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Abstract

The degree variance has been proposed for many years to study the topology of
a network. It can be used to assess the goodness-of-fit of the Erdös-Renyi model.
In this paper, we prove the asymptotic normality of the degree variance under
this model which enables us to derive a formal test. We generalize this result to
the heterogeneous Erdös-Renyi model in which the edges have different respective
probabilities to exist. For both models we study the power of the proposed goodness-
of-fit test. We also prove the asymptotic normality under specific sparsity regimes.
Both tests are illustrated on real networks from social sciences and ecology. Their
performances are assessed via a simulation study.

1 Introduction

Interaction networks are used in many fields such as biology, sociology, ecology, economics
or energy to describe the interactions existing between a set of individuals or entities.
Formally, an interaction network can be viewed as a graph, the nodes of which being
the individuals, and an edge between two nodes being present if these two individuals
interact. Characterizing the general organization of such a network, namely its topology,
can help in understanding the behavior of the system as a whole.

In the last decades, the distribution of the degrees (i.e. the number of connections of
each node) has appeared as a simple and relevant way to study the topology of a network
(Snijders (1981), Barabási and Albert (1999)). The degree distribution can also be used
to infer complex graph model (Bickel et al. (2011)). From a more descriptive view-point,
a very imbalanced distribution may reveal a network whose edges highly concentrate
around few nodes, whereas a multi-modal distribution may reveal the existence of clusters
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1

ar
X

iv
:1

50
7.

08
14

0v
1 

 [
m

at
h.

ST
] 

 2
9 

Ju
l 2

01
5



of nodes (Channarond et al. (2012)). However, in practice, assessing the significance of
such patterns remains an open problem.
The variance of the degrees has been considered since the earliest statistical studies of
networks (Snijders (1981)). The first idea was simply to compare its empirical value
to the expected one under a null random graph model, typically the Erdös-Renyi (ER)
model, where each degree has a binomial distribution. Hagberg (2003) derives the exact
moments of the degree variance and suggests to use a Gamma distribution (Hagberg
(2000)). Snijders (1981) also gives the first two moments of the degree variance, but
conditionally to the total number of edges. To our knowledge the first and only proof
of the asymptotic normality of the degree variance under the ER model is given in a
technical report from Bloznelis (2005).

In this paper, we derive the asymptotic distribution of the degree variance under the ER
model and we generalize this result to the heterogeneous Erdös-Renyi model (HER), in
which the edges are still independent but have different respective probabilities to exist.
This generalization enables us to study the power of the degree variance test under a
range of alternative random graph models.
Because the ER model is rarely a reasonable model to be tested, we define a generalized
version of the degree variance statistic, which we name the degree sum of squares. This
statistic generalizes the degree variance in the sense that it measures the discrepancy
between the observed degrees and their expected values under an HER model. We also
prove the asymptotic normality of this statistic and study its power under the alternative
of an ill-specified HER model. In addition, because large networks are often sparse, we
study under which sparsity regime the asymptotic distributions derived before still hold.
The goodness-of-fit of the HER model has received little attention until now. The only
reference we found is the procedure proposed by Cerqueira et al. (2015), who do not
rely on the degrees and consider a set of independent and identically distibuted random
graphs.

In the rest of the paper, we consider an undirected graph G = ({1, . . . n}, E) with no self
loop, that is the connection of a node to itself, and denote Y the corresponding adjacency
n × n matrix. Thus, the entry Yij of Y is 1 if (i, j) ∈ E , and 0 otherwise. Because G is
undirected with no self loop, we have Yij = Yji,∀i 6= j and Yii = 0, for all i’s. We further
denote Di the degree of node i: Di =

∑
j 6=i Yij.

In terms of random graph models, ER(p) refers to the Erdös-Renyi model, according to
which all edges (Yij) are independent Bernoulli variables with same probability p to exist.
HER(p) stands for the heterogeneous Erdös-Renyi model where edges are independent
with respective probability pij to exist. The n×n matrix p has entries pij, it is symmetric
with null diagonal.
The asymptotic framework for the HER model in the non-sparse setting is the following.
We consider an infinite matrix P, the elements of which are all bounded away from
both 0 and 1. We then build a sequence of matrices pn made of the first n rows and
columns of P. Finally, we consider a sequence of independent graphs Gn = ({1, . . . n}, En),
with increasing size n and respective probability matrices pn. The sequence of matrices

2



p∗,n = [p∗,nij ] used in the sparse setting is constructed in a related way, based on an infinite
matrix P∗ with all terms bounded away from 0 and 1. All quantities computed on Gn
should therefore be indexed by n as well. For the sake of clarity, we will drop the index
n in the rest of the paper. The asymptotic framework for ER derives from this of HER
described above.

