) =M(Zi; 1, τi),

where
∑K

k=1 τik = 1 and

τik ∝ exp

{
K∑
l=1

(mα)kl

n∑
j 6=i

(
(Yij −

1

2
)− 2λ(ξij)x

ᵀ
ijmβ

)
τjl −

K∑
l=1

Eαkl
[α2
kl]

n∑
j 6=i

λ(ξij)τjl

+ ψ(enk)− ψ
( K∑
l=1

enl

)}
.

A.3 Proof of Proposition 3

log q(π) = EZ [log p(Z|π) + log p(π)] + cst

=
n∑
i=1

K∑
k=1

τik log πk +
K∑
k=1

(e0 − 1) log πk + cst

=
K∑
k=1

(
e0 +

n∑
i=1

τik − 1
)

log πk + cst.

Therefore
q(π) = Dir(π; en),

where enk = e0 +
∑n

i=1 τik, ∀k ∈ {1, . . . , K}.

A.4 Proof of Proposition 4

log q(β) = EZ,α,η
[

1

2
log h(Z, α, β, ξ) + log p(β|η)

]
+ cst

= EZ,α,η

[
1

2

n∑
i 6=j

{
(Yij − 1/2)xᵀijβ − λ(ξij)

(
(xᵀijβ)2 + 2Zᵀ

i αZjx
ᵀ
ijβ
)}
− η

2
βᵀβ

]
+ cst

= βᵀ

{
1

2

n∑
i 6=j

(
Yij −

1

2
− 2λ(ξij)τ

ᵀ
i mατj

)
xij

}
− 1

2
βᵀ

{
cn
dn
Id +

n∑
i 6=j

λ(ξij)xijx
ᵀ
ij

}
β + cst.
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Therefore
q(β) = N (β; mβ, Sβ),

where

S−1
β =

cn
dn
Id +

n∑
i 6=j

λ(ξij)xijx
ᵀ
ij,

and

mβ = Sβ
1

2

n∑
i 6=j

(
Yij −

1

2
− 2λ(ξij)τ

ᵀ
i mατj

)
xij.

A.5 Proof of Proposition 5

log q(γ) = Eα [log p(α|γ) + log p(γ)] + cst

= Eα

[
K∑
k≤l

1

2
log(γ)−

K∑
k≤l

γ

2
α2
kl

]
+ (a0 − 1) log γ − b0γ + cst

= (a0 +
K(K + 1)

4
− 1) log γ −

(
b0 +

1

2

K∑
k≤l

Eαkl
[α2
kl]

)
γ + cst.

Therefore
q(γ) = Gam(γ; an, bn),

where an = a0 + K(K+1)
4

and bn = b0 + 1
2

∑K
k≤l Eαkl

[α2
kl].

A.6 Proof of Proposition 6

log q(η) = Eβ [log p(β|η) + log p(η)] + cst

= Eβ
[
d

2
log η − η

2
βᵀβ

]
+ (c0 − 1) log η − d0η + cst

= (c0 +
d

2
− 1) log η − (d0 +

1

2
Tr(Sβ) +

1

2
mᵀ
βmβ)η + cst.

Therefore
q(η) = Gam(η; cn, dn),

where cn = c0 + d
2

and dn = d0 + 1
2
Tr(Sβ) + 1

2
mᵀ
βmβ.
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A.7 Proof of Proposition 7

log q(α) = EZ,β,γ
[

1

2
log h(Z, α, β, ξ) + log p(α|γ)

]
+ cst

= EZ,β,γ

[
1

2

n∑
i 6=j

{
(Yij −

1

2
)Zᵀ

i αZj − λ(ξij)
(

(Zᵀ
i αZj)

2 + 2Zᵀ
i αZjx

ᵀ
ijβ
)}

−
K∑
k≤l

γ

2
α2
kl

]
+ cst.

(10)

We have Zᵀ
i αZj =

∑K
k,l ZikαklZkl and (Zᵀ

i αZj)
2 =

∑K
k,l Zikα

2
klZkl = Zᵀ

i AZj (see Eq. 9)

with A the K × K matrix such that Akl = α2
kl. Moreover, any expression of the form

(1/2)
∑n

i 6=j cijZ
ᵀ
i BZj where B is a symmetric K ×K matrix and cij = cji can be written

1

2

n∑
i 6=j

cijZ
ᵀ
i BZj =

1

2

n∑
i 6=j

cij

K∑
k,l

ZikBklZjl

=
1

2

n∑
i 6=j

cij

(
K∑
k=1

ZikBkkZjk +
K∑
k<l

ZikBklZjl +
K∑
k<l

ZjkBlkZil

)

=
K∑
k=1

Bkk
1

2

n∑
i 6=j

cijZikZjk +
K∑
k<l

Bkl

(
1

2

n∑
i 6=j

cijZikZjl +
1

2

n∑
i 6=j

cijZjkZil

)
.