In Section 2, we derive the asymptotic distribution of the degree variance under models
ER(p) and HER(p). We also derive its asymptotic normality under some specific sparsity
regimes. We deduce a test for the null hypothesis stating that G arises from ER(p) and
study its power. In Section 3, we obtain a series of similar results for the mean square
degree statistic under the HER(p) model with p = [n(n − 1)]−1

∑
i 6=jpij. Both tests are

illustrated on some examples. In Section 4, we study the performances of the proposed
tests in a simulation study.

2 Degree variance test

For a given random graph, we consider the following statistic which is the empirical degree
variance.

V =
1

n

∑
i

(
Di −D

)2
=

1

2n2

∑
i 6=j

(Di −Dj)
2 ,

where Di =
∑

i 6=jYij and D = (1/n)
∑

j Dj.

2.1 Asymptotic normality

We establish the asymptotic normality of V under model HER(p), then under model
ER(p) as a direct consequence. The proof relies on the Hoeffding decomposition of V ,
in the same manner as in Bloznelis (2005) whose work is under model ER(p). A similar
strategy has been used by Nowicki and Wierman (1988) to prove the asymptotic normality
of subgraph counts in random graphs. We derive all projections involved in the Hoeffding
decomposition to which we eventually apply the Lindeberg-Lévy Theorem which is stated
below (see e.g. Billingsley (1968), Theorem 7.2, p.42).

Lindeberg-Lévy Theorem Let (Xnu)1≤u≤kn be a triangular array of independent ran-

dom variables with means 0 and finite variances (σ2
nu)1≤u≤kn. Let B2

n =
∑kn

u=1 σ
2
nu. If the

Lindeberg condition

A2
n(ε)/B2

n → 0, as n→∞, for each ε > 0, where A2
n(ε) =

kn∑
u=1

∫
{|xnu|>εBn}

x2nudP (1)

is satisfied then

1

Bn

kn∑
u=1

Xnu
D−→ N (0, 1).
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Remark 1 Let consider the case of binary random variables Xnu with mean 0. More
specifically, set Xnu = anuZnu, anu ∈ R, where Znu are centered Bernoulli variables. More
precisely, Znu takes value 1 − pnu with probability pnu and value −pnu with probability
1 − pnu. The event |Xnu| ≥ εBn in the definition of A2

n(ε) in (1) implies |anu| ≥ εBn.
Therefore, all Xnu for which |anu| < εBn do not contribute to A2

n(ε). If this holds for all
Xnu, then the Lindeberg condition is directly satisfied. If not, only the Xnu for which it
does not hold have to be considered in the calculation of A2

n(ε) and, because |Znu| ≤ 1, their
contribution is upper-bounded by their variance σ2

nu = a2nupnu(1−pnu). In the forthcoming
theorems proofs, we will verify the Lindeberg condition using this observation.

Theorem 1 Under model HER(p), the degree variance is asymptotically normal:(
V − EHER(p)V

)
/SHER(p)V

D−→ N (0, 1),

where S denotes the standard deviation and

EHER(p)V =
2(n− 2)

n2

∑
1≤i<j≤n

pij +
2(n− 4)

n2

∑
1≤i<j<k≤n

{pijpik + pijpjk + pikpjk}

− 8

n2

∑
1≤i<j<k<l≤n

{pijpk` + pikpj` + pi`pjk} .

Moreover, denoting σ2
ij = pij(1− pij),

VHER(p)V =
1

4n4

∑
1≤i<j≤n

σ2
ij

4(n− 2) + 4(n− 4)
∑
k/∈(i,j)

(pi,k + pj,k)− 16
∑

k<l/∈(i,j)

pk`

2

+
1

n4

∑
1≤i<j<k≤n

4(n− 4)2
{
σ2
ijσ

2
ik + σ2

ijσ
2
jk + σ2

ikσ
2
jk

}
+

1

n4

∑
1≤i<j<k<l≤n

64
{
σ2
ijσ

2
k` + σ2

ikσ
2
j` + σ2

i`σ
2
jk

}
.

Proof. Let express V as follows.

n2V = 2(n− 2)
∑

1≤i<j≤n

Yij

+2(n− 4)
∑

1≤i<j<k≤n

{YijYik + YijYjk + YikYjk}

−8
∑

1≤i<j<k<l≤n

{YijYk` + YikYj` + Yi`Yjk} . (2)
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Then, we write the Hoeffding decomposition of V (see, e.g., Chapter 11 in van der Vaart
(1998)) :

V = P∅V +
∑

1≤i<j≤n

P{ij}V +
∑

1≤i<j<k≤n

{
P{ij,ik}V + P{ij,jk}V + P{ik,kj}V

}
+

∑
1≤i<j<k<l≤n

{
P{ij,kl}V + P{ik,jl}V + P{il,jk}V

}
, (3)

where

P∅V = EV,
P{ij}V = E(V |Yij)− EV,

P{ij,ik}V = E(V |Yij, Yik)− E(V |Yij)− E(V |Yik) + EV,
P{ij,kl}V = E(V |Yij, Yk`)− E(V |Yij)− E(V |Yk`) + EV.

Combining the definitions above with the expression (2) of V , we obtain that,

P∅V =
1

2n2

(
4(n− 2)

∑
1≤i<j≤n

pij + 4(n− 4)
∑

1≤i<j<k≤n

{pijpik + pijpjk + pikpjk}

)

− 8

n2

∑
1≤i<j<k<l≤n

{pijpk` + pikpj` + pi`pjk} ,

P{ij}V =
1

2n2
Ỹij

4(n− 2) + 4(n− 4)
∑
k/∈(i,j)

(pi,k + pj,k)− 16
∑

k<l/∈(i,j)

pk`

 , (4)

P{ij,ik}V =
2(n− 4)

n2
ỸijỸik, (5)

P{ij,kl}V = − 8

n2
ỸijỸk`, (6)

where Ỹij = Yij − pij. Observe now that,

n2EV = 2(n− 2)
∑

1≤i<j≤n

pij + 2(n− 4)
∑

1≤i<j<k≤n

{pijpik + pijpjk + pikpjk}

−8
∑

1≤i<j<k<l≤n

{pijpk` + pikpj` + pi`pjk} .
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Then, we use the fact that the Ỹij’s being independent and zero mean variables implies
that each projection is orthogonal to the other ones. This leads to

n4VV =
∑

1≤i<j≤n

σ2
ij

2(n− 2) + 2(n− 4)
∑
k/∈(i,j)

(pi,k + pj,k)− 8
∑

k<l/∈(i,j)

pk`

2

+
∑

1≤i<j<k≤n

4(n− 4)2
{
σ2
ijσ

2
ik + σ2

ijσ
2
jk + σ2

ikσ
2
jk

}
+

∑
1≤i<j<k<l≤n

64
{
σ2
ijσ

2
k` + σ2

ikσ
2
j` + σ2

i`σ
2
jk

}
.

We now turn to the asymptotic normality of V . We apply the Lindeberg-Levy theorem to
the projections P{ij}V, P{ij,ik}V and P{ij,kl}V , which stand for the Xnu. We first observe

that these projections are each proportional to one of the Ỹij, ỸijỸik, ỸijỸk`, . . . which
are all independent centered Bernoulli variables (because orthogonal and binary). We
may now use Remark 1. We denote the respective anu by an{ij}, an{ij,ik} and an{ij,kl}, the
explicit expressions of which are given in (4), (5) and (6). Observe that an{ij} = O(1),
an{ij,ik} = O(n−1) and an{ij,kl} = O(n−2). Since VP{ij}V = O(1), VP{ij,ik}V = O (n−2)
and VP{ij,kl}V = O (n−4), we have B2

n = O(n2). We conclude therefore that the Lindeberg
condition is fulfilled because, for any ε, each anu becomes smaller than εBn when n goes
to infinity.�

Corollary 1 Under model ER(p), the degree variance is asymptotically normal:(
V − EER(p)V

)
/SER(p)V

D−→ N (0, 1),

where

EER(p)V =
(n− 1)(n− 2)pq

n
,

VER(p)V =
2(n− 1)(n− 2)2

n3
pq (1 + (n− 6)pq) .

This corollary is a straightforward application of Theorem 1 to the case where all pij are
equal to p. Another proof of the asymptotic normality of V under ER(p) can be found
in Bloznelis (2005). The moments have also been given by Hagberg (2003).

Case of sparse graphs. We now discuss the validity of Theorem 1 when considering
sparse graphs. Sparsity can be defined in two ways. Either each of the connection proba-
bilities vanishes as n grows, or the fraction of non-zero connection probabilities decreases
as n grows. The following Proposition deals with a combination of both scenarios.