By exchanging the role of i and j in the sum of the last term and since cij = cji, we obtain

1

2

n∑
i 6=j

cijZ
ᵀ
i BZj =

K∑
k=1

Bkk
1

2

n∑
i 6=j

cijZikZjk +
K∑
k<l

Bkl

n∑
i 6=j

cijZikZjl. (11)

Using (11) in (10) leads to

log q(α) =
K∑
k=1

αkk

n∑
i 6=j

(
1

2
(Yij −

1

2
)− λ(ξij)x

ᵀ
ijmβ

)
τikτjk

+
K∑
k<l

αkl

n∑
i 6=j

(
(Yij −

1

2
)− 2λ(ξij)x

ᵀ
ijmβ

)
τikτjl

−
K∑
k=1

α2
kk

n∑
i 6=j

1

2
λ(ξij)τikτjk −

K∑
k<l

α2
kl

n∑
i 6=j

λ(ξij)τikτjl

−
K∑
k≤l

an
2bn

α2
kl.

Therefore

q(α) =
K∏
k 6=l

N
(
αkl; (mα)kl, (σ

2
α)kl
)
,
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where

(σ2
α)−1
kk =

an
bn

+
n∑
i 6=j

λ(ξij)τikτjk,∀k,

(σ2
α)−1
kl =

an
bn

+ 2
n∑
i 6=j

λ(ξij)τikτjl, ∀k 6= l,

(mα)kk = (σ2
α)kk

n∑
i 6=j

(
1

2
(Yij −

1

2
)− λ(ξij)x

ᵀ
ijmβ

)
τikτjk

(mα)kl = (σ2
α)kl

n∑
i 6=j

(
(Yij −

1

2
)− 2λ(ξij)x

ᵀ
ijmβ

)
τikτjl.

A.8 Proof of Proposition 9

LK(q; ξ) = EZ,π,α,β,γ,η
[
log
√
h(Z, α, β, ξ) + log p(Z, π, α, β, γ, η)

]
−EZ,π,α,β,γ,η [log q(Z, π, α, β, γ, η)]

LK(q; ξ) =
1

2

n∑
i 6=j

{
(Yij −

1

2
)(EZi,Zj ,α[Zᵀ

i αZj] + xᵀijEβ[β]) + log g(ξij)−
ξij
2

− λ(ξij)
(
EZi,Zj ,α[(Zᵀ

i αZj)
2] + 2EZi,Zj ,α[Zᵀ

i αZj]x
ᵀ
ijEβ[β] + Eβ[(xᵀijβ)2]− ξ2

ij

)}

+
n∑
i=1

K∑
k=1

EZi
[Zik]Eπ[log πk]− logC(e) +

K∑
k=1

(e0 − 1)Eπ[log πk]−
K(K + 1)

4
log(2π)

+
K(K + 1)

4
Eγ[log γ]− Eγ[γ]

2

K∑
k≤l

Eαkl
[α2
kl]−

d

2
log(2π) +

d

2
Eη[log η]− Eη[η]

2
Eβ[βᵀβ]

− log Γ(a0) + a0 log b0 + (a0 − 1)Eγ[log γ]− b0Eγ[γ]− log Γ(c0)

+ c0 log d0 + (c0 − 1)Eη[log η]− d0Eη[η]−
n∑
i=1

K∑
k=1

EZi
[Zik] log τik + logC(en)

−
K∑
k=1

(enk − 1)Eπ[log πk] +
K(K + 1)

4
log(2π) +

1

2

K∑
k≤l

log(σ2
α)kl +

1

2

K∑
k≤l

(σ2
α)−1
kl Eαkl

[α2
kl]