Proposition 1 Consider the HER(p) model, where p is constructed as follows. First
set all pij = p∗ijn

−a where a ≥ 0 and p∗ij ∈ [0, 1]. Then, a fraction 1− n−b, b ≥ 0, of pij’s
is set to zero. Then, provided that a+ b < 2, the V statistic is asymptotically normal.

6



Proof. The proof is a generalization of the one of Theorem 1 and follows Remark 1. The
projections involved in (3) still stand for Xnu, and an{ij}, an{ij,ik} as well as an{ij,kl} are
expressed in (4), (5) and (6).
First observe that both sums A2

n(ε) and B2
n in the Lindeberg condition can be split into

three sub-sums over i < j, i < j < k and i < j < k < l, respectively. Then, observe that
the edges for which pij is zero do not contribute to A2

n(ε). So, the number of non-zero
terms in each of these sums is O(n2−b), O(n3−2b) and O(n4−2b), respectively.
We now calculate the variance σ2

nu of each projections. Since
∑

k/∈(i,j) pik = O(n1−a−b) and∑
k<l/∈(i,j) pk` = O(n2−a−b), we see that an{ij} = O(n−(a+b)) if a+b < 1 and O(n−1) if a+b >

1, an{ij,ik} = O(n−1) and an{ij,kl} = O(n−2). Therefore, we have VP{ij}V = O
(
n−3a−2b

)
if

a+b < 1 and O (n−a−2) if a+b > 1, VP{ij,ik}V = O (n−2a−2) and VP{ij,kl}V = O (n−2a−4).
Combining this with the number of non-zero terms in the sums of the numerator of the
Lindeberg condition, we get that B2

n = O
(
n2−3(a+b)) if a + b < 1 and O

(
n−(a+b)

)
if

a+ b > 1.
Comparing A2

n(ε) with B2
n, we see that the Lindeberg condition is fulfilled for a+ b < 2.�

2.2 Test and power

We now consider the use of the statistic V for the test of H0 = ER versus H1 = HER(p).
Because the probability is unknown in practice, we consider the following test statistic
using a plug-in version of the moments, namely(

V − EER(p̂)V
)
/SER(p̂)V,

where p̂ = [n(n− 1)]−1
∑

i 6=jYij.

Lemma 1 Under model ER, the degree variance is asymptotically normal:(
V − EER(p̂)V

)
/SER(p̂)V

D−→ N (0, 1).

Proof. The proof relies on the concentration of p̂ around p and on Slutsky’s lemma. First,
write the statistic based on V as

V − Ep̂V
Sp̂V

=
SpV
Sp̂V

(
V − EpV

SpV
+

EpV − Ep̂V
SpV

)
.

Then note that, under ER(p), (p̂−p) = OP (n−1), so (p̂q̂−pq) = OP(n−2), where q̂ stands
for 1−p̂. According to the moments given in Corollary 1, we have that EpV = O(n)pq and
VpV = O(1)pq + O(n)p2q2. This entails that EpV − Ep̂V = OP(n−1) and Vp̂V − VpV =
OP(n−2), so SpV /Sp̂V converges in probability to 1 and (EpV − Ep̂V )/SpV converges in
probability to 0. The result then follows from Slutsky’s lemma, used twice.�

The asymptotic power of this test depends on the asymptotic distribution of the statistic
under the HER(p). The following corollary shows that the asymptotic distribution of
the test based on (V − EER(p̂)V )/SER(p̂)V is the same as the one of the test based on the
statistic (V − EER(p)V )/SER(p)V .
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Lemma 2 We have(
V − EER(p̂)V

)
/SER(p̂)V −

(
V − EER(p)V

)
/SER(p)V

P−→ 0,

where p = [n(n− 1)]−1
∑

i 6=jpij.

The proof of this Lemma is similar to this of Lemma 1 and results from the concentration
of p̂ around p. We now use the asymptotic normality of (V − EER(p)V )/SER(p)V under
the HER(p) model to get the asymptotic power of the proposed test.

Corollary 2 The asymptotic power π(p) = Pp{V > tα} of the test of H0 = ER versus
H1 = HER(p), with nominal level α > 0, is

π(p) = 1− Φ
((
EER(p)V + tαSER(p)V − EHER(p)V

) /
SHER(p)V

)
,

where Φ stands for the cumulative distribution function [cdf ] of the standard normal dis-
tribution and tα = Φ−1(1− α).

2.3 Illustration

As an illustration of the proposed test, we consider the following networks. For each of
these networks, additional covariates are available, which will be considered in the next
section.

Ecological networks: this consists in two ecological networks first introduced by Vacher
et al. (2008) and further studied in Mariadassou et al. (2010). Each of these
networks describe the interaction between a series of n = 51 trees and n = 154
fungi, respectively. In the tree network, two trees interact if they share at least one
common fungal parasite. As for the fungal network, two fungi are linked if they are
hosted by at least one common tree species.

Political blogs network: this consists in a set of n = 196 French political blogs already
studied by Latouche et al. (2011). Two blogs are connected if one contains an
hyperlink to the other.

We first apply the degree variance test to each of these networks to check if the topology
of these networks is similar to the one of an ER network. The results are given in Table
1. As expected, their topology are far too heterogeneous to fit an ER(p) model, and the
null hypothesis is rejected for each one of them.

3 Degree mean square test

Because the ER model rarely fits real networks, we now consider a goodness-of-fit test
for the HER model. More specifically, for a given matrix p0 of connection probabilities,
we consider the test statistic

Wp0 =
1

n

∑
i

(Di − µ0
i )

2,

where µ0
i stand for the expected degree of node i under HER(p0), namely µ0

i =
∑

j 6=i p
0
ij.

8



Network p̂ V EER(p̂) SER(p̂) (V − EER(p̂))/SER(p̂)

Trees 0.540 163.1 11.93 2.34 64.6
Fungis 0.227 593.7 26.48 3.02 187.5
Blogs 0.075 104.3 13.38 1.38 65.7

Table 1: Degree variance test for the tree and fungal networks. The last column should
be compared to a standard Gaussian distribution so all corresponding p-values are below
the numerical precision.

3.1 Asymptotic normality

Theorem 2 Under model HER(p), the statistic Wp0 is asymptotically normal:

(Wp0 − EHER(p)Wp0)/SHER(p)Wp0
D−→ N (0, 1),

with

EHER(p)Wp0 =
2

n

( ∑
1≤i<j≤n

(σ2
ij + δ2ij) +

∑
1≤i<j<k≤n

(δijδik + δijδjk + δikδjk)

)
,

VHER(p)Wp0 =
4

n2

( ∑
1≤i<j≤n

σ2
ij(∆i + ∆j + 1− 2pij)

2 +
∑

1≤i<j<k≤n

(
σ2
ijσ

2
ik + σ2

ijσ
2
jk + σ2

ikσ
2
jk

))
,

where δij = pij − p0ij and ∆i =
∑

j 6=i δij.

Proof. The proof follows the line of this of Theorem 1 and relies on Hoeffding decompo-
sition and Lindeberg condition. First observe that,

nWp0 =
∑
i

(Di − µi + µi − µ0
i )

2 =
∑
i

(∑
j 6=i

Ỹij + δij

)2

= 2
∑

1≤i<j≤n

(Ỹij + δij)
2

+2
∑

1≤i<j<k≤n

(Ỹij + δij)(Ỹik + δik) + (Ỹij + δij)(Ỹjk + δjk) + (Ỹik + δik)(Ỹjk + δjk).

Then, we write the Hoeffding decomposition of Wp0 :

Wp0 = P∅Wp0 +
∑

1≤i<j≤n

P{ij}Wp0 +
∑

1≤i<j<k≤n

(
P{ij,ik}Wp0 + P{ij,jk}Wp0 + P{ik,kj}Wp0

)
. (7)

Note that the projections on disjoint pairs of edges P{ij,k`} do not appear here. Taking all
projections with respect to HER(p), we have

nP∅Wp0 = 2
∑

1≤i<j≤n

(σ2
ij + δ2ij) + 2

∑
1≤i<j<k≤n

δijδik + δijδjk + δikδjk,

9



which gives the expectation. The other projections provide the variance. We have

P{ij}Wp0 =
2

n
Ỹij (1− 2pij + (∆i + ∆j)) , P{ij,ik}Wp0 =

1

n
ỸijỸik. (8)

So,

n2V(P{ij}Wp0) = 4
(
V(Ỹ 2

ij) + 2(∆i + ∆j)Cov(Ỹ 2
ij , Ỹij) + (∆i + ∆j)

2VỸij
)

= 4σ2
ij(1− 2pij + ∆i + ∆j)

2,

n2V(P{ij,ik}Wp0) = 4σ2
ijσ

2
ik,

and the variance of Wp0 follows.
As for the asymptotic normality, we apply the Lindeberg-Levy theorem using Remark 1.
The projections involved in (7) stand for Xnu. The an{ij} = O(1) and an{ij,ik} = O(n−1)
expressed in (8) stand for anu. Since V(P{ij}Wp0) = O(1) and V(P{ij,ik}Wp0) = O(n−2),
we have B2

n = O(n2). We thus conclude that the Lindeberg condition is fulfilled because,
for any ε, each anu becomes smaller than εBn when n goes to infinity.�

Case of sparse graphs. We now extend Theorem 2 to sparse graphs, considering a
setting similar to this of Proposition 1.