−
K∑
k≤l

(σ2
α)−1
kl Eαkl

[αkl](mα)kl +
1

2

K∑
k≤l

(σ2
α)−1
kl (mα)2

kl +
d

2
log(2π) +

1

2
log |Sβ|

+
1

2
Eβ[βᵀS−1

β β]− Eβ[β]ᵀS−1
β mβ +

1

2
mβS

−1
β mβ + log Γ(an)− an log bn

− (an − 1)Eγ[log γ] + bnEγ[γ] + log Γ(cn)− cn log dn − (cn − 1)Eη[log η]

+ dnEη[η], (12)
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where C(x) =
∏K

k=1 Γ(xk)

Γ(
∑K

k=1 xk)
and Γ(·) is the gamma function. The terms in Eγ[log γ], Eη[log η],

Eπ[log π] and log(2π) do simplify in (12) after the VBEM update step. This leads to

LK(q; ξ) =
1

2

n∑
i 6=j

{
(Yij −

1

2
)(EZi,Zj ,α[Zᵀ

i αZj] + xᵀijEβ[β]) + log g(ξij)−
ξij
2

− λ(ξij)
(
EZi,Zj ,α[(Zᵀ

i αZj)
2] + 2EZi,Zj ,α[Zᵀ

i αZj]x
ᵀ
ijEβ[β] + Eβ[(xᵀijβ)2]− ξ2

ij

)}

− logC(e)− an
2bn

K∑
k≤l

Eαkl
[α2
kl]−

cn
2dn

Tr(Sβ +mβm
ᵀ
β)

− log Γ(a0) + a0 log b0 − b0
an
bn
− log Γ(c0) + c0 log d0 − d0

cn
dn

−
n∑
i=1

K∑
k=1

τik log τik + logC(en) +
1

2

K∑
k≤l

log(σ2
α)kl +

1

2

K∑
k≤l

(σ2
α)−1
kl Eαkl

[α2
kl]

− 1

2

K∑
k≤l

(σ2
α)−1
kl (mα)2

kl +
1

2
log |Sβ|+

1

2
Tr
(
S−1
β (Sβ +mβ(mβ)ᵀ)

)
− 1

2
mᵀ
βS
−1
β mβ + log Γ(an)− an log bn + bn

an
bn

+ log Γ(cn)

− cn log dn + dn
cn
dn
.

Moreover, using (11), note that

1

2

n∑
i 6=j

(Yij −
1

2
)EZi,Zj ,α[Zᵀ

i αZj] =
K∑
k=1

Eαkk
[αkk]

1

2

n∑
i 6=j

(Yij −
1

2
)τikτjk

+
K∑
k<l

Eαkl
[αkl]

n∑
i 6=j

(Yij −
1

2
)τikτjl,

1

2

n∑
i 6=j

2λ(ξij)EZi,Zj ,α[Zᵀ
i αZj]x

ᵀ
ijEβ[β] =

K∑
k=1

Eαkk
[αkk]

n∑
i 6=j

λ(ξij)x
ᵀ
ijEβ[β]τikτjk

+
K∑
k<l

Eαkl
[αkl]2

n∑
i 6=j

λ(ξij)x
ᵀ
ijEβ[β]τikτjl.
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Using (9) and (11),

1

2

n∑
i 6=j

λ(ξij)EZi,Zj ,α[(Zᵀ
i αZj)

2] =
K∑
k=1

Eαkk
[α2
kk]

1

2

n∑
i 6=j

λ(ξij)τikτjk

+
K∑
k<l

Eαkl
[α2
kl]

n∑
i 6=j

λ(ξij)τikτjl

Finally
Eβ[(xᵀijβ)2] = Eβ

[
xᵀijβx

ᵀ
ijβ
]

= Eβ
[
xᵀijββ

ᵀxij
]

= Tr
(
xijx

ᵀ
ijEβ[ββᵀ]

)
= Tr

(
xijx

ᵀ
ij(Sβ +mβm

ᵀ
β)
)
.

Therefore

LK(q; ξ) =
1

2

n∑
i 6=j

{
log g(ξij)−

ξij
2

+ λ(ξij)ξ
2
ij

}
+ log

C(en)

C(e)
+ log

Γ(an)

Γ(a0)
+ log

Γ(cn)

Γ(c0)

+ a0 log b0 + an(1− b0

bn
− log bn) + c0 log d0 + cn(1− d0

dn
− log dn)