Proposition 2 Consider the HER(p) model, when pij = p∗ijn
−a, a > 0, p∗ij ∈ [0, 1] and a

fraction 1−n−b, b ≥ 0, of pij’s is set to zero. The p0ij’s follow exactly the same hypotheses.
Then, provided that a+ b < 2, the statistic Wp0 is asymptotically normal.

Proof. The proof is a generalization of this of Theorem 2 and follows the line of this of
Proposition 1. First observe that both sums A2

n(ε) and B2
n in the Lindeberg condition

can be split into two sub-sums over i < j and i < j < k. The number of non-zero pij in
each of these sums is O(n2−b) and O(n3−2b). We now calculate the variance σ2

nu of each
projections in (8). Since ∆i = O(n1−a−b), we see that an{ij} = O(n−(a+b)) if a+ b < 1 and
O(n−1) if a + b > 1, and an{ij,ik} = O(n−1). Therefore, we have VP{ij}V = O

(
n−3a−2b

)
if a + b < 1 and O (n−a−2) if a + b > 1, and VP{ij,ik}V = O (n−2a−2). This entails that
B2
n = O

(
n2−3(a+b)) if a + b < 1 and O

(
n−(a+b)

)
if a + b > 1. Comparing A2

n(ε) with B2
n,

we see that the Lindeberg condition is fulfilled for a+ b < 2. �

3.2 Test and power

We now study the test of H0 = HER(p0) versus H1 = HER(p). The next Corollaries
provide the null distribution of the test statistic Wp0 and the power of the associate test.
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Corollary 3 Under model HER(p0) the statistic Wp0 is asymptotically normal with mo-
ments:

EHER(p0)Wp0 =
2

n

∑
1≤i<j≤n

σ2
ij,

VHER(p0)Wp0 =
4

n2

( ∑
1≤i<j≤n

σ2
ij(1− 2pij)

2 +
∑

1≤i<j<k≤n

(
σ2
ijσ

2
ik + σ2

ijσ
2
jk + σ2

ikσ
2
jk

))
.

This is a direct consequence of Theorem 2 in the special case of the HER(p0) model for
which all δij’s are zero.

A formal test with asymptotic level α can be constructed based on Corollary 3, which
reject H0 as soon as Wp0 exceeds EHER(p0)Wp0 + tαSHER(p0)Wp0 , where tα stands for the
1 − α quantile of the standard Gaussian distribution. The power of this test is given by
the following Corollary.

Corollary 4 The asymptotic power of the test for H0 = HER(p0) versus H1 = HER(p)
is

π(p) = 1− Φ
((
EHER(p0)Wp0 + tαSHER(p0)Wp0 − EHER(p)Wp0

) /
SHER(p)Wp0

)
.

Special case of ER(p). The ER(p) model corresponds to HER(p0) where the matrix
p0 has all entries equal to p. In this case, the test statistic Wp0 can be viewed as the
theoretical version of the empirical variance statistic V studied in Section 2 as

Wp0 =
1

n

∑
i

(Di − (n− 1)p)2 .

Because as p̂ is an average over O(n2) edges, we have that (p̂−p)2 = OP (n−2) so Wp0−V =
(n− 1)2(p̂− p)2 = OP (1). Combined with arguments similar to these of Corollary 1 and
Lemma 2, this implies that, under the ER model, the tests based on V and Wp0 are
asymptotically equivalent.

3.3 Illustration

To illustrate the use of the proposed test, we consider the same networks as in Section 2.2.
Several covariates are available for each network. The genetic, taxonomic and geographical
distances between tree species are available, as well as the nutritional similarities and the
taxonomic distances between fungal species (see description in Mariadassou et al. (2010)).
As for the blog network, the political party of each blog and the status of the writer
(journalist or not) are also available.
The question is then to know if these covariates are sufficient to explain the heterogeneity
of the network, at least in terms of degrees. To address this question, for each network

11



separately, we fitted a logistic regression model stating that logit(p0ij) = xᵀijβ, where

logit(u) = log(u)/ log(1−u), u ∈ R, xij ∈ Rd stands for the vector of covariates (intercept,
distances, similarity) for the (i, j) and β for the vector of regression coefficients. A log-
scale was used for the genetic distance.
This regression model provided us with an estimate of the connection probability matrix
p0. We then applied the degree mean square test to check if the considered covariates are
sufficient to explain the heterogeneity of the network. The results are given in Table 2
and again the null hypothesis H0 : Y ∼ HER(p0) is rejected for both networks. As for
the ecological networks, these results are consistent with these from Mariadassou et al.
(2010), who detected a residual heterogeneity in the valued versions of these networks
after correction for these covariates.

Network mean(p0) st-dev(p0) Wp0 EHER(p0) SHER(p0) (Wp0 − EHER(p0))/SHER(p0)

Trees 0.540 0.192 136.8 10.57 2.09 60.4
Fungis 0.227 0.006 593.8 26.83 3.06 185.0
Blogs 0.075 0.119 78.7 10.7 1.17 57.8

Table 2: Degree mean square test for the tree and fungal networks.

4 Simulations study

We designed a simulation study to assess the performances of both the degree variance
and the degree mean square tests. More specifically, the purpose of this study is to
evaluate the power of the degree variance test for various graph sizes, densities (mean
connectivities) and imbalances (in terms of degree). We also aim at illustrating for which
graph size the asymptotic normality is reach; we especially focus on this point in the
sparse regime. The purpose is the same for degree mean square test but, in addition, we
want to study the performances of a plug-in version of this test where the probabilities
p0ij would be replaced by some estimations p̂0ij, obtained e.g. with a logistic regression on
some observed covariates, resulting in a plug-in version of Wp0 denoted as Wp̂0 .
The rational behind this study is the following. Denoting µ̂0

i =
∑

j 6=i p̂
0
ij and ∆i = µ̂0

i −µ0
i ,

Wp̂0 writes

Wp̂0 :=
1

n

∑
i

(
Di − µ̂0

i

)2
= Wp0 − 2

n

∑
i

(
Di − µ0

i

)
∆i +

1

n

∑
i

∆2
i . (9)

If the p̂0ij result from a typical parametric estimation based on the O(n2) edges, we expect
the estimation error |p0ij − p̂0ij| to be OP (n−1). Indeed this errors are not independent and
are cumulated in each ∆i so the question is to know under which regime the last two
terms of (9) can be neglected with respect to Wp0 .

12



4.1 Simulation design

Degree variance test. We used a design similar to the one proposed in Latouche and
Robin (2013). More precisely node i was associated with value ui = i/(n + 1) and the
probability pij was set to pij = ρλ2(uiuj)

λ−1. In this setting, ρ > 0 controls the density of
the graph (ρ = p) and λ > 0 controls the imbalance of the degrees. λ = 1 corresponds to
the ER(ρ) model. Not that λ < ρ−1/2 must hold to keep all pij smaller than 1. For each
combination of parameters, 1 000 simulations were ran and the test was carried out using
the statistic V .

Degree mean square test. For the degree mean square, we designed a simulation that
mimics the situation where an heterogeneous model is already considered, but still misses
some heterogeneity. More precisely, each node i was associated with a vector of covariates
xi ∈ Rd (all values were drawn iid with standard Gaussian distribution and d was set to
3). Each edge (i, j) was then associated with the covariate vector xij = xi − xj, when
i < j. The edges were then drawn according a logistic model: logit(pij) = a + xᵀijβ. The
constant a was set to preserve the mean connectivity, denoted ρ in the degree variance
simulation.
The probabilities p0ij of the null distribution were defined according to the same logistic

model, removing the last covariate, namely logit(p0ij) = a+x0ᵀij β
0, where x0ij and β0 are the

same as xij and β, respectively deprived from the last coordinate. Hence, the discrepancy
between the null hypothesis and the true model is measured by the coefficient of the last
covariate, denoted β1 in the sequel. All β’s were set to 1 except β1 which ranged from 0
to 1. For each combination of parameters (n, ρ, β1), 1 000 simulations were ran and the
test was carried out using the statistic Wp0 .
We also investigated the case were the first covariates are observed but not directly
the probabilities p0ij. For each simulated data set, we fitted a logistic regression model

logit(p0ij) = x0ᵀij β
0, ending up with an estimated p̂0 connection matrix. The tests were

then performed using the plug-in statistic Wp̂0 .

Sparse graphs. Finally, we considered sparse graphs in the two settings described in
Section 3. We focused on the asymptotic normality of the degree mean square statistic
under the null hypothesis. To this aim, we simulated p0∗ij probabilities as described above.
We then considered the two sparsity scenarios:

• vanishing connection probabilities: p0ij = p0∗ij n
−a;

• sparse connection probabilities: p0ij = p0∗ij with probability n−b and 0 otherwise.