+
1

2

K∑
k≤l

log(σ2
α)kl +

1

2
log |Sβ| −

n∑
i=1

K∑
k=1

τik log τik −
1

2

K∑
k≤l

(σ2
α)−1
kl (mα)2

kl −
1

2
mᵀ
βS
−1
β mβ

+
K∑
k=1

(mα)kk

n∑
i 6=j

(
1

2
(Yij −

1

2
)− λ(ξij)x

ᵀ
ijmβ

)
τikτjk

+
K∑
k<l

(mα)kl

n∑
i 6=j

(
(Yij −

1

2
)− 2λ(ξij)x

ᵀ
ijmβ

)
τikτjl

−
K∑
k=1

Eαkk
[α2
kk]

1

2

(
an
bn
− (σ2

α)−1
kk +

n∑
i 6=j

λ(ξij)τikτjk

)

−
K∑
k<l

Eαkl
[α2
kl]

1

2

(
an
bn
− (σ2

α)−1
kl + 2

n∑
i 6=j

λ(ξij)τikτjl

)

+
1

2
mᵀ
β

n∑
i 6=j

(Yij −
1

2
)xij

− 1

2
Tr

((
2

n∑
i 6=j

λ(ξij)xijx
ᵀ
ij +
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Id − S−1

β

)
(Sβ +mβm

ᵀ
β)

)
.
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Finally, since the terms at the fourth and fifth line correspond exactly to
∑K

k≤l(mα)kl(σ
2
α)−1
kl (mα)kl,

and after the VBEM update step

LK(q; ξ) =
1

2

n∑
i 6=j

{
log g(ξij)−

ξij
2

+ λ(ξij)ξ
2
ij

}
+ log

C(en)

C(e)
+ log

Γ(an)

Γ(a0)
+ log

Γ(cn)

Γ(c0)

+ a0 log b0 + an(1− b0

bn
− log bn) + c0 log d0 + cn(1− d0

dn
− log dn)

+
1

2

K∑
k≤l

log(σ2
α)kl +

1

2
log |Sβ| −

n∑
i=1

K∑
k=1

τik log τik +
1

2

K∑
k≤l

(σ2
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kl (mα)2

kl −
1

2
mᵀ
βS
−1
β mβ

+
1

2
mᵀ
β

n∑
i 6=j

(Yij −
1

2
)xij.

A.9 Proof of Proposition 8

Keeping only the terms that do depend on ξij in (12), the lower bound is given by

LK(q; ξ) =
1

2

n∑
i 6=j

{
log g(ξij)−

ξij
2
− λ(ξij)

(
EZi,Zj ,α[(Zᵀ

i αZj)
2] + 2EZi,Zj ,α[Zᵀ

i αZj]x
ᵀ
ijEβ[β]

+ Eβ[(xᵀijβ)2]− ξ2
ij

)}
+ cst

=
1

2

n∑
i 6=j

{
log g(ξij)−

ξij
2
− λ(ξij)
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k,l

τikτjlEαkl
[α2
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τikτjl(mα)klx
ᵀ
ijmβ

+ Tr(xijx
ᵀ
ij(Sβ +mβm

ᵀ
β))− ξ2

ij
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The partial derivative of the lower bound with respect to ξij is

∂LK
∂ξij

(q; ξ) = g(−ξij)−
1

2
− λ′

(ξij)
( K∑

k,l

τikτjlEαkl
[α2
kl] + 2

K∑
k,l

τikτjl(mα)klx
ᵀ
ijmβ

+ Tr(xijx
ᵀ
ij(Sβ +mβm

ᵀ
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)
+ 2λ(ξij)ξij,

and

∂LK
∂ξij

(q; ξ) = −λ′
(ξij)

( K∑
k,l

τikτjlEαkl
[α2
kl] + 2

K∑
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τikτjl(mα)klx
ᵀ
ijmβ

+ Tr(xijx
ᵀ
ij(Sβ +mβm

ᵀ
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ij

)
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Finally, λ(ξij) is a strictly decreasing function for positive values of ξij . Thus, λ
′
(ξij) 6= 0

and therefore if we set (13) to zero, we obtain

ξ2
ij =

K∑
k,l

τikτjlEαkl
[α2
kl] + 2

K∑
k,l

τikτjl(mα)klx
ᵀ
ijmβ + Tr(xijx

ᵀ
ij(Sβ +mβm

ᵀ
β)).

Note that ξij = ξji.
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mixture. Pattern Recognition, 41(12):3592–3599, 2008.

[40] H. Zanghi, S. Volant, and C. Ambroise. Clustering based on random graph model
embedding vertex features. Pattern Recognition Letters, 31(9):830–836, 2010.

28