In both case the mean density of the non-sparse graph ρ = p0∗ij was set to 0.1. The density

of the graphs therefore decrease as ρn−a and ρn−b, respectively.
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Criteria. For each parameter configuration, we computed the moments of the respective
statistics and derived the theoretical power. Based on the replicates, we estimated the
empirical power. For the sparse setting, the proximity with the normal distribution was
investigated plotting the empirical quantiles versus the theoretical Gaussian quantiles
(QQ-plots).

4.2 Results

Degree variance test. The power curves of the degree variance test are given Figure
1. As expected, the power increases with both the graph size n, the network density
ρ and the degree imbalance λ. The binomial confidence interval around the theoretical
power informs us about the convergence to the asymptotic normality. We observe that
the empirical power (dots) falls within this interval for all ρ and λ for n ≥ 300, for n = 100
as soon as ρ ≥ 0.01 and even for n ' 30 for denser graphs (ρ ≥ 0.1).

Figure 1: Power of the degree variance test as a function of the imbalance of the degree
λ (in log scale). From top left to bottom center: log10 ρ = −5/2 to −1/2 by step of
1/2. Color refers to the graph size: n = 32 (red), 100 (green), 316 (blue), 1 000 (cyan)
(green, blue and cyan curves and points overlap in the last panels). Points = empirical
power (average on 1 000 simulations); solid line = theoretical power; dotted = binomial
confidence interval for 1 000 simulations.
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Degree mean square test. The power curves of the degree mean square test are given
Figure 2. We observe a behavior similar to this of the V based test: the power increase
with both the graph size n, the density ρ and the unexpected heterogeneity β1. Note that
the covariates xij (and hence the probabilities pij) were kept fixed across the simulation
for a given configuration of the parameters n, ρ and β1. As the power of the test depends
on both these parameters and the covariates xij, depending on their values, the power
may not increase with β1 (see e.g. the top right panel of 2 for n = 32). Here again,
the empirical power (dots) of Wp0 based test falls within the binomial confidence band,
showing that the asymptotic normality is reach for reasonable small and dense graphs.

Plug-in version of the degree mean square test. The results are much more disap-
pointing for the plug-in version Wp̂0 . Its empirical power (triangles) reaches the theoretical
ones only for large and dense graphs (n ≥ 300, ρ ≥ 0.1). This suggests that the cumu-
lative effect of all the estimation errors |p̂0ij − p0ij| on Wp̂0 vanishes much later than the
convergence of Wp0 to normality.

Figure 2: Power of the degree mean square test as a function of β1, the effect of the last
covariate. Same legend as Figure 1 for colors, points and lines. Dotted points: Wp0 test;
triangular points: Wp̂0 test.
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Sparse graphs. Figure 3 displays the QQ-plots of the standardized Wp0 statistic under
the vanishing probabilities scenario for graphs with size n = 100, 1 000, 1 0000. Remember
that the larger the power a, the sparser the graph. We observe again that normality holds
for the non sparse graphs (a = 0) even for n = 100, but the departure is visible for n = 100
as soon as a ≥ 0.4. The same is observed for n = 1 000, although a bit later (a ≥ 0.8).
For the largest graph (n = 10 000), normality holds until a ' 1.6 but does not seem to be
reached for higher sparsity regimes. Similar conclusions can be drawn from Figure 4 for
the sparse probabilities scenario, each distribution being slightly closer to normal.
Based on this simulation study, we would not advise to rely on asymptotic normality
to perform a test for graphs of size n = 100 and density smaller that ρn−0.2 ' 5% or
for graphs of size n = 1 000 and density smaller that ρn−0.4 ' 5%. From a practical
point-of-view, in the very sparse regime, normality can only be relied on for very large
graphs.

Figure 3: QQ-plots of the degree mean square statistic for vanishing connection proba-
bilities: pij = p∗ijn

−a and initial mean density ρ = 0.1. From top left to bottom right:
a = 0, 0.4, 0.8, 1.2, 1.4, 1.6. Graph size n = 100 (+), 1 000 (×) and 10 000 (�).
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Figure 4: QQ-plots of the degree mean square statistic for a fraction n−b of non-zero
connection probabilities pij, with initial mean density ρ = 0.1. From top left to bottom
right: b = 0, 0.4, 0.8, 1.2, 1.4, 1.6. Graph size n = 100 (+), 1 000 (×) and 10 000 (�).
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